7 research outputs found

    Exploiting Resolution Proofs to Speed Up LTL Vacuity Detection for BMC

    Get PDF

    Contradictory antecedent debugging in bounded model checking

    Full text link
    In the context of formal verification Bounded Model Check-ing (BMC) has shown to be very powerful for large industrial designs. BMC is used to check whether a circuit satisfies a temporal property or not. Typically, such a property is for-mulated as an implication. In the antecedent of the property the verification engineer specifies the assumptions about the design environment and joins the respective expressions by logical AND. However, the overall conjunction may have no solution, i.e. the antecedent is contradictory. Since in this case a property trivially holds this situation has to be avoided. Furthermore, the root cause of a contradictory an-tecedent has to be identified which is a manual and very time-consuming process. In this paper we propose a fully automatic approach for presenting all reasons of a contradictory antecedent to the verification engineer, i.e. the approach pinpoints to the sub-expressions in the antecedent that form a contradiction. Hence, our approach reduces the debugging time of a con-tradictory antecedent significantly

    On the Complexity of Computing Minimal Unsatisfiable LTL formulas

    Full text link
    We show that (1) the Minimal False QCNF search-problem (MF-search) and the Minimal Unsatisfiable LTL formula search problem (MU-search) are FPSPACE complete because of the very expressive power of QBF/LTL, (2) we extend the PSPACE-hardness of the MF decision problem to the MU decision problem. As a consequence, we deduce a positive answer to the open question of PSPACE hardness of the inherent Vacuity Checking problem. We even show that the Inherent Non Vacuous formula search problem is also FPSPACE-complete.Comment: Minimal unsatisfiable cores For LTL causes inherent vacuity checking redundancy coverag

    User-guided discovery of declarative process models

    Full text link
    corecore