90 research outputs found

    A deep matrix factorization method for learning attribute representations

    Get PDF
    Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015

    Discriminant Projective Non-Negative Matrix Factorization

    Get PDF
    Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W-T X as their coefficients, i.e., X approximate to WWT X. Since PNM

    Robust Spectral Clustering via Sparse Representation

    Get PDF
    Clustering high-dimensional data has been a challenging problem in data mining and machining learning. Spectral clustering via sparse representation has been proposed for clustering high-dimensional data. A critical step in spectral clustering is to effectively construct a weight matrix by assessing the proximity between each pair of objects. While sparse representation proves its effectiveness for compressing high-dimensional signals, existing spectral clustering algorithms based on sparse representation use those sparse coefficients directly. We believe that the similarity measure exploiting more global information from the coefficient vectors will provide more truthful similarity among data objects. The intuition is that the sparse coefficient vectors corresponding to two similar objects are similar and those of two dissimilar objects are also dissimilar. In particular, we propose two approaches of weight matrix construction according to the similarity of the sparse coefficient vectors. Experimental results on several real-world high-dimensional data sets demonstrate that spectral clustering based on the proposed similarity matrices outperforms existing spectral clustering algorithms via sparse representation

    Neighborhood Preserving Convex Nonnegative Matrix Factorization

    Get PDF
    The convex nonnegative matrix factorization (CNMF) is a variation of nonnegative matrix factorization (NMF) in which each cluster is expressed by a linear combination of the data points and each data point is represented by a linear combination of the cluster centers. When there exists nonlinearity in the manifold structure, both NMF and CNMF are incapable of characterizing the geometric structure of the data. This paper introduces a neighborhood preserving convex nonnegative matrix factorization (NPCNMF), which imposes an additional constraint on CNMF that each data point can be represented as a linear combination of its neighbors. Thus our method is able to reap the benefits of both nonnegative data factorization and the purpose of manifold structure. An efficient multiplicative updating procedure is produced, and its convergence is guaranteed theoretically. The feasibility and effectiveness of NPCNMF are verified on several standard data sets with promising results

    Symmetric Subspace Learning for Image Analysis

    Get PDF
    • …
    corecore