5,094 research outputs found

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    Consensus as a Nash Equilibrium of a Dynamic Game

    Full text link
    Consensus formation in a social network is modeled by a dynamic game of a prescribed duration played by members of the network. Each member independently minimizes a cost function that represents his/her motive. An integral cost function penalizes a member's differences of opinion from the others as well as from his/her own initial opinion, weighted by influence and stubbornness parameters. Each member uses its rate of change of opinion as a control input. This defines a dynamic non-cooperative game that turns out to have a unique Nash equilibrium. Analytic explicit expressions are derived for the opinion trajectory of each member for two representative cases obtained by suitable assumptions on the graph topology of the network. These trajectories are then examined under different assumptions on the relative sizes of the influence and stubbornness parameters that appear in the cost functions.Comment: 7 pages, 9 figure, Pre-print from the Proceedings of the 12th International Conference on Signal Image Technology and Internet-based Systems (SITIS), 201
    • …
    corecore