4 research outputs found

    Channel Propagation Characteristics on the Performance of 4G Cellular Systems from High Altitude Platforms (HAPs)

    Get PDF
    In this paper, we investigated the effect of different channel propagation characteristics on the performance of 4G systems from high altitude platforms (HAPs). The use of High-Altitude Platforms for communication purpose in the past focused mostly on the assumption that the platform is quasi stationary. The technical limitation of the assumption was that of ensuring stability in the positioning of the platform in space. The use of antenna steering and other approaches were proposed as a solution to the said problem. In this paper, we proposed a channel model which account for the motion of the platform. This was done by investigating the effect of Doppler shift on the carrier frequency as the signals propagate between the transmitter and receiver while the High-Altitude Platform is in motion. The basic free space model was used and subjected to the frequency variation caused by the continuous random shift due to the motion of the HAPs. The trajectory path greatly affects the system performance. A trajectory of 30km, 100km and 500km radii were simulated. An acute elevation angle was used in the simulation. The proposed model was also compared to two other channel models to illustrate its performance. The results show that the proposed model behave similar to the existing models except at base station ID 35 and 45 where the highest deviation of 20dBm was observed. Other stations that deviated were less than 2dBm

    The Coverage, Capacity and Coexistence of Mixed High Altitude Platform and Terrestrial Segments

    Get PDF
    This thesis explores the coverage, capacity and coexistence of High Altitude Platform (HAP) and terrestrial segments in the same service area. Given the limited spectrum available, mechanisms to manage the co-channel interference to enable effective coexistence between the two infrastructures are examined. Interference arising from the HAP, caused by the relatively high transmit power and the antenna beam profile, has the potential to significantly affect the existing terrestrial system on the ground if the HAP beams are deployed without a proper strategy. Beam-pointing strategies exploiting phased array antennas on the HAPs are shown to be an effective way to place the beams, with each of them forming service cells onto the ground in the service area, especially dense user areas. Using a newly developed RF clustering technique to better point the cells over an area of a dense group of users, it is shown that near maximum coverage of 96% of the population over the service area can be provided while maintaining the coexistence with the existing terrestrial system. To improve the user experience at the cell edge, while at the same time improving the overall capacity of the system, Joint Transmission – Coordinated Multipoint (JT-CoMP) is adapted for a HAP architecture. It is shown how the HAP can potentially enable the tight scheduling needed to perform JT-CoMP due to the centralisation of all virtual E-UTRAN Node Bs (eNodeBs) on the HAP. A trade-off between CINR gain and loss of capacity when adapting JT-CoMP into the HAP system is identified, and strategies to minimise the trade-off are considered. It is shown that 57% of the users benefit from the JT-CoMP. In order to enable coordination between the HAP and terrestrial segments, a joint architecture based on a Cloud – Radio Access Network (C-RAN) system is introduced. Apart from adapting a C-RAN based system to centrally connect the two segments together, the network functional split which varies the degree of the centralised processing is also considered to deal with the limitations of HAP fronthaul link requirements. Based on the fronthaul link requirements acquired from the different splitting options, the ground relay station diversity to connect the HAP to centralised and distributed units (CUs and DUs) is also considered

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    corecore