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Introduction

Function learning underlies many intuitive judgments, such as the perception of time, space
and number. All of these tasks require the construction of mental representations that map inputs to
outputs. Since the space of such mappings is infinite, inductive biases are necessary to constrain the
plausible inferences. What is the nature of human inductive biases over functions?

It has been suggested that Gaussian processes (GPs) provide a good characterization of these
inductive biases (Lucas, Griffiths, Williams, & Kalish, 2015). As we describe more formally be-
low, GPs are distributions over functions that can encode properties such as smoothness, linearity,
periodicity, and other inductive biases indicated by research on human function learning (Brehmer,
1974; DeLosh, Busemeyer, & McDaniel, 1997). Lucas et al. (2015) showed how Bayesian infer-
ence with GP priors can unify previous rule-based and exemplar-based theories of function learning
(Rasmussen & Williams, 2006).

A major unresolved question is how people deal with complex functions that are not eas-
ily captured by any simple GP. Insight into this question is provided by the observation that many
complex functions encountered in the real world can be broken down into compositions of simpler
functions (Duvenaud, Lloyd, Grosse, Tenenbaum, & Ghahramani, 2013; Grosse, Salakhutdinov,
Freeman, & Tenenbaum, 2012). We pursue this idea theoretically and experimentally, by first defin-
ing a hypothetical compositional grammar for intuitive functions (Duvenaud et al., 2013) and then
investigating whether this grammar quantitatively predicts human function learning performance.
We compare the compositional model to a flexible non-compositional model (the spectral mixture
representation proposed by Wilson & Adams, 2013). Both models use Bayesian inference to reason
about functions, but differ in their inductive biases.

We show that (a) participants prefer compositional pattern extrapolations in both forced
choice and manual drawing tasks; (b) samples elicited from participants’ priors over functions
are more consistent with the compositional grammar; and (c) participants perceive compositional
functions as more predictable than non-compositional ones. Taken together, these findings provide
support for the compositional nature of intuitive functions.

Gaussian process regression as a theory of intuitive function learning

A GP is a collection of random variables, any finite subset of which are jointly Gaussian-
distributed (see Rasmussen and Williams (2006) for an introduction). A GP can be ex-
pressed as a distribution over functions: f ∼ GP(m, k), where m(x) = E[f(x)] is a
mean function modeling the expected output of the function given input x, and k(x,x′) =
E [(f(x)−m(x))(f(x′)−m(x′))] is a kernel function modeling the covariance between points.
Intuitively, the kernel encodes an inductive bias about the expected smoothness of functions drawn
from the GP. To simplify exposition, we follow standard convention in assuming a constant mean
of 0.

Conditional on data D = {X,y}, where yn ∼ N (f(xn), σ2), the posterior predictive distri-
bution for a new input x∗ is Gaussian with mean and variance given by:

E[f(x?)|D] = k>? (K + σ2I)−1y (1)

V[f(x?)|D] = k(x?,x?)− k>? (K + σ2I)−1k?, (2)

where K is the N × N matrix of covariances evaluated at each input in X and k? =
[k(x1,x∗), . . . , k(xN ,x∗)].
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As pointed out by Griffiths, Lucas, Williams, and Kalish (2009) (see also Lucas et al., 2015),
the predictive distribution can be viewed as an exemplar (similarity-based) model of function learn-
ing DeLosh et al. (1997); Mcdaniel and Busemeyer (2005), since it can be written as a linear com-
bination of the covariance between past and current inputs:

f(x∗) =
N∑

n=1
αnk(xn,x?) (3)

with α = (K + σ2I)−1y. Equivalently, by Mercer’s theorem any positive definite kernel can be
expressed as an outer product of feature vectors:

k(x,x′) =
∞∑

d=1
λdφd(x)φd(x′), (4)

where {φd(x)} are the eigenfunctions of the kernel and {λd} are the eigenvalues. The posterior
predictive mean is a linear combination of the features, which from a psychological perspective can
be thought of as encoding “rules” mapping inputs to outputs (Carroll, 1963; Koh & Meyer, 1991).
Thus, a GP can be expressed as both an exemplar (similarity-based) model and a feature (rule-based)
model, unifying the two dominant classes of function learning theories in cognitive science (Lucas
et al., 2015).

Structure learning with Gaussian processes

So far we have assumed a fixed kernel function. However, humans can adapt to a wide variety
of structural forms (Gershman & Niv, 2010; Kemp & Tenenbaum, 2009), suggesting that they have
the flexibility to learn the kernel function from experience. The key question addressed in this paper
is what space of kernels humans are optimizing over—how rich is the representational vocabulary?
This vocabulary will in turn act as an inductive bias, making some functions easier to learn, and
other functions harder to learn.

Broadly speaking, there are two approaches to parameterizing the kernel space: a fixed func-
tional form with continuous parameters, or a combinatorial space of functional forms. These ap-
proaches are not mutually exclusive; indeed, the success of the combinatorial approach depends on
optimizing the continuous parameters for each form. Nonetheless, this distinction is useful because
it allows us to separate different forms of functional complexity. A function might have internal
structure such that when this structure is revealed, the apparent functional complexity is signifi-
cantly reduced. For example, a function composed of many piecewise linear segments might have
a long description length under a typical continuous parametrization (e.g., the radial basis kernel
described below), because it violates the smoothness assumptions of the prior. However, condi-
tional on the change-points between segments, the function can be decomposed into independent
parts each of which is well-described by a simple continuous parametrization. If internally struc-
tured functions are “natural kinds,” then the combinatorial approach may be a good model of human
intuitive functions.

In the rest of this section, we describe three kernel parameterizations. The first two are
continuous, differing in their expressiveness. The second one is combinatorial, allowing it to capture
complex patterns by composing simpler kernels. For all kernels, we take the standard approach of
choosing the parameter values that optimize the log marginal likelihood.
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Radial basis kernel

The radial basis kernel is a commonly used kernel in machine learning applications, embody-
ing the assumption that the covariance between function values decays exponentially with input
distance:

k(x,x′) = θ2 exp
(
−|x− x

′|2
2l2

)
, (5)

where θ is a scaling parameter and l is a length-scale parameter. This kernel assumes that the same
smoothness properties apply globally for all inputs. It provides a standard baseline to compare with
more expressive kernels.

Spectral mixture kernel

The second approach is based on the fact that any stationary kernel can be expressed as an
integral using Bochner’s theorem. Letting τ = |x− x′| ∈ RP , then

k(τ ) =
∫

RP
e2πis>τψ(ds). (6)

If ψ has a density S(s), then S is the spectral density of k; S and k are thus Fourier duals (Ras-
mussen & Williams, 2006). This means that a spectral density fully defines the kernel and that
furthermore every stationary kernel can be expressed as a spectral density. Wilson & Adams Wil-
son and Adams (2013) showed that the spectral density can be approximated by a mixture of Q
Gaussians, such that

k(τ ) =
Q∑

q=1
wq

P∏

p=1
exp

(
−2π2τ2

pυ
p
q

)
cos

(
2πτpµ(p)

q

)
(7)

Here, the qth component has mean vector µq =
(
µ

(1)
q , . . . , µ

(P )
q

)
and a covariance matrix Mq =

diag
(
υ

(1)
q , . . . , υ

(P )
q

)
. The result is a non-parametric approach to Gaussian process regression, in

which complex kernels are approximated by mixtures of simpler ones. This approach is appealing
when simpler kernels fail to capture functional structure. Its main drawback is that because structure
is captured implicitly via the spectral density, the building blocks are psychologically less intuitive:
humans appear to have preferences for linear (Kalish, Griffiths, & Lewandowsky, 2007) and periodic
(Bott & Heit, 2004) functions, which are not straightforwardly encoded in the spectral mixture
(though of course the mixture can approximate these functions). Since the spectral kernel has been
successfully applied to reverse engineer human kernels (Wilson, Dann, Lucas, & Xing, 2015), it is
a useful reference of comparison to more structured compositional approaches.

Compositional kernel

As positive semidefinite kernels are closed under addition and multiplication, we can create
richly structured and interpretable kernels from well understood base components. For example,
by summing kernels, we can model the data as a superposition of independent functions. Figure 1
shows an example of how different kernels (radial basis, linear, periodic) can be combined. Table 1
summarizes the kernels used in our grammar.
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Figure 1. Examples of base and compositional kernels. The base kernels are radial basis (RBF), linear
(LIN), and periodic (PER); the composition operators are addition and multiplication.

Name Definition

Linear k(x,x′) = (x− θ1)(x′ − θ1)

Radial Basis k(x,x′) = θ2
2 exp

(
− (x−x′)2

2θ2
3

)

Periodic k(x,x′) = θ2
4 exp

(
− 2 sin2(π|x−x′|θ5)

θ2
6

)

Table 1
Utilized base kernels in our compositional grammar.

Many other compositional grammars are possible. For example, we could have included a
more diverse set of kernels, and other composition operators (e.g., convolution, scaling) that gen-
erate valid kernels. However, we believe that our simple grammar is a useful starting point, since
the components are intuitive and likely to be psychologically plausible. For tractability, we fix the
maximum number of combined kernels to 3. Additionally, we do not allow for repetition of kernels
in order to restrict the complexity of the kernel space.

Experiment 1: Extrapolation

The first experiment assessed whether people prefer compositional over non-compositional
extrapolations. In experiment 1a, functions were sampled from a compositional GP and different
extrapolations (mean predictions) were produced using each of the aforementioned kernels. Par-
ticipants were then asked to choose among the 3 different extrapolations for a given function. In
detail, the outputs for xlearn = [0, 0.1, · · · , 7] were used as a training set to which all three kernels
were fitted and then used to generate predictions for the test set xtest = [7.1, 7.2, · · · , 10]. Their
mean predictions were then used to generate one plot for every approach that showed the learned
input as a blue line and the extrapolation as a red line. The procedure was repeated for 20 different
compositional functions.

52 participants (mean age=36.15, SD = 9.11) were recruited via Amazon Mechanical Turk
and received $0.5 for their participation. Participants were asked to select one of 3 extrapolations
(displayed as red lines) they thought best completed a given blue line. Results showed that par-
ticipants chose compositional predictions 69%, spectral mixture predictions 17%, and radial basis
predictions 14% of the time. Overall, the compositional predictions were chosen significantly more
often than the other two (χ2 = 591.2, p < 0.01) as shown in Figure 2a.

In experiment 1b, again 20 functions were sampled but this time from a spectral mixture ker-
nel and 65 participants (mean age=30, SD = 9.84) were asked to choose among either compositional
or spectral mixture extrapolations and received $0.5 as before. Results (displayed in Figure 2b)
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Figure 2. Results of extrapolation experiments.

showed that participants again chose compositional extrapolations more frequently (68% vs. 32%,
χ2 = 172.8, p<.01), even if the ground truth happened to be generated by a spectral mixture kernel.
Thus, people seem to prefer compositional over non-compositional extrapolations in forced choice
extrapolation tasks.

Markov chain Monte Carlo with people

In a second set of experiments, we assessed participants’ inductive biases directly using a
Markov chain Monte Carlo with People (MCMCP) approach (Sanborn, Griffiths, & Shiffrin, 2010).
Participants accept or reject proposed extrapolations, effectively simulating a Markov chain whose
stationary distribution is in this case the posterior predictive. Extrapolations from all possible kernel
combinations (up to 3 combined kernels) were generated and stored a priori. These were then used
to generate plots of different proposal extrapolations (as in the previous experiment). On each trial,
participants chose between their most recently accepted extrapolation and a new proposal.

Experiment 2a: Compositional ground truth

In the first MCMCP experiment, we sampled functions from compositional kernels. Eight
different functions were sampled from various compositional kernels, the input space was split
into training and test sets, and then all kernel combinations were used to generate extrapolations.
Proposals were sampled uniformly from this set. 51 participants with an average age of 32.55 (SD =
8.21) were recruited via Amazon’s Mechanical Turk and paid $1. There were 8 blocks of 30 trials,
where each block corresponded to a single training set. We calculated the average proportion of
accepted kernels over the last 5 trials, as shown in Figure 3.

In all cases participants’ subjective probability distribution over kernels corresponded well
with the data-generating kernels. Moreover, the inverse marginal likelihood, standardized over all
kernels, correlated highly with the subjective beliefs assessed by MCMCP (ρ = 0.91, p < .01).
Thus, participants seemed to converge to sensible structures when the functions were generated by
compositional kernels.
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Figure 3. Proportions of chosen predictions over last 5 trials. Generating kernel marked in red.

Experiment 2b: Naturalistic functions

The second MCMCP experiment assessed what structures people converged to when faced
with real world data. Fifty-one participants with an average age of 32.55 (SD = 12.14) were recruited
via Amazon Mechanical Turk and received $1 for their participation. The functions were an airline
passenger data set, volcano CO2 emission data, the number of gym memberships over 5 years,
and the number of times people googled the band “Wham!” over the last 8 years; all shown in
Figure 4a. Participants were not told any information about the data set (including input and output
descriptions) beyond the input-output pairs. As periodicity in the real world is rarely ever purely
periodic, we adapted the periodic component of the grammar by multiplying a periodic kernel with
a radial basis kernel, thereby locally smoothing the periodic part of the function.1 Apart from the
different training sets, the procedure was identical to the last experiment.

Results are shown in Figure 4b, demonstrating that participants converged to intuitively
plausible patterns. In particular, for both the volcano and the airline passenger data, participants
converged to compositions resembling those found in previous analyses (Duvenaud et al., 2013).
The correlation between the mean proportion of accepted predictions and the inverse standardized
marginal likelihoods of the different kernels was again significantly positive (ρ = 0.83, p < .01).

1See the following page for an example: http://learning.eng.cam.ac.uk/carl/mauna.
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Figure 4. Real world data and results of MCMCP experiment.

Experiment 3: Manual function completion

In the next experiment, we let participants draw the functions underlying observed data manu-
ally. As all of the prior experiments asked participants to judge between “pre-generated” predictions
of functions, we wanted to compare this to how participants generate predictions themselves. On
each round of the experiment, functions were sampled from the compositional grammar, the number
of points to be presented on each trial was sampled uniformly between 100 and 200, and the noise
variance was sampled uniformly between 0 and 25. Finally, the size of an unobserved region of
the function was sampled to lie between 5 and 50. Participants were asked to manually draw the
function best describing observed data and to inter- and extrapolate this function in two unobserved
regions. A screen shot of the experiment is shown in Figure 5.

Figure 5. Screen shots of the manual pattern completion experiment. The unobserved region (for
extrapolation) is delimited by vertical lines.

36 participants with a mean age of 30.5 (SD = 7.15) were recruited from Amazon Mechanical
Turk and received $2 for their participation. Participants were asked to draw lines in a cloud of dots



COMPOSITIONALITY OF INTUITIVE FUNCTIONS 9

that they thought best described the given data. To facilitate this process, participants placed black
dots into the cloud, which were then automatically connected by a black line based on a cubic
Bezier smoothing curve. They were asked to place the first dot on the left boundary and the final
dot on the right boundary of the graph. In between, participants were allowed to place as many dots
as they liked (from left to right) and could remove previously placed dots. There were 50 trials in
total. We assessed the average root mean squared distance between participants’ predictions (the
line they drew) and the mean predictions of each kernel given the data participants had seen, for
both interpolation and extrapolation areas. Results are shown in Figure 6.
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(b) Distance for extrapolation drawings.
Figure 6. Root mean squared distances of model predictions to participants’ drawings.

The mean distance from participants’ drawings was significantly higher for the spectral mix-
ture kernel than for the compositional kernel in both interpolation (86.96 vs. 58.33, t(1291.1) =
−6.3, p < .001) and extrapolation areas (110.45 vs 83.91, t(1475.7) = 6.39, p < .001). The ra-
dial basis kernel produced similar distances as the compositional kernel in interpolation (55.8), but
predicted participants’ drawings significantly worse in extrapolation areas (97.9, t(1459.9) = 3.26,
p < .01).

Experiment 4: Assessing predictability

Compositional patterns might also affect the way in which participants perceive functions a
priori (Schulz, Tenenbaum, Reshef, Speekenbrink, & Gershman, 2015). To assess this, we asked
participants to judge how well they thought they could predict 40 different functions that were
similar on many measures such as their spectral entropy and their average wavelet distance to each
other, but 20 of which were sampled from a compositional and 20 from a spectral mixture kernel.
Figure 7 shows a screenshot of the experiment.

(a) Predictability judgements. (b) Comparative judgements.
Figure 7. Screenshot of the predictablity experiment.
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Figure 8. Results of the predictablity experiment.

50 participants with a mean age of 32 (SD = 7.82) were recruited via Amazon Mechanical
Turk and received $0.5 for their participation. Participants were asked to rate the predictability
of different functions. On each trial participants were shown a total of nj ∈ {50, 60, . . . , 100}
randomly sampled input-output points of a given function and asked to judge how well they thought
they could predict the output for a randomly sampled input point on a scale of 0 (not at all) to 100
(very well). Afterwards, they had to rate which of two functions was easier to predict (Figure 7) on
a scale from -100 (left graph is definitely easier to predict) to 100 (right graph is definitely easier
predict).

As shown in Figure 8, compositional functions were perceived as more predictable than spec-
tral functions in isolation (t(948) = 11.422, p < .01) and in paired comparisons (t(499) = 13.502,
p < .01). Perceived predictability increases with the number of observed outputs (r = 0.23,
p < .01) and the larger the number of observations, the larger the difference between compositional
and spectral mixture functions (r = 0.14, p < .01).

Discussion

In this paper, we probed human intuitions about functions and found that these intuitions
are best described as compositional. We operationalized compositionality using a grammar over
kernels within a GP regression framework and found that people prefer extrapolations based on
compositional kernels over other alternatives, such as a spectral mixture or the standard radial basis
kernel. Two Markov chain Monte Carlo with people experiments revealed that participants converge
to extrapolations consistent with the compositional kernels. These findings were replicated when
people manually drew the functions underlying observed data. Moreover, participants perceived
compositional functions as more predictable than non-compositional – but otherwise similar – ones.

The work presented here is connected to several lines of previous research, most importantly
that of Lucas et al. (2015), which introduced GP regression as a model of human function learning,
and Wilson et al. (2015), which attempted to reverse-engineer the human kernel using a spectral
mixture. We see our work as complementary; we need both a theory to describe how people make
sense of structure as well as a method to indicate what the final structure might look like when
represented as a kernel. Our approach also ties together neatly with past attempts to model structure
in other cognitive domains such as motion perception (Gershman, Tenenbaum, & Jäkel, 2016) and
decision making (Gershman, Malmaud, Tenenbaum, & Gershman, 2016).

Our work can be extended in a number of ways. First, it is desirable to more thoroughly
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explore the space of base kernels and composition operators, since we used an elementary grammar
in our analyses that is probably too simple. Second, the compositional approach could be used in
traditional function learning paradigms (DeLosh et al., 1997; Koh & Meyer, 1991) as well as in
active input selection paradigms (Parpart, Schulz, Speekenbrink, & Love, 2015).

Another interesting avenue for future research would be to explore the broader implications of
compositional function representations. For example, evidence suggests that statistical regularities
reduce perceived numerosity (Zhao & Yu, 2016) and increase memory capacity (Brady, Konkle,
& Alvarez, 2011); these tasks can therefore provide clues about the underlying representations. If
compositional functions alter number perception or memory performance to a greater extent than
alternative functions, that suggests that our theory extends beyond simple function learning.
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