1,715 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Improving the Accuracy of Fuzzy Decision Tree by Direct Back Propagation with Adaptive Learning Rate and Momentum Factor for User Localization

    Get PDF
    AbstractMost prevailing availability of wireless networks has elevated an interest in developing a smart indoor environment by utilizing the hand held devices of the users. The user localization helps in automating the activities like automating switch on/off of the room lights, air conditioning etc., which makes the environment smart. Here, we consider locating the users as a pattern classification problem and use Fuzzy decision tree (FDT) as a knowledge discovery method to locate the users based on the wireless signal strength observed by their handheld devices. To increase the FDT accuracy and to achieve faster convergence, we came up with a novel strategy named Improved Neuro Fuzzy Decision Tree with an adaptive learning rate and momentum factor to optimize the parameters of FDT. The proposed approach can be used for any classification problem. From the results obtained, we observe that our proposed algorithm achieves better convergence and accuracy
    • 

    corecore