1,663 research outputs found

    Traffic locality oriented route discovery algorithms for mobile ad hoc networks

    Get PDF
    There has been a growing interest in Mobile Ad hoc Networks (MANETs) motivated by the advances in wireless technology and the range of potential applications that might be realised with such technology. Due to the lack of an infrastructure and their dynamic nature, MANETs demand a new set of networking protocols to harness the full benefits of these versatile communication systems. Great deals of research activities have been devoted to develop on-demand routing algorithms for MANETs. The route discovery processes used in most on-demand routing algorithms, such as the Dynamic Source Routing (DSR) and Ad hoc On-demand Distance Vector (AODV), rely on simple flooding as a broadcasting technique for route discovery. Although simple flooding is simple to implement, it dominates the routing overhead, leading to the well-known broadcast storm problem that results in packet congestion and excessive collisions. A number of routing techniques have been proposed to alleviate this problem, some of which aim to improve the route discovery process by restricting the broadcast of route request packets to only the essential part of the network. Ideally, a route discovery should stop when a receiving node reports a route to the required destination. However, this cannot be achieved efficiently without the use of external resources; such as GPS location devices. In this thesis, a new locality-oriented route discovery approach is proposed and exploited to develop three new algorithms to improve the route discovery process in on-demand routing protocols. The proposal of our algorithms is motivated by the fact that various patterns of traffic locality occur quite naturally in MANETs since groups of nodes communicate frequently with each other to accomplish common tasks. Some of these algorithms manage to reduce end-to-end delay while incurring lower routing overhead compared to some of the existing algorithms such as simple flooding used in AODV. The three algorithms are based on a revised concept of traffic locality in MANETs which relies on identifying a dynamic zone around a source node where the zone radius depends on the distribution of the nodes with which that the source is “mostly” communicating. The traffic locality concept developed in this research form the basis of our Traffic Locality Route Discovery Approach (TLRDA) that aims to improve the routing discovery process in on-demand routing protocols. A neighbourhood region is generated for each active source node, containing “most” of its destinations, thus the whole network being divided into two non-overlapping regions, neighbourhood and beyond-neighbourhood, centred at the source node from that source node prospective. Route requests are processed normally in the neighbourhood region according to the routing algorithm used. However, outside this region various measures are taken to impede such broadcasts and, ultimately, stop them when they have outlived their usefulness. The approach is adaptive where the boundary of each source node’s neighbourhood is continuously updated to reflect the communication behaviour of the source node. TLRDA is the basis for the new three route discovery algorithms; notably: Traffic Locality Route Discovery Algorithm with Delay (TLRDA D), Traffic Locality Route Discovery Algorithm with Chase (TLRDA-C), and Traffic Locality Expanding Ring Search (TL-ERS). In TLRDA-D, any route request that is currently travelling in its source node’s beyond-neighbourhood region is deliberately delayed to give priority to unfulfilled route requests. In TLRDA-C, this approach is augmented by using chase packets to target the route requests associated with them after the requested route has been discovered. In TL-ERS, the search is conducted by covering three successive rings. The first ring covers the source node neighbourhood region and unsatisfied route requests in this ring trigger the generation of the second ring which is double that of the first. Otherwise, the third ring covers the whole network and the algorithm finally resorts to flooding. Detailed performance evaluations are provided using both mathematical and simulation modelling to investigate the performance behaviour of the TLRDA D, TLRDA-C, and TL-ERS algorithms and demonstrate their relative effectiveness against the existing approaches. Our results reveal that TLRDA D and TLRDA C manage to minimize end-to-end packet delays while TLRDA-C and TL-ERS exhibit low routing overhead. Moreover, the results indicate that equipping AODV with our new route discovery algorithms greatly enhance the performance of AODV in terms of end to end delay, routing overhead, and packet loss

    The Price of Fog: a Data-Driven Study on Caching Architectures in Vehicular Networks

    Get PDF
    Vehicular users are expected to consume large amounts of data, for both entertainment and navigation purposes. This will put a strain on cellular networks, which will be able to cope with such a load only if proper caching is in place, this in turn begs the question of which caching architecture is the best-suited to deal with vehicular content consumption. In this paper, we leverage a large-scale, crowd-collected trace to (i) characterize the vehicular traffic demand, in terms of overall magnitude and content breakup, (ii) assess how different caching approaches perform against such a real-world load, (iii) study the effect of recommendation systems and local contents. We define a price-of-fog metric, expressing the additional caching capacity to deploy when moving from traditional, centralized caching architectures to a "fog computing" approach, where caches are closer to the network edge. We find that for location-specific contents, such as the ones that vehicular users are most likely to request, such a price almost disappears. Vehicular networks thus make a strong case for the adoption of mobile-edge caching, as we are able to reap the benefit thereof -- including a reduction in the distance traveled by data, within the core network -- with little or no of the associated disadvantages.Comment: ACM IoV-VoI 2016 MobiHoc Workshop, The 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing: MobiHoc 2016-IoV-VoI Workshop, Paderborn, German

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    A Modified Shared-tree Multicast Routing Protocol in Ad Hoc Network

    Get PDF
    Mobile ad hoc network is a wireless mobile network that does not have any base station or other central control infrastructure. Design of efficient multicast routing protocols in such network is challenging, especially when the mobile hosts move faster. Shared tree routing protocol is a widely used multicast routing protocol in ad hoc network. However, there are problems in end-to-end delay and network throughput for this protocol. In this paper, we propose a protocol to improve the inherent problem of large end-to-end delay in shared tree method as a modification to the existing multicast Ad hoc On-demand Distance Vector (MAODV) routing for low mobility network. The protocol uses n-hop local ring search to establish new forwarding path and limit flooding region. We then propose an extension to our proposed protocol, which uses periodic route discovery message to improve the network throughput for high mobility network. Simulation results demonstrate the improvement with average end-to-end delay in low mobility case as well as high packet delivery ratio in high mobility cas

    Overlay networks for smart grids

    Get PDF

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    The Communications Satellite Industry as an Element in Nigeria’s Attempt to Modernise Its Economy and Society

    Get PDF
    There is general consensus that Nigeria’s inordinate reliance on oil has not had a positive impact on its social and economic development – indeed, that Nigeria has suffered from the ‘resource curse’. In 2009, the National Planning Commission of Nigeria, the custodian of the Vision 20:2020 document as well as the 30-year National Integrated Infrastructure Master Plan (NIIMP), which stressed the need for Nigeria to reduce its reliance on hydrocarbons, a crucial element in this goal is Information and Communications Technology. This paper examines the establishment of the communications satellite industry and its strategic role as critical ICT backbone infrastructure in driving Nigeria’s national ICT revolution beyond cities and urban areas to unserved and underserved areas and its growing value chain in key economic sectors of the Nigerian economy and society. Keywords: Nigeria, Resource Curse, ICT, Communication Satellites
    corecore