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The convex nonnegative matrix factorization (CNMF) is a variation of nonnegative matrix factorization (NMF) in which each
cluster is expressed by a linear combination of the data points and each data point is represented by a linear combination of the
cluster centers. When there exists nonlinearity in the manifold structure, both NMF and CNMF are incapable of characterizing
the geometric structure of the data. This paper introduces a neighborhood preserving convex nonnegative matrix factorization
(NPCNMF), which imposes an additional constraint on CNMF that each data point can be represented as a linear combination
of its neighbors. Thus our method is able to reap the benefits of both nonnegative data factorization and the purpose of manifold
structure. An efficientmultiplicative updating procedure is produced, and its convergence is guaranteed theoretically.The feasibility
and effectiveness of NPCNMF are verified on several standard data sets with promising results.

1. Introduction

This nonnegative matrix factorization (NMF) [1, 2] has
been widely used in information retrieval, computer vision,
pattern recognition, and DNA gene expressions [3, 4]. NMF
decomposes the data matrix as the product of two matrices
that possess only nonnegative elements. It has been stated by
many researchers that there are a lot of favorable properties
for such a decomposition over other similar decompositions,
such as PCA. One of the most useful properties of NMF is
that it usually leads to parts-based representation because
it allows only additive, not subtractive, combinations. Such
a representation encodes much of the data making them
easy to interpret. NMF can be traced back to 1970s and has
been studied extensively by Paatero and Tapper [5].The work
of Lee and Seung [1] brought much attention to NMF in
machine learning and data mining fields. Since then, various
extensions and variations of NMF have been proposed. Li
et al. [4] proposed local nonnegative matrix factorization
(LNMF) algorithm which imposes extra constraints to the
cost function to get more localized and parts-based image
features. Hoyer [6, 7] employed sparsity constraints to
improve local data representation, while nonnegative tensor

factorization was studied in [8, 9] by Hazan et al. to handle
the data encoded as high-order tensors. All the methods
mentioned above are unsupervised, Wang et al; [10] and
Zafeiriou et al. [11] proposed independently the Fisher-NMF,
which was further studied by Kotsia et al. [12], by adding an
additional constraint seeking to maximize the between-class
scatter and minimize the within-class scatter in the subspace
spanned by the bases.

One of the most important drawbacks of NMF and its
variants is the fact that these methods have to be performed
in the original feature space of the data points, so that it can
not be kernelized and the powerful idea of the kernel method
cannot be applied to NMF. Ding et al. [13] proposed convex
nonnegative factorization (CNMF) that strives to address the
problems while inheriting all the strengths of the above NMF
method, whichmodels each cluster as a linear combination of
the data points and each data point as a linear combination of
the cluster centers.Themajor advantage of CNMF over NMF
is that it can be performed on any data representations, either
in the original space or RKHS.

Recently, there has been a lot of interest in geometrically
motivated approaches to data analysis in high dimensional
spaces. When the data lives on or close to a nonlinear
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low dimensional manifold which is embedded in the high
dimensional ambient space [14, 15], Euclidean distance is
incapable of charactering the geometric structure of the data
and hence traditional methods like NMF and CNMF no
longer work well. Both CNMF and NMF do not exploit
the geometric structure of the data, which assume that the
data points are sampled from a Euclidean space. To address
this problem, Cai et al. proposed a graph regularized NMF
(GNMF) [16] and locally consistent concept factorization
(LCCF) [17], which assume that the nearby data points are
likely to be in the same cluster, that is, cluster assumption
[18, 19]. The Euclidean and manifold geometry are unified
through a regularization framework, which has a better
interpretation from manifold perspective.

In this paper, we introduce a novel matrix factorization
algorithm, called neighborhood preserving convex nonneg-
ative matrix factorization (NPCNMF) which is based on
the assumption that if a data point can be reconstructed
from its neighbors in the input space, then it can be
reconstructed from its neighbors by the same reconstruc-
tion coefficients in the low dimensional subspace, that is,
local linear embedding assumption [20]. NPCNMF not
only inherits the advantages of CNMF, for example, non-
negativity, but also overcomes the shortcomings of CNMF,
that is, Euclidean assumption. We also propose a multi-
plicative algorithm to efficiently solve the corresponding
optimization problem and its convergence is theoretically
guaranteed.

The rest of this paper is organized as follows. In Section 2,
we briefly reviewNMF andCNMF. In Section 3, we introduce
our algorithm and provide the proof of the convergence of the
proposed algorithm. Experiments on three benchmark face
recognition data sets are demonstrated in Section 4. Finally,
we draw a conclusion and provide suggestions for future
work.

2. A Review of NMF and CNMF

Nonnegative matrix factorization (NMF) factorizes the data
matrix into one nonnegative basis matrix and one non-
negative coefficient matrix. Given a nonnegative data X =

[x
1
, x
2
, . . . , x

𝑁
] ∈ R𝑚×𝑁
+

, each column of X is a sample point.
NMF aims to find two nonnegative matrices U ∈ R𝑚×𝑟

+
and

V ∈ R𝑁×𝑟
+

which minimize the following objective function:

JNMF =






X − UV𝑇



2

s.t. U ≥ 0,V ≥ 0, (1)

where ‖ ⋅ ‖
𝐹
is Frobenius norm.

The objective function is joint optimization problem of
basis matrix U and coefficient matrix V. Although it is not
jointly convex toU andV, it is convex with respect to each of
them when the other one is fixed. Therefore, it is unrealistic
to expect an algorithm to find the global minimum ofJNMF.

To optimize the objective, Lee and Seung [2] presented an
iterative multiplicative updating algorithm as follows:

𝑢

𝑡+1

𝑖𝑘
= 𝑢

𝑡

𝑖𝑘

(XV)
𝑖𝑘

(UV𝑇V)
𝑖𝑘

,

V𝑡+1
𝑗𝑘
= V𝑡
𝑗𝑘

(X𝑇U)
𝑗𝑘

(VU𝑇U)
𝑗𝑘

.

(2)

It is proved that the above updated steps will find a local
minimum of the objective function in (1).

In reality, we have 𝑟 ≪ 𝑚 and 𝑟 ≪ 𝑁. Thus, NMF
essentially tries to find a compressed approximation of the
original matrix, X ≈ UV𝑇. We can view this approximation
column as follows:

x
𝑗
=

𝑟

∑

𝑘=1

u
𝑘
V
𝑗𝑘
, (3)

where u
𝑘
is the 𝑘th column vector of U. Thus, each data

vector x
𝑗
is approximated by a linear combination of the

columns of U, weighted by the components of V. One
limitation of NMF is that the nonnegative requirement is not
applicable to applications where the data involves negative
number. The second is that it is not clear how to effectively
perform NMF in the transformed data space so that the
powerful kernel method can be applied. To overcome the
problem, Ding et al. [13] proposed a convex nonnegative
matrix factorization (CNMF) algorithm where nonnegative
and mixed-sign data matrices are applied. CNMF claims that
each base can be characterized by a linear combination of the
entire data points while each data point can be approximated
by a linear combination of all the bases. Translating the
statements into mathematics, we have

u
𝑘
=

𝑁

∑

𝑗=1

x
𝑗
𝑤
𝑗𝑘
, (4)

x
𝑗
=

𝑟

∑

𝑘=1

u
𝑘
V
𝑗𝑘
, (5)

where 𝑤
𝑗𝑘
is a nonnegative weight in which data point x

𝑗
is

related to 𝑘th base and V
𝑗𝑘
is a nonnegative projection value

of x
𝑗
. Replacing u

𝑘
in (5) with (4), we have

x
𝑗
=

𝑟

∑

𝑘=1

𝑁

∑

𝑗=1

x
𝑗
𝑤
𝑗𝑘
𝑢
𝑗𝑘
. (6)

We form the 𝑚 × 𝑁 data matrix X = [x
1
, x
2
, . . . , x

𝑁
] using

the feature vector of data point x
𝑖
as the 𝑖th column, the𝑁×𝑟

matrixW = [𝑤
𝑖𝑗
] using bases𝑤

𝑖𝑗
, and𝑁×𝑟 projectionmatrix

V = [V
𝑖𝑗
] using the projection values V

𝑖𝑗
. From (6), we have

X = XWV𝑇. (7)

Equation (7) can be interpreted as the approximation of
the original data set. Minimizing the squared errorJ and its
approximation [13]

JCNMF =






X − XWV𝑇



2

, (8)
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where X ∈ R𝑚×𝑁, W ∈ R𝑁×𝑟, V ∈ R𝑁×𝑟. The matrices
W and V are updated iteratively until convergence using the
following rules:

𝑤
𝑖𝑘
= 𝑤
𝑖𝑘
√

(Y+V)
𝑖𝑘
+ (Y−WV𝑇V)

𝑖𝑘

(Y−V)
𝑖𝑘
+ (Y+WV𝑇V)

𝑖𝑘

,

V
𝑖𝑘
= V
𝑖𝑘
√

(Y+W)
𝑖𝑘
+ (VW𝑇Y−W)

𝑖𝑘

(Y−W)
𝑖𝑘
+ (VW𝑇Y+W)

𝑖𝑘

,

(9)

where Y = X𝑇X and the matrix Y+ and Y− are given by

Y+
𝑖𝑘
=

1

2

(






Y
𝑖𝑘






+ Y
𝑖𝑘
) ,

Y−
𝑖𝑘
=

1

2

(






Y
𝑖𝑘






− Y
𝑖𝑘
) ,

(10)

respectively.

3. Neighborhood Preserving Convex
Nonnegative Matrix Factorization

In this section, we introduce our neighborhood preserving
convex nonnegative matrix factorization method, which
takes the local linear embedding constraint as an additional
requirement. The method presented in this paper is fun-
damentally motivated from the neighborhood preserving
embedding.

3.1.TheObjective Function. Many real world data are actually
sampled from a nonlinear low dimensionalmanifold which is
embedded in the high dimensional ambient space. BothNMF
and CF perform the factorization in the Euclidean space.
They fail to discover the local geometrical structure of the
data space, which is essential to the clustering problem. NPE
aims at preserving the local manifold structure. Specifically,
for each data point, it is represented as a linear combination of
the neighboring data points and the combination coefficients
are specified in the weight matrix. We can find an optimal
embedding such that the combination coefficients can be
preserved in the low dimensional subspace.

For each data point, we find its 𝑘 nearest neighbors.
And we can characterize the local geometrical structure by
linear coefficients that reconstruct each data point from its
neighbors. The reconstruction coefficients are computed by
the following objective function:

min













x
𝑖
− ∑

x𝑗∈N𝑘(x𝑖)
𝑤
𝑖𝑗
x
𝑗














2

s.t. ∑

x𝑗∈N𝑘(x𝑖)
𝑤
𝑖𝑗
= 1,

(11)

and 𝑤
𝑖𝑗
= 0 if 𝑥

𝑗
∉ N
𝑘
(x
𝑖
), where N

𝑘
(x
𝑖
) denotes the 𝑘

nearest neighborhood of x
𝑖
.

Then k
𝑖
, 1 ≤ 𝑖 ≤ 𝑛 in the dimensionality reduced space

can be preserved by minimizing

min













k
𝑖
− ∑

x𝑗∈N𝑘(x𝑖)
𝑤
𝑖𝑗
k
𝑗














2

= tr (V𝑇 (I −W) (I −W)V)

= tr (V𝑇LV) ,

(12)

where tr(⋅) denotes the trace of a matrix, I ∈ R𝑛×𝑛 is an
identity matrix, and L = (I − W)(I − W). By minimizing
(12), we essentially try to formalize our intuition that if a data
point can be represented from its neighbors in the original
space, then it can be represented from its neighbors by the
same combination coefficients in the dimensionality reduced
space.

With the neighborhood preserving constraint, CNMF
incorporates (8) and minimizes the objective function as
follows:

J =







X − XWV𝑇



2

+ 𝜆 tr (V𝑇LV) , (13)

where 𝜆 is a positive regularization parameter controlling the
contribution of the additional constraint. We call (13) neigh-
borhood preserving convex nonnegative matrix factorization
(NPCNMF). Let 𝜆 = 0; (13) degenerates to the original
CNMF.

3.2. The Algorithm. We introduce an iterative algorithm to
find a local minimum for the optimization problem. By
defining K = X𝑇X and using the matrix properties ‖A‖2 =
tr(A𝑇A), tr(AB) = tr(BA), and tr(A) = tr(A𝑇), we can rewrite
the objective functionJ as follows:

J = tr ((X − XWV𝑇)
𝑇

(X − XWV𝑇)) + 𝜆 tr (V𝑇LV)

= tr ((I −WV𝑇)
𝑇

K (I −WV𝑇)) + 𝜆 tr (V𝑇LV)

= tr (K) − 2 tr (VW𝑇K) + tr (VW𝑇KWV𝑇)

+ 𝜆 tr (V𝑇LV) .

(14)

This is a typical constrained optimization problem and
can be solved using the Lagrange multiplier method. Let 𝜓

𝑖𝑗

and 𝜙
𝑖𝑗
be the Lagrange multiplier for constraint 𝑤

𝑖𝑗
≥ 0 and

]
𝑖𝑗
≥ 0, respectively, and let Ψ = [𝜓

𝑖𝑗
] and Φ = [𝜙

𝑖𝑗
]. The

Lagrangian function is

L = tr (K) − 2 tr (VW𝑇K) + tr (VW𝑇KWV𝑇)

+ 𝜆 tr (V𝑇LV) + tr (ΨW𝑇) + tr (ΦV𝑇) .
(15)

The partial derivatives ofL with respect toW and V are

𝜕L

𝜕W
= −2KV + 2KWV𝑇V + Ψ,

𝜕L

𝜕V
= −2KW + 2VW𝑇KW + 2𝜆LV + Φ.

(16)
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Using the Karush-Kuhn-Tucker conditions 𝜓
𝑖𝑘
𝑤
𝑖𝑘
= 0

and 𝜙
𝑗𝑘
]
𝑗𝑘
= 0, we get the following equations for 𝑤

𝑖𝑘
and

V
𝑗𝑘
:

(−KV + KWV𝑇V)
𝑖𝑘
𝑤
𝑖𝑘
= 0,

(−KW + VW𝑇KW + 𝜆LV)
𝑗𝑘
V
𝑗𝑘
= 0.

(17)

The corresponding equivalent formulas are as follows:

(−KV + KWV𝑇V)
𝑖𝑘
𝑤

2

𝑖𝑘
= 0,

(−KW + VW𝑇KW + 𝜆LV)
𝑗𝑘
V2
𝑗𝑘
= 0.

(18)

Introduce

A = A+ − A−, (19)

where A+
𝑖𝑘
= (|A
𝑖𝑘
| + A
𝑖𝑘
)/2 and A−

𝑖𝑘
= (|A
𝑖𝑘
| − A
𝑖𝑘
)/2.

The equations lead to the following updating formulas:

𝑤
𝑖𝑘
= 𝑤
𝑖𝑘
√

(K+V)
𝑖𝑘
+ (K−WV𝑇V)

𝑖𝑘

(K−V)
𝑖𝑘
+ (K+WV𝑇V)

𝑖𝑘

,
(20)

V
𝑗𝑘
= V
𝑖𝑘
√

(K+W)
𝑗𝑘
+ (VW𝑇K−W)

𝑗𝑘
+ 𝜆(L−V)

𝑗𝑘

(K−W)
𝑗𝑘
+ (VW𝑇K+W)

𝑗𝑘
+ 𝜆(L+V)

𝑗𝑘

.
(21)

Note that the solution to minimizing the criterion func-
tion J is not unique. If W and V are the solution, then,
WD,WD−1 will also form a solution for any positive diagonal
matrix D. To make the solution unique, we will further
require that w𝑇Kw = 1, where w is the column vector of W.
The matrix V will be adjusted accordingly so thatWV𝑇 does
not change. This can be achieved by

V← V[diag (W𝑇KW)]
1/2

,

W←W[diag (W𝑇KW)]
1/2

.

(22)

3.3. Convergence Analysis. In this section, we will investigate
the convergence of the updating formula in (14). We use the
auxiliary function approach [16] to prove the convergence.
Here we first introduce the definition of auxiliary function
[16].

Definition 1. 𝑍(ℎ, ℎ) is an auxiliary function of 𝐹(ℎ) if the
conditions

𝑍(ℎ, ℎ


) ≥ 𝐹 (ℎ) , 𝑍 (ℎ, ℎ) = 𝐹 (ℎ) (23)

are satisfied.

Lemma 2. If 𝑍 is an auxiliary function for 𝐹, then 𝐹 is
nonincreasing under the update

ℎ

(𝑡+1)
= argmin

ℎ

𝑍(ℎ, ℎ

(𝑡)
) . (24)

Proof. Consider

𝐹 (ℎ

(𝑡+1)
) ≤ 𝑍 (ℎ

(𝑡+1)
, ℎ

(𝑡)
) ≤ 𝑍 (ℎ

(𝑡)
, ℎ

(𝑡)
) = 𝐹 (ℎ

(𝑡)
) .

(25)

Lemma 3. For any nonnegative matricesA ∈ R𝑛×𝑛, B ∈ R𝑘×𝑘,
S ∈ R𝑛×𝑘, and S ∈ R𝑛×𝑘, and A, B are symmetric, then the
following inequality holds:

𝑛

∑

𝑖=1

𝑘

∑

𝑝=1

(ASB)2
𝑖𝑝

S
𝑖𝑝

≥ tr (S𝑇ASB) . (26)

The correctness and convergence of the algorithm are
addressed in the following.

For given K, fixing V, considering any element 𝑤
𝑖𝑗
inW,

we use J(W) to denote the part of J, which is only relevant
to 𝑤
𝑖𝑗
. We get

J (W) = −2 tr (VW𝑇K) + tr (VW𝑇KWV𝑇) . (27)

Theorem 4. One rewritesJ(W) as follows:

J (H) = tr (−2H𝑇B+ + 2H𝑇B− +H𝑇A+HC

−H𝑇A−HC) ,
(28)

where B = KV, A = K, C = V𝑇V, andH =W.
Then the following function

𝑍(H,H) = −∑
𝑖𝑘

2B+
𝑖𝑘
H
𝑖𝑘
(1 + log

H
𝑖𝑘

H
𝑖𝑘

)

+∑

𝑖𝑘

B−
𝑖𝑘

H2
𝑖𝑘
+ (H)2

𝑖𝑘

H
𝑖𝑘

+∑

𝑖𝑘

(A+HC)
𝑖𝑘
H2
𝑖𝑘

H
𝑖𝑘

−∑

𝑖𝑗𝑘𝑙

A−
𝑖𝑗
H
𝑗𝑘
C
𝑘𝑙
H
𝑖𝑙
(1 + log

H
𝑗𝑘
H
𝑖𝑙

H
𝑗𝑘
H
𝑖𝑙

)

(29)

is an auxiliary function of J(H): that is, it satisfies the
requirements J(H) ≤ 𝑍(H,H) and J(H) = 𝑍(H,H).
Furthermore, it is a convex function of H and its global
minimum is

H
𝑖𝑘
= argmin

H
H
𝑖𝑘
√

B+
𝑖𝑘
+ (HA−C)

𝑖𝑘

B−
𝑖𝑘
+ (A+HC)

𝑖𝑘

.
(30)

From its minima and setting H(𝑡+1) ← H and H(𝑡) ← H,
one recovers (20), letting B+ = (K)+V, B− = (K)−V, A = K,
C = V𝑇V, andH =W.

Proof. The functionJ(H) is

J (H) = tr (−2H𝑇B+ + 2H𝑇B− +H𝑇A+HC

−H𝑇A−HC) .
(31)
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We find upper bounds for each of the two positive terms
and lower bounds for each of the two negative terms. For the
third term inJ(H), by applying Lemma 3,we obtain anupper
bound

tr (H𝑇A+HC) ≤ ∑
𝑖𝑘

(A+HC)
𝑖𝑘
H2
𝑖𝑘

H
𝑖𝑘

. (32)

The second term ofJ(H) is bounded by

tr (H𝑇B−) = ∑
𝑖𝑘

H
𝑖𝑘
B−
𝑖𝑘
≤ ∑

𝑖𝑘

B−
𝑖𝑘

H2
𝑖𝑘
+ (H)

2

𝑖𝑘

2H
𝑖𝑘

.
(33)

To obtain lower bounds for the two remaining terms, we
use the inequality 𝑧 ≥ 1 + log 𝑧, which holds for any 𝑧 > 0,
and the first term inJ(H) is bounded by

tr (H𝑇B+) = ∑
𝑖𝑘

B+
𝑖𝑘
H
𝑖𝑘
≥ ∑

𝑖𝑘

B+
𝑖𝑘
H
𝑖𝑘
(1 + log

H
𝑖𝑘

H
𝑖𝑘

) . (34)

The last term inJ(H) is bounded by

tr (H𝑇A−HC) ≥ ∑
𝑖𝑗𝑘𝑙

A−
𝑖𝑗
H
𝑗𝑘
C
𝑘𝑙
H
𝑖𝑙
(1 + log

H
𝑗𝑘
H
𝑖𝑙

H
𝑗𝑘
H
𝑖𝑙

) .

(35)

Collecting all bounds, we obtain 𝑍(H,H) as in (29).
Obviously,J(H) ≤ 𝑍(H,H) andJ(H) = 𝑍(H,H).

To find the minimum of 𝑍(H,H), we take

𝜕𝑍 (H,H)
𝜕H
𝑖𝑘

= −2B+
𝑖𝑘

H
𝑖𝑘

H
𝑖𝑘

+ 2B−
𝑖𝑘

H
𝑖𝑘

H
𝑖𝑘

+

2(HA+C)
𝑖𝑘
H
𝑖𝑘

H
𝑖𝑘

−

2(HA−C)
𝑖𝑘
H
𝑖𝑘

H
𝑖𝑘

.

(36)

To find the minimum of 𝑍(H,H), we take the Hessian
matrix of 𝑍(H,H)

𝜕

2
𝑍(H,H)
𝜕H
𝑖𝑘
𝜕H
𝑗𝑙

= 𝛿
𝑖𝑗
𝛿
𝑘𝑙
Y
𝑖𝑘

(37)

To be a diagonal matrix with positive entries

Y
𝑖𝑘
=

4 [(B+)
𝑖𝑘
+ (HA−C)

𝑖𝑘
]H
𝑖𝑘

H2
𝑖𝑘

+ 2

B−
𝑖𝑘
+ (HA+C)

𝑖𝑘

H
𝑖𝑘

.

(38)

Thus, 𝑍(H,H) is a convex function of H. Therefore, we
obtain the global minimum by setting 𝜕𝑍(H,H)/𝜕H

𝑖𝑘
= 0 in

(36) and solving forH. Rearranging, we obtain (30).

Theorem 5. Updating W using (20) will monotonically
decrease the value of the objective in (13); hence it converges.

Proof. By Lemma 2 andTheorem 4, we can get thatJ(W𝑡) =
𝑍(W(𝑡),W(𝑡)) ≥ 𝑍(W(𝑡+1),W(𝑡)) ≥ J(W𝑡+1), so J(W) is
monotonically decreasing. SinceJ(W) is obviously bounded
below, we prove this theorem.

For given K, fixing W, considering any element V
𝑖𝑗
in V,

we use J(V) to denote the part of J, which is only relevant
to V
𝑖𝑗
. We get

J (V) = −2 tr (VW𝑇K) + tr (VW𝑇KWV𝑇) + 𝜆 tr (V𝑇LV) .
(39)

Theorem 6. One rewritesJ(V) as follows:

J (H) = tr (−2H𝑇B+ + 2H𝑇B− +HA+H𝑇

− HA−H𝑇 + 𝜆H𝑇L+H − 𝜆H𝑇L−H) ,
(40)

where B = KW, A =W𝑇X𝑇XW, andH = V.
Then the following function

𝑍(H,H) = −∑
𝑖𝑘

2B+
𝑖𝑘
H
𝑖𝑘
(1 + log

H
𝑖𝑘

H
𝑖𝑘

)

+∑

𝑖𝑘

B−
𝑖𝑘

H2
𝑖𝑘
+ (H)2

𝑖𝑘

H
𝑖𝑘

+∑

𝑖𝑘

(A+H)
𝑖𝑘
H2
𝑖𝑘

H
𝑖𝑘

−∑

𝑖𝑘𝑙

A−
𝑘𝑙
H
𝑖𝑘
H
𝑙𝑖
(1 + log

H
𝑖𝑘
H
𝑙𝑖

H
𝑖𝑘
H
𝑙𝑖

)

+ 𝜆∑

𝑖𝑘

(L+H)
𝑖𝑘
H2
𝑖𝑘

H
𝑖𝑘

− 𝜆∑

𝑖𝑘𝑙

L−
𝑘𝑙
H
𝑖𝑘
H
𝑙𝑖
(1 + log

H
𝑖𝑘
H
𝑙𝑖

H
𝑖𝑘
H
𝑙𝑖

)

(41)

is an auxiliary function of J(H): that is, it satisfies the
requirements J(H) ≤ 𝑍(H,H) and J(H) = 𝑍(H,H).
Furthermore, it is a convex function of H and its global
minimum is

H
𝑖𝑘
= H
𝑖𝑘
√

B+
𝑖𝑘
+ (HA−)

𝑖𝑘
+ 𝜆(L−H)

𝑖𝑘

B−
𝑖𝑘
+ (HA+)

𝑖𝑘
+ 𝜆(L+H)

𝑖𝑘

.
(42)

From its minima and setting H(𝑡+1) ← H and H(𝑡) ← H,
one recovers (21), letting B+ = (K)+U, B− = (K)−U, A =

W𝑇KW, andH = V.

Proof. The functionJ(H) is

J (H) = tr (−2H𝑇B+ + 2H𝑇B− +HA+H𝑇

−HA−H𝑇 + 𝜆H𝑇L+H − 𝜆H𝑇L−H) .
(43)

We find upper bounds for each of the three positive terms
and lower bounds for each of the three negative terms. For the
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third term inJ(H), by applying Lemma 3 and settingA← I,
B← A+, we obtain an upper bound

tr (HA+H𝑇) ≤ ∑
𝑖𝑘

(HA+)
𝑖𝑘
H2
𝑖𝑘

H
𝑖𝑘

. (44)

The second term ofJ(H) is bounded by

tr (H𝑇B−) = ∑
𝑖𝑘

H
𝑖𝑘
B−
𝑖𝑘
≤ ∑

𝑖𝑘

B−
𝑖𝑘

H2
𝑖𝑘
+ (H)

2

𝑖𝑘

2H
𝑖𝑘

,
(45)

using the inequality 𝑎 ≤ (𝑎2 + 𝑏2)/2𝑏, which holds for any
𝑎, 𝑏 > 0.

For the fifth term in J(H), setting A ← L+, B ← I, and
S← H, we obtain an upper bound

𝜆 tr (H𝑇L+H) ≤ 𝜆∑
𝑖𝑘

(L+H)
𝑖𝑘
H2
𝑖𝑘

H
𝑖𝑘

. (46)

To obtain lower bounds for the three remaining terms, we
use the inequality 𝑧 ≥ 1 + log 𝑧, which holds for any 𝑧 > 0,
and the first term in 𝐽(𝐻) is bounded by

tr (H𝑇B+) = ∑
𝑖𝑘

B+
𝑖𝑘
H
𝑖𝑘
≥ ∑

𝑖𝑘

B+
𝑖𝑘
H
𝑖𝑘
(1 + log

H
𝑖𝑘

H
𝑖𝑘

) . (47)

The fourth term inJ(H) is bounded by

tr (HA−H𝑇) ≥ ∑
𝑖𝑘𝑙

A−
𝑘𝑙
H
𝑖𝑘
H
𝑙𝑖
(1 + log

H
𝑖𝑘
H
𝑙𝑖

H
𝑖𝑘
H
𝑙𝑖

) . (48)

The last term inJ(H) is bounded by

𝜆 tr (H𝑇L−H) ≥ 𝜆∑
𝑖𝑘𝑙

L−
𝑘𝑙
H
𝑖𝑘
H
𝑙𝑖
(1 + log

H
𝑖𝑘
H
𝑙𝑖

H
𝑖𝑘
H
𝑙𝑖

) . (49)

Collecting all bounds, we obtain 𝑍(H,H) as in (41).
Obviously,J(H) ≤ 𝑍(H,H) andJ(H) = 𝑍(H,H).

To find the minimum of 𝑍(H,H), we take

𝜕𝑍 (H,H)
𝜕H
𝑖𝑘

= −2B+
𝑖𝑘

H
𝑖𝑘

H
𝑖𝑘

+ 2B−
𝑖𝑘

H
𝑖𝑘

H
𝑖𝑘

+

2(HA+)
𝑖𝑘
H
𝑖𝑘

H
𝑖𝑘

−

2(HA−)
𝑖𝑘
H
𝑖𝑘

H
𝑖𝑘

+

2𝜆(L+H)
𝑖𝑘
H
𝑖𝑘

H
𝑖𝑘

−

2𝜆(L−H)
𝑖𝑘
H
𝑖𝑘

H
𝑖𝑘

= 0.

(50)

We have

− 2B+
𝑖𝑘
(H)2
𝑖𝑘
+ 2B−
𝑖𝑘
H2
𝑖𝑘
+ 2(HA+)

𝑖𝑘
H2
𝑖𝑘

− 2(HA−)
𝑖𝑘
(H)2
𝑖𝑘
+ 2𝜆(L+H)

𝑖𝑘
H2
𝑖𝑘

− 2𝜆(L−H)
𝑖𝑘
(H)
2

𝑖𝑘
= 0.

(51)

Therefore

H
𝑖𝑘
= H
𝑖𝑘
√

B+
𝑖𝑘
+ (HA−)

𝑖𝑘
+ 𝜆(L−H)

𝑖𝑘

B−
𝑖𝑘
+ (HA+)

𝑖𝑘
+ 𝜆(L+H)

𝑖𝑘

.
(52)

The Hessian matrix containing the second derivatives

𝜕

2
𝑍(H,H)
𝜕H
𝑖𝑘
𝜕H
𝑗𝑙

= 𝛿
𝑖𝑗
𝛿
𝑘𝑙
Y
𝑖𝑘

(53)

is a diagonal matrix with positive entries

Y
𝑖𝑘
=

4 [(B+)
𝑖𝑘
+ (HA−)

𝑖𝑘
+ 𝜆(L−H)

𝑖𝑘
]H
𝑖𝑘

H2
𝑖𝑘

+ 2

B−
𝑖𝑘
+ (HA+)

𝑖𝑘
+ 𝜆(L+H)

𝑖𝑘

H
𝑖𝑘

.

(54)

Thus, 𝑍(H,H) is a convex function of H. Therefore, we
obtain the global minimum by setting 𝜕𝑍(H,H)/𝜕H

𝑖𝑘
= 0 in

(41) and solving forH. Rearranging, we obtain (21).

Theorem 7. Updating V using (21) will monotonically
decrease the value of the objective in (13); hence it converges.

Proof. By Lemma 2 andTheorem 4, we can get thatJ(V𝑡) =
𝑍(V(𝑡),V(𝑡)) ≥ 𝑍(V(𝑡+1),V(𝑡)) ≥ J(V𝑡+1), so J(V) is
monotonically decreasing. Since J(V) is obviously bounded
below, we prove this theorem.

4. Experimental Results

In this section, we show the performance of the proposed
method on face recognition and compare our proposed
method with the popular subspace learning algorithms: four
unsupervised ones which are principal component analysis
[21] (PCA), neighborhood preserving embedding (NPE)
[20], local nonnegative matrix factorization (LNMF) [4], and
convexnonnegative factorization (CNMF) [13] the one super-
vised algorithm and which is linear discriminant analysis
(LDA) [21]. We use the nearest neighbor (NN) classifier as
baseline in original space. We apply different algorithms to
obtain new representations for each chosen data set, and then
the NN method is applied in the new representation spaces.

4.1. Data Preparation. The experiments are used on three
data sets. One is Cambridge ORL face database, the other
is the Yale database, and the third one is the CMU PIE
face database. The important statistics of these data sets are
described below.

The Yale database contains 165 gray scale images of 15
individuals. All images demonstrate variations in lighting
condition (left-light, center-light, right-light), facial expres-
sion (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses.

The ORL database contains ten different images of each
of 40 distinct subjects, thus 400 images in total. For some
subjects, the images were taken at different times, varying
the lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). All the images
were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for
some side movement).
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Table 1: Face recognition accuracy on theORLdata set.Thenumber
in brackets is the corresponding projection dimensionality.

Method 2 Train 3 Train 4 Train
Baseline 69.32% 77.56% 83.48%
PCA 69.32% (79) 77.56% (118) 83.48% (152)
LDA 72.80% (25) 83.79% (39) 90.13% (39)
NPE 73.19% (36) 84.29% (54) 91.06% (73)
NMF 70.87% (97) 78.98% (81) 84.48% (95)
LNMF 71.73% (178) 81.09% (168) 86.31% (195)
CNMF 72.23% (138) 83.58% (143) 89.56% (111)
NCPNMF 77.31% (143) 86.73% (153) 93.35% (145)

The CMU PIE face database contains more than 40 000
facial images of 68 people. The images were acquired over
different poses, under variable illumination conditions, and
with different facial expressions. In our experiment, we
choose the images from the frontal pose (C27) and each
subject has around 49 images from varying illuminations and
facial expressions.

In all the experiments, images are preprocessed so that
faces are located. Original images are first normalized in scale
and orientation such that the two eyes are aligned at the same
position. Then the facial areas were cropped into the final
images for clustering. Each image is of 32 × 32 pixels with
256 gray levels per pixel.

4.2. Parameter Settings. For each data set, we randomly
divide it into training and testing sets, and evaluate the
recognition accuracy on the testing set. In detail, for each
individual in the ORL and Yale data sets,we randomly select
2, 3, and 4 images per individual, respectively, for training
samples, and the remaining for test samples, while for each
individual in the PIE data set, we randomly select 5, 10, and 20
images per individual for training samples. For each partition,
we repeated each experiment 20 times and calculated the
average recognition accuracy. In general, the recognition rate
varies with the dimension of the face subspace.The best result
obtained in the optimal subspace and the corresponding
dimensionality for each method are shown.

For the face recognition experiments, several parameters
need to be decided beforehand. For LDA, we use PCA as
a first step dimensionality reduction algorithm to avoid the
singularity problem. The dimension of the PCA step is fixed
as 𝑁 − 𝑐 and then performs LDA. There are two parameters
in our NPCNMF and NPE approach: the number of nearest
neighbors 𝑘 and the regularization parameter 𝜆. Throughout
our experiments, we empirically set the number of nearest
neighbors 𝑘 to 5, the value of the regularization parameter
𝜆 to 100.

Each testing sample𝑦 is projected into the linear subspace
spanned by the column vectors of the basis matrixU, namely,
h
𝑦
≈ W†𝑦, where W† indicates the pseudoinverse of matrix

W.

4.3. Classification Results. Tables 1, 2, and 3 show the eval-
uation results of all the methods on the three data sets,

Table 2: Face recognition accuracy on the Yale data set.The number
in brackets is the corresponding projection dimensionality.

Method 2 Train 3 Train 4 Train
Baseline 46.04% 49.96% 55.62%
PCA 46.04% (29) 49.96% (44) 55.62% (58)
LDA 42.81% (11) 60.33% (14) 68.10% (13)
NPE 48.19% (13) 62.00% (19) 69.00% (73)
NMF 44.11% (112) 49.00% (195) 52.19% (164)
LNMF 44.00% (157) 48.84% (198) 53.57% (197)
CNMF 49.72% (125) 59.50% (168) 65.77% (129)
NPCNMF 63.45% (124) 71.83% (148) 81.38% (153)

Table 3: Face recognition accuracy on the PIE data set.The number
in brackets is the corresponding projection dimensionality.

Method 5 Train 10 Train 20 Train
Baseline 43.02% 62.90% 83.19%
PCA 42.87% (199) 62.51% (195) 82.84% (200)
LDA 84.39% (67) 90.47% (67) 93.98% (67)
NPE 84.71% (166) 91.48% (200) 94.33% (200)
NMF 78.66% (200) 88.98% (200) 92.52% (200)
LNMF 76.47% (200) 87.91% (200) 92.61% (196)
CNMF 83.72% (176) 90.89% (187) 93.78% (159)
NPCNMF 88.43% (147) 94.86% (158) 98.58% (133)

respectively, where the value in each entry represents the
average recognition accuracy of 20 independent trials, and
the number in brackets is the corresponding projection
dimensionality. These experiments reveal a number of inter-
esting points.

(1) It is clear that the use of dimensionality reduction is
beneficial in face recognition. There is a significant
increase in performance fromusing LDA,NPE, NMF,
LNMF, and CNMF. However, PCA fails to gain
improvement over the baseline. This is because that
PCA does not encode the discriminative information.

(2) The performances of nonnegative algorithms NMF,
LNMF, and CNMF are much worse than supervised
algorithms LDA, which shows that without consid-
ering the labeled data, nonnegative algorithms could
not guarantee good discriminating power.

(3) Our NPCNMF algorithm outperforms all other five
methods. The reason lies in the fact that NPCNMF
considers the geometrical structure of the data and
achieves better performance than the other algo-
rithms. This shows that by leveraging the power of
both the parts-based representation and the intrinsic
geometrical structure of the data, NPCNMF can
learn a better compact representation in the sense of
semantic structure.

5. Conclusion and Future Work

In this paper, we have presented a novel matrix factoriza-
tion method called NPCNMF for dimensionality reduction,



8 Mathematical Problems in Engineering

which respects the local geometric structure. As a result,
NPCNMF can discriminate power more than the ordinary
NMF and CNMF approaches which only consider the
Euclidean structure of the data. Experimental results on face
datasets show that NPCNMF provides better representation
in the sense of semantic structure.

Several challenges remain to be investigated in our future
work.

(1) A suitable value of 𝜆 is important to our algorithm.
It remains unknown how to do model selection
theoretically and efficiently.

(2) NPCNMF is currently limited to the linear projec-
tions, and those nonlinear techniques (e.g., kernel
tricks) may further boost the algorithmic perfor-
mance. We will investigate it in our future work.

(3) Another further research direction is how to extend
the current framework for tensor-based nonnegative
data decomposition.

(4) NPCNMF algorithm is iterative and sensitive to the
initialization ofW andH. It is unclear how to choose
optimal initialization parameters in a principledman-
ner.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[2] D. D. Lee and H. S. Seung, “Algorithms for nonnegative
matrix factorization,” in Proceedings of the Conference on Neural
Information Processing Systems (NIPS ’00), 2000.

[3] M. Cooper and J. Foote, “Summarizing video using nonnegative
similarity matrix factorization,” in Proceedings of the IEEE
Workshop on Multimedia Signal Processing, 2002.

[4] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng, “Learning spatially
localized, parts-based representation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CPRV ’01), pp. I207–I212, December 2001.

[5] P. Paatero and U. Tapper, “Positive matrix factorization: a non-
negative factormodel with optimal utilization of error estimates
of data values,” Environmetrics, vol. 5, no. 2, pp. 111–126, 1994.

[6] P. O. Hoyer, “Non-negative sparse coding,” in Processings of
IEEE Workshop on Neural Networks for Signal Processing, 2002.

[7] P. O. Hoyer, “Non-negativematrix factorization with sparseness
constraints,” Journal of Machine Learning Research, vol. 5, pp.
1457–1469, 2003.

[8] T. Hazan, S. Polak, and A. Shashua, “Sparse image coding using
a 3D non-negative tensor factorization,” in Proceedings of the
10th IEEE International Conference on Computer Vision (ICCV
’05), pp. 50–57, October 2005.

[9] A. Shashua and T. Hazan, “Non-negative tensor factorization
with applications to statistics and computer vision,” in Proceed-
ings of the 22nd International Conference on Machine Learning
(ICML ’05), pp. 793–800, August 2005.

[10] Y.Wang, Y. Jia, C.Hu, andM. Turk, “Fisher non-negativematrix
factorization for learning local features,” in Proceedings of the
6nd Asian Conference on Computer Vision (ACCV ’04), 2004.

[11] S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, “Exploiting dis-
criminant information in nonnegativematrix factorizationwith
application to frontal face verification,” IEEE Transactions on
Neural Networks, vol. 17, no. 3, pp. 683–695, 2006.

[12] I. Kotsia, S. Zafeiriou, and I. Pitas, “Novel discriminant non-
negative matrix factorization algorithm with applications to
facial image characterization problems,” IEEE Transactions on
Information Forensics and Security, vol. 2, no. 3, pp. 588–595,
2007.

[13] C. H. Ding, T. Li, and M. I. Jordan, “Convex and semi-
nonnegative matrix factorizations,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 45–55,
2010.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimension-
ality reduction and data representation,” Neural Computation,
vol. 15, no. 6, pp. 1373–1396, 2003.

[15] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduc-
tion by locally linear embedding,” Science, vol. 290, no. 5500,
pp. 2323–2326, 2000.

[16] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized
nonnegative matrix factorization for data representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
33, no. 8, pp. 1548–1560, 2011.

[17] D. Cai, X. He, and J. Han, “Locally consistent concept factoriza-
tion for document clustering,” IEEE Transactions on Knowledge
and Data Engineering, vol. 23, no. 6, pp. 902–913, 2011.

[18] L. Zhang, L. Qiao, and S. Chen, “Graph-optimized locality
preserving projections,” Pattern Recognition, vol. 43, no. 6, pp.
1993–2002, 2010.

[19] X. He and P. Niyogi, “Locality preserving projections,” in
Proceedings of the NIPS, 2003.

[20] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood pre-
serving embedding,” in Proceedings 10th IEEE International
Conference on Computer Vision (ICCV ’05), pp. 1208–1213,
October 2005.

[21] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigen-
faces vs. fisherfaces: recognition using class specific linear
projection,” IEEE Transactions on Pattern Analysis andMachine
Intelligence, vol. 19, no. 7, pp. 711–720, 1997.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


