24 research outputs found

    Exploiting Compositionality to Explore a Large Space of Model Structures

    Get PDF
    The recent proliferation of richly structured probabilistic models raises the question of how to automatically determine an appropriate model for a dataset. We investigate this question for a space of matrix decomposition models which can express a variety of widely used models from unsupervised learning. To enable model selection, we organize these models into a context-free grammar which generates a wide variety of structures through the compositional application of a few simple rules. We use our grammar to generically and efficiently infer latent components and estimate predictive likelihood for nearly 2500 structures using a small toolbox of reusable algorithms. Using a greedy search over our grammar, we automatically choose the decomposition structure from raw data by evaluating only a small fraction of all models. The proposed method typically finds the correct structure for synthetic data and backs off gracefully to simpler models under heavy noise. It learns sensible structures for datasets as diverse as image patches, motion capture, 20 Questions, and U.S. Senate votes, all using exactly the same code.United States. Army Research Office (ARO grant W911NF-08-1-0242)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Progressive Neural Architecture Search

    Full text link
    We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.Comment: To appear in ECCV 2018 as oral. The code and checkpoint for PNASNet-5 trained on ImageNet (both Mobile and Large) can now be downloaded from https://github.com/tensorflow/models/tree/master/research/slim#Pretrained. Also see https://github.com/chenxi116/PNASNet.TF for refactored and simplified TensorFlow code; see https://github.com/chenxi116/PNASNet.pytorch for exact conversion to PyTorc

    Probing the compositionality of intuitive functions

    Get PDF
    How do people learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is accomplished by harnessing compositionality: complex structure is decomposed into simpler building blocks. We formalize this idea within the framework of Bayesian regression using a grammar over Gaussian process kernels. We show that participants prefer compositional over non-compositional function extrapolations, that samples from the human prior over functions are best described by a compositional model, and that people perceive compositional functions as more predictable than their non-compositional but otherwise similar counterparts. We argue that the compositional nature of intuitive functions is consistent with broad principles of human cognition.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF – 1231216
    corecore