
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Exploiting Resolution Proofs to Speed Up LTL Vacuity Detection for
BMC
Jocelyn Simmonds1, Jessica Davies1, Arie Gurfinkel 2, Marsha Chechik1

1 Department of Computer Science, University of Toronto
2 Software Engineering Institute, Carnegie Mellon University

The date of receipt and acceptance will be inserted by the editor

Abstract. When model-checking reports that a property holds
on a model,vacuity detectionincreases user confidence in
this result by checking that the property is satisfied in the in-
tended way. While vacuity detection is effective, it is a rela-
tively expensive technique requiring many additional model-
checking runs. We address the problem of efficient vacuity
detection for Bounded Model Checking (BMC) of LTL prop-
erties, presenting three partial vacuity detection methods based
on the efficient analysis of the resolution proof produced by
a successful BMC run. In particular, we define a character-
istic of resolution proofs –peripherality– and prove that if
a variable is a source of vacuity, then there exists a resolu-
tion proof in which this variable is peripheral. Our vacuity
detection tool,VaqTree, uses these methods to detect vacu-
ous variables, decreasing the total number of model-checking
runs required to detect all sources of vacuity.

1 Introduction

Model-checking [7] is a widely-used automated technique
for verification of both hardware and software artifacts that
checks whether a temporal logic property is satisfied by a
finite-state model of the artifact. If the model does not satisfy
the property, a counterexample, which can aid in debugging,
is produced. If the modeldoessatisfy the property, no infor-
mation about why it does so is provided by the model-checker
alone. A positive answer without any additional information
can be misleading, since a property may be satisfied in a way
that was not intended. For instance, a property “every request
is eventually acknowledged” is satisfied in an environment
that never generates requests.

Vacuity detection[2,18,21,1] is an automatic sanity check
that can be applied after a positive model-checking run in or-
der to gain confidence that the model and the property cap-
ture the desired behaviours. Informally, a property is saidto

be vacuous if it has a subformula which is not relevant to
its satisfaction, or if the property itself is a tautology. Con-
versely, a property is satisfied non-vacuously if every partof
the formula is important – even a slight change to the formula
affects its satisfaction.

In this article, we focus on vacuity detection for SAT-
based Bounded Model Checking (BMC). Given a BMC prob-
lem with a particular bound, we wish to determine if the
property holds vacuously on the model up to this bound. In
this context, a naive method for detecting vacuity is to re-
place subformulas of the temporal logic property with un-
constrained boolean variables and run BMC for each such
substitution. If the property with some substitution stillholds
on the model, the property is vacuous. This naive approach is
expensive, since in the worst case it requires as many model-
checking runs as there are subformulas in the property. Our
goal is to reduce the number of model-checking runs required
to detect vacuity. We do this by detecting some vacuity through
novel and inexpensive techniques reported in this article,and
complete the method by running the naive algorithm on the
remaining atomic subformulas. The key to our technique is
that SAT-based BMC can automatically provide useful infor-
mation (a resolution proof) beyond a decision whether the
property holds on the model; we exploit such proofs for par-
tial vacuity detection.

In SAT-based BMC, the property and the behavior of the
model are encoded in a propositional theory, such that the
theory is satisfiable if and only if the formula does not hold.
When the property does hold, a DPLL-based SAT solver can
produce a resolution proof that derivesfalse from a subset of
the clauses in the theory called the UNSAT core. Intuitively,
the resolution proof provides an explanation of why the prop-
erty is not falsified by the model, and the UNSAT core deter-
mines the relevant parts of the model and the property [19].

In this article, we develop three methods of increasing
precision (irrelevance, local irrelevance, andperipherality)
to analyze the resolution proof to achieve partial vacuity de-
tection. These algorithms are used by our vacuity detection

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192966882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tool,VaqTree, in order to reduce the number of model-checking
runs required to find all sources of vacuity, thus reducing exe-
cution times. Irrelevance and local irrelevance detect vacuity
based on which variables appear in the UNSAT core, and in
which locations. However, as these methods only examine
the UNSAT core, their precision is limited. The periphera-
lity algorithm examines thestructureof the resolution proof,
identifying as vacuous those variables that are not necessary
or central to the derivation offalse. This method is as pre-
cise as can be achieved through analyzing a single resolution
proof, and its running time is linear in the size of the resolu-
tion proof and the number of variables in the property. Our
experience shows that local irrelevance is the ideal candidate
for speeding up naive vacuity detection.

The remainder of the article is organized as follows. Sec-
tion 2 presents some required background, followed, in Sec-
tion 3 by our definition of vacuity, the naive algorithm for
LTL vacuity detection using BMC, and an overview of work
in the vacuity detection field. Section 4 presents the three al-
gorithms that detect vacuity by analyzing a resolution proof.
Tool support for our approach is described in Section 5. Our
experimental results are presented in Section 6. We conclude
with a summary, additional related work, and suggestions for
future work in Section 7.

2 Background

In this section, we review bounded model-checking and res-
olution proofs.

2.1 Bounded Model-Checking

Bounded model-checking(BMC) [4] is a method for deter-
mining whether a linear temporal logic (LTL) formulaϕ holds
on a finite state system represented by a Kripke structureK

up to a finite number of steps. To solve an instance of the
BMC problem, denoted byBMCk(K, ϕ), it is required to de-
termine whetherK |=k ϕ, where|=k is thek-depth satisfac-
tion relation. Below, we give an informal overview of Kripke
structures, LTL formulas and BMC. More detailed definitions
can be found in [7,4].

A Kripke structureK has a finite set of statesS, one of
which is considered to be the initial states0. A transition re-
lationR ⊆ S×S relates states to states. Each state is labeled
by the set of propositional formulas (or variables) that hold in
that state. Arun of K is a sequence of states starting withs0
that obeysR. Each run has an associatedtraceπ, whereπi

is simply the set of propositional formulas that label theith

state in the run. We writeπi to denote the suffix of the trace
beginning ati.

LTL formulas are built from propositional variables, the
usual boolean operators (∨, ∧, ¬), and the temporal op-
eratorsG (“always”), F (“eventually”), U (“until”), and X
(“next”). Their semantics are defined on linear traces, suchas
those produced by runs of a Kripke structure.π |= ϕ means

s0 s1

{p} {q}

Fig. 1: A Kripke structure.

that the traceπ satisfiesthe LTL formulaϕ. For example,
π |= Fϕ if and only if there exists somei such thatϕ holds
on πi. Thesatisfaction relation|= is defined inductively in
a similar way for all operators and propositional variablesin
LTL. We refer the reader to [7] for a detailed description of
the semantics of LTL.

A Kripke structureK satisfiesan LTL formulaϕ if and
only if π |= ϕ for all tracesπ of K. The BMC problem
BMCk(K, ϕ) is to determine whetherK satisfiesϕ for up to
k steps, i.e., whetherK |=k ϕ. Thek-depth satisfaction rela-
tion |=k is defined inductively; for example,π |=k Gϕ if and
only if πi |=k−1 ϕ for all i ≤ k.

To determine whetherK |=k ϕ, the problem is converted
to a propositional formulaΦ (see [4,6,5]) which is satisfi-
able if and only if there exists a length-k counterexample to
K |=k ϕ. Φ is then given to a SAT solver which decides its
satisfiability. The propositional encoding represents thebe-
havior ofK up tok steps with apath constraintCLK , and
encodes all counterexamples toϕ of lengthk in anerror con-
straint CLe. Therefore, if the theoryCLK ∪ CLe is satis-
fiable, there is a path throughK which obeys the transition
relation and falsifiesϕ. The value of each variablev of K at
each time step is represented using new boolean variablesvi

(0 ≤ i ≤ k), calledtimed variables.
The transition relation of a Kripke structure can be repre-

sented symbolically by a propositional formula over the vari-
ablesV and primed variablesV ′ (which represent the vari-
ables in the next state). For example, in the model in Fig-
ure 1, the transition relation is represented by the formula
R = (p ∧ ¬q ∧ ¬p′ ∧ q′) ∨ (¬p ∧ q ∧ ¬p′ ∧ q′). The path
constraint is obtained by substituting the timed variablesVi

for V in R, and replacingV ′ by the timed variables for the
next step,Vi+1. This is repeated for each0 ≤ i < k, and the
resulting propositional formulas are conjoined along witha
formula representing the initial state [4]. In Figure 1, ifk = 1,

CLK = (p0 ∧ ¬q0) ∧ ((p0 ∧ ¬q0 ∧ ¬p1 ∧ q1)

∨(¬p0 ∧ q0 ∧ ¬p1 ∧ q1)).

The error constraintCLe is encoded according to a recursive
procedure which removes the temporal and logical operators
from the property [4], e.g., the algorithm encodesϕ = Gp,
wherep is a propositional variable, expanded up tok = 2, by
the formula¬p0 ∨ ¬p1 ∨ ¬p2.

After the boolean formulas for the path and error con-
straints are calculated, they are converted toConjunctive Nor-
mal Form (CNF) before being passed to a SAT solver. If
the solver reports thatCLK ∪ CLe is unsatisfiable, it means
that there is no length-k counterexample toϕ; otherwise, a

(¬r0) (r0 ∨ p0) (¬p0 ∨ q0) (¬p0 ∨ ¬q0) (p0)

(p0)

(q0)

(¬p0)

()

Fig. 2: A resolution proof for EXAMPLE 2.

satisfying assignment is returned. When a DPLL-based SAT
solver processes an unsatisfiable theory, a resolution deriva-
tion of false (or the empty clause) is implicitly constructed [10,
27]. This resolution proof is used to verify thatfalse can in-
deed be derived fromCLK ∪ CLe [28].

2.2 Resolution Proofs

Resolution is an inference rule that is applied to propositional
clauses to produce logical consequences. Aclauseis a dis-
junction of literals (boolean variables or their negations). For
example,(v1 ∨ ¬v2 ∨ v5) is a clause stating that at least one
of v1,¬v2 or v5 must be true. The resolution rule takes two
clauses, where one contains a literalv and the other – its nega-
tion ¬v, and produces a clause containing the union of the
two clauses’ literals minusv and¬v. For example, resolv-
ing (v1 ∨ ¬v2 ∨ v5) and (v2 ∨ v6) produces theresolvent
(v1 ∨ v5 ∨ v6).

A resolution proofΠ is a directed acyclic graph whose
nodes are labeled by propositional clauses.Π represents a
tree of resolutions between the clauses labeling its nodes.
Its roots are the nodes with no parents; otherwise, all nodes
have exactly two parents. The nodes with no children are
called theleaves. For example, the roots of resolution proof
Π in Figure 2 areRoots(Π) = {(¬r0), (r0 ∨ p0), (¬p0 ∨
q0), (¬p0∨¬q0), (p0)}, and the leaf ofΠ is the empty clause,
i.e., Leaf(Π) = false. Given a non-root node labeled by the
clausec, and the labels of its parents,c1 andc2, c is the re-
solvent since it has been produced by resolvingc1 andc2 on
some variablev. A resolution proofΠ is a proof of unsat-
isfiability of a set of clausesA if and only if all roots ofΠ
belong toA, and one of the leaves ofΠ is the empty clause.
For example, Figure 2 shows a resolution proof of the unsat-
isfiability of Roots(Π). If a propositional theory in CNF is
unsatisfiable, anUNSAT coreis an unsatisfiable subset of its
clauses.

Given two disjoint sets of clausesA andB, a variablev is
said to belocal toA if and only if v appears inA but does not
appear inB, andv is said to beglobal if it appears in both
A andB. In Figure 2, ifRoots(Π) = A ∪ B, whereA =
{(¬r0), (r0∨p0), (¬p0∨q0)} andB = {(¬p0∨¬q0), (p0)},
thenr0 is local toA, and the rest of the variables are global.

3 Defining Vacuity

This article uses the following definition of vacuity.

Definition 1. Let K be a Kripke structure,ϕ be a formula
s.t.K |=k ϕ, andp be a variable.ϕ is k-stepp-vacuousiff
K |=k ϕ[p← x], wherex is a variable not occurring inK or
in ϕ.

If ϕ is k-stepp-vacuous, we callp ak-step vacuous vari-
able. A propertyϕ is k-step vacuousif and only ifϕ contains
a k-step vacuous variable. Therefore, our techniques aim to
find thek-step vacuous variables ofϕ. The qualifier “k-step”
is omitted in the remainder of the article but should be under-
stood implicitly in the BMC context.

Definition 1 can be generalized to vacuity in arbitrary (not
necessarily atomic) subformulas. This follows from the fact
that a subformula is vacuous iff it ismutually vacuousin all of
its atomic propositions [13, Th. 9], and that the definitionscan
be easily extended to mutual vacuity. A set of atomic propo-
sitions{p1, ..., pn} is mutually vacuous ifK |=k ϕ[p1 ←
x1, ..., pn ← xn], where{x1, ..., xn} are new variables. For
example, ifϕ contains subformulaθ = p ∧ q, andp andq
are mutually vacuous, then we can deduce thatθ is vacuous
as well.
Naive Vacuity Detection.Definition 1 suggests a sound and
complete algorithm for vacuity detection: for each proposi-
tional variablep in ϕ, run BMC onϕ[p ← x], wherex is a
variable that does not appear inK andϕ. If K |=k ϕ[p← x]
for somep, thenϕ is k-step vacuous. We refer to this algo-
rithm asnaive. Its drawback is that it may require as many
model-checking runs as there are propositional variables in
ϕ.

We now review some of the alternative definitions of vacu-
ity and their algorithms. The first attempt to formulate and
automate vacuity detection is due to Beer et al. [2]. They
consider a propertyϕ to be vacuous ifϕ contains a sub-
formulaψ such that replacingψ by any other formula does
not affect the satisfaction ofϕ. Applying this definition di-
rectly would require an infinite number of subformula re-
placements, precluding a practical implementation. However,
Beer et al. show that to detect vacuity w.r.t. asingleoccur-
rence of a subformulaψ in w-ACTL, it is sufficient to replace
ψ with only true andfalse. This was later extended to CTL*
by Kupferman and Vardi [18], and to the modalµ−calculus
by Dong et al. [9]. Purandare and Somenzi [21] showed how
to speed up subformula vacuity by analyzing the parse tree of
a CTL property.

Armoni et al. [1] generalized the above syntactic defini-
tion of vacuity by introducing universal quantification, i.e.,
∀x · ϕ[ψ ← x]. Based on the domain ofx, three notions of
vacuity are obtained, the most robust of which beingtrace
vacuity. Gurfinkel and Chechik [12] extended Armoni’s defi-
nition of vacuity to CTL*, thus uniformly capturing CTL and
LTL. Armoni et al. also analyzed the syntactic structure of
the property in order to avoid checking the operands of sub-
formulas that are known to be vacuous. Such optimizations

complement our techniques, which focus on detecting vacu-
ousatomicsubformulas.

In [20], Namjoshi has introduced a proof-based variant
of vacuity. Although it is calledproof vacuityin the original
paper, we refer to it asforall-proof vacuity. This definition is
based on the semantic proofs ofK |= ϕ for a Kripke structure
K and a formulaϕ. Informally, a formulaϕ is forall-proof
vacuous in a subformulaψ if ψ is not used inany proof of
K |= ϕ. Of course, a formal definition depends on the exact
interpretation of the notion of “proof”. In comparison, we use
an “existential” definition of vacuity: a formula is vacuous
if there existsa proof that does not use a subformula. Inter-
estingly, we rely on syntactic (and not semantic) resolution
proofs that may include “semantically-useless” resolutions.
As a result, it is possible that a formulaϕ is vacuous inψ in
a modelK, yet there is noresolution proofof bounded satis-
faction ofK |= ϕ that does not useψ. More importantly, our
goal is to develop a method to efficiently detect vacuity for
LTL as it was defined by [2,3,1,12], whereas Namjoshi was
looking for an alternative definition of vacuity for branching
time logic.

Our definition of vacuity is syntactic, and in this respect,
it is similar to the original definition of Beer et al. [2]. How-
ever, Definition 1 is stronger, and is equivalent to the seman-
tic definition of Armoni et al. [1], as shown by Gurfinkel and
Chechik [12].

4 Exploiting Resolution Proofs

In Section 3, we discussed the existence of a sound and com-
plete vacuity detection algorithm for BMC, which requires
as many model-checking runs as there are propositional vari-
ables in the property being checked. We propose a new vacu-
ity detection strategy: first detect partial vacuity using inex-
pensive techniques and then complete the analysis using ex-
tra model-checking runs. Since we are interested in replacing
expensive model-checking runs by inexpensive partial vacu-
ity detection methods, we limit ourselves to considering the
output of the original model-checking run onBMCk(K, ϕ),
i.e.,CLK ∪ CLe. This run provides us with a single reso-
lution proof to analyze. Of course, in general, there may be
many ways to derive the empty clause from different sub-
sets ofBMCk(K, ϕ). Any method that only examines one of
these derivations is inherently incomplete, in the sense that
a property may bep-vacuous but there is no way of deter-
mining this based on a given resolution proof. For example,
consider a model that is composed of two completely disjoint
sub-models, running in parallel, i.e.,K = K1 ‖ K2. Suppose
thatK1 satisfiesGp, K2 satisfiesGq, and that both do so
non-vacuously. Then the propertyϕ = Gp∨Gq holds onK
p-vacuously andq-vacuously. However, one of the possible
resolution proofs showing thatϕ holds proves thatGp holds
non-vacuously onK1. Thus, it is impossible to determine that
ϕ is vacuous inp from this proof. Any method based on ex-
amining only one resolution proof cannot prove the absence

of vacuity, since another resolution proof, showing the prop-
erty to be vacuous, might exist.

In this section, we introduce three algorithms of increas-
ing precision for partial vacuity detection, based on examin-
ing the UNSAT core (irrelevance and local irrelevance) and
the resolution proof produced by BMC (peripherality).

4.1 Examining UNSAT cores

Given a resolution proof thatBMCk(K, ϕ) is unsatisfiable,
we can sometimes cheaply determine that the similar theory
BMCk(K, ϕ[p← x]) is also unsatisfiable, and therefore, that
the property isp-vacuous. In this section, we consider how
to determine thatBMCk(K, ϕ[p← x]) is unsatisfiable given
thatBMCk(K, ϕ) is unsatisfiable, using only an UNSAT core.

4.1.1 Irrelevance

Intuitively, any variable that does not appear in the UNSAT
core does not contribute to the reason whyϕ holds onK, so
it can be consideredirrelevant.

Definition 2. LetK be a model, andϕ an LTL formula. As-
sume thatΠ is an UNSAT core of BMCk(K, ϕ) witnessing
that K |=k ϕ. Then, p is irrelevant with respect to
BMCk(K, ϕ) andΠ iff pi does not appear inΠ for any time
instancei.

If a variable is irrelevant, it is also vacuous, as shown by
the following theorem.

Theorem 1. If p is irrelevant with respect to BMCk(K, ϕ)
andΠ , thenϕ is k-stepp-vacuous.

Proof: Let BMCk(K, ϕ) = CLK ∪ CLe and U be the UNSAT
core returned by the SAT solver for BMCk(K, ϕ). Assume that
p is irrelevant in BMCk(K, ϕ). So U does not contain any pi by
Definition 2. Therefore, U ⊆ CLK ∪ CLe implies U ⊆ CLK ∪

CLe[pi ← xi | 0 ≤ i < k]. U is also an UNSAT core of
BMCk(K, ϕ[p← x]) so ϕ[p ← x] holds on K. Thus, ϕ is p-
vacuous.

Definition 2 provides an algorithm to detect some vacu-
ous variables. However, a variable can appear in the UNSAT
core and still be vacuous, as demonstrated by the following
example.

EXAMPLE 1. Consider a Kripke structureK with variablesp
andq given by the constraintsInit = p ∧ q, R = p⇒ q′,
which mean that the initial state is labeled by{p, q}, and
the transition relation is expressed by the propositional for-
mulap ⇒ q′ over unprimed and primed variables. Letϕ =
X(p ∨ q) be the property to check.ϕ is p-vacuous since it is
satisfied simply becauseq is true in any successor of the ini-
tial state. The CNF encoding of the one-step BMC problem
isCLK = {(p0 ∧ q0), (p0 ⇒ q1)} = {(p0), (q0), (¬p0, q1)},
CLe = {(¬p1), (p1,¬q1)}. In this case, theuniqueminimal
UNSAT core contains all of the clauses of the problem except
for (q0). Thus, allpi appear in the UNSAT core, andp cannot
be determined vacuous using irrelevance. �

(p0) (¬p0, q1) (x1,¬q1) (¬x1)

q1 ¬q1

()

Fig. 3: A resolution proof for EXAMPLE 1.

This example shows that even if we are to look at every
UNSAT core of a BMC problem, irrelevance is still unable to
detect existing vacuity.

4.1.2 Local Irrelevance

Variables which do not appear in the UNSAT core are vac-
uous. The converse is not true: vacuous variables may also
appear in the UNSAT core. Intuitively, these variables are
not the central reason whyϕ holds onK. For example, the
clauses ofCLK may resolve against each other, representing
some simplification and unification of parts of the model, be-
fore resolutions withCLe clauses are performed. If a variable
is resolved upon using only theCLK clauses or only theCLe

clauses, it is potentially vacuous. By looking at the UNSAT
core, it is possible to anticipate whether a variable will not
be involved in resolutions betweenCLK andCLe using the
following definition.

Definition 3. LetK be a model, andϕ an LTL formula. As-
sume thatΠ is an UNSAT core of BMCk(K, ϕ) witness-
ing K |=k ϕ. Then,p is locally irrelevant with respect to
BMCk(K, ϕ) andΠ iff for each time instancei, eitherpi does
not appear inΠ or pi is local to eitherCLe∩Π orCLK∩Π .

In EXAMPLE 1, p is locally irrelevant sincep1 only oc-
curs in the clauses ofU taken fromCLe, while p0 only ap-
pears inU within CLK clauses. Moreover, the UNSAT core
of the original problem can be converted to an UNSAT core of
the new theory, thus proving thatp is vacuous. Specifically,
U = {(p0), (¬p0, q1), (¬p1), (p1,¬q1)} is the UNSAT core
of the original problem, so substitutingx for p in the clauses
of U that came fromCLe gives

U ′ = {(p0), (¬p0, q1), (¬x1), (x1,¬q1)}.

This is a subset of

BMC1(K, ϕ[p← x]) = {(p0), (q0), (¬p0, q1), (¬x1),

(x1,¬q1)},

so it is a candidate for the new UNSAT core. The substitution
may have prevented the resolutions necessary to derive the
empty clause. However, Figure 3 shows a proof thatU ′ is
also unsatisfiable. In this case, it was possible to substitutexi

for pi in the clauses coming fromCLe in the original UNSAT
core and create an UNSAT core forBMCk(K, ϕ[p← x]). In
fact, this observation applies to all cases of local irrelevance
by Theorem 2. Therefore, Definition 3 specifies an algorithm
to detect some vacuous variables.

Theorem 2. If p is locally irrelevant with respect to
BMCk(K, ϕ) andΠ , thenϕ is k-stepp-vacuous.

Proof: Let BMCk(K, ϕ) = CLK ∪ CLe and U be the UN-
SAT core returned by the SAT solver for BMCk(K, ϕ). Assume
that p is locally irrelevant in BMCk(K, ϕ). So for all pi, either
pi does not appear in U , or pi is local to CLe ∩ U = Ue or
to CLK ∩ U = UK by Definition 3. Let Ue′ be Ue with each
occurence of pi replaced by xi. Since each pi that has been
replaced is local to Ue, and UK ∪Ue = U is unsatisfiable, then
UK ∪Ue′ is also unsatisfiable. Since Ue′ ⊆ CLe[pi ← xi | 0 ≤

i < k], the set of clauses CLK ∪ CLe[pi ← xi | 0 ≤ i < k] is
unsatisfiable as well. Therefore, K |=k ϕ[p ← x] holds, so ϕ

is p-vacuous.
Unfortunately, if a variablep is not locally irrelevant in

an UNSAT core, the formula can still bep-vacuous, as shown
by the following example.

EXAMPLE 2. Consider a Kripke structure with atomic propo-
sitionsr, p andq whose initial state is given by the constraint:
Init = ¬r∧ p∧ q. The formulaϕ = ¬p∨ q is p-vacuous in
the initial state. Let us assume that the zero-step BMC prob-
lem is encoded in CNF as follows:

CLK = (¬r0)(r0 ∨ p0)(¬p0 ∨ q0)

CLe = (p0)(¬p0 ∨ ¬q0)

There are several resolution proofs that can establish un-
satisfiability ofCLK ∪CLe; one such proof is shown in Fig-
ure 2. In none of the proofs isp locally irrelevant with respect
toCLe andCLK .

The problem with local irrelevance is that it is impossible
to tell if a variable is going to be used in a resolution joining
CLK andCLe clauses based on the UNSAT core alone.�

4.2 Peripherality

In Section 4.1, two vacuity detection methods based on ex-
amining the variables in the UNSAT core were found to fall
short of completeness. It was seen that even if every possible
resolution proof could be analyzed, irrelevance and local ir-
relevance still might fail to detect existing vacuity. Here, we
extend the analysis to the resolution proof’s structure. The
resulting peripherality algorithm is superior, since it guaran-
tees vacuity will be found if all possible resolution proofsare
considered.

The limitations of detecting vacuity based only on the
UNSAT core were demonstrated in EXAMPLE 2. By exam-
ining the resolution proof in Figure 2, we see that although
p0 appears both inCLK clauses and inCLe clauses, it is
always resolved “locally”. That is, if we resolve two clauses
c1 = (..., pi, ...) andc2 = (...,¬pi, ...), pi and¬pi must have
been preserved from their original source in some set of root
clauses. If all the originating root clauses belong toCLK or
all belong toCLe, thenpi is being resolved on locally. In this
case, we can replacepi in either set of clauses without af-
fecting their unsatisfiability. For example, in Figure 2,p0 can

L(c) : clausec, variable p→ {‘∅’ , ‘A’ , ‘B’ , ‘AB’ }

– if c ∈ Roots(Π) then

L(c) =

8

>

<

>

:

‘∅’ if p 6∈ c

‘A’ if p ∈ c ∧ c ∈ A

‘B’ if p ∈ c ∧ c ∈ B

– else ifc is a clause resulting from resolvingc1 andc2 on variablev, i.e.,c = ∃v · c1 ∧ c2, then

– if v 6= p, then

L(c) =

8

>

>

>

<

>

>

>

:

‘∅’ if L(c1) = L(c2) = ‘∅’

‘A’ if ∃i, j · L(ci) = ‘A’ ∧ L(cj) ⊆ {‘A’ , ‘∅’}

‘B’ if ∃i, j · L(ci) = ‘B’ ∧ L(cj) ⊆ {‘B’ , ‘∅’}

‘AB’ otherwise

– else ifv = p, then

L(c) =

(

‘∅’ if L(c1) = L(c2)

‘AB’ otherwise

Fig. 4: Labeling function for the peripherality algorithm.

S(l, c) =

8

>

>

>

<

>

>

>

:

∅ if l 6∈ c

c if c ∈ Roots(Π) ∧ l ∈ c

S(l, c1) ∪ S(l, c2) if c1 andc2 are parents

of c ∧ l ∈ c

Fig. 5: Definition ofS(l, c).

be replaced inCLe by a new unconstrained variablex0. This
intuition is formalized below.

Given a resolution proofΠ , a variablel, and a clausec,
we denote byS(l, c) the set of all root clauses that have con-
tributed the variablel to c. S(l, c) is defined recursively as
shown in Figure 5. A root clausecr is an element ofS(l, c) if
it contains a variablel and there exists a path fromcr to c that
does not contain a resolution onl. We can now defineperi-
pheralityof variables, which captures the conditions when a
global variable may not be central to the reason whyϕ holds
onK.

Definition 4. Let A andB be disjoint sets of clauses such
thatC = A ∪B is unsatisfiable, andΠ be a resolution proof
establishing unsatisfiability ofC. Then a variablel is periph-
eral with respect toA andB iff for every resolution onl
between clausesc1 andc2,

S(l, c1) ∪ S(l, c2) ⊆ A

or
S(l, c1) ∪ S(l, c2) ⊆ B.

Within the BMC setting, we have the following definition:

Definition 5. Let K be a model,ϕ be an LTL for-
mula, BMCk(K, ϕ) be a CNF encoding of a BMC problem
forK |=k ϕ, and Π be a proof of unsatisfiability of

BMCk(K, ϕ). p is peripheralin ϕ iff for each time instance
i, pi is peripheral inΠ with respect toCLe andCLK .

If a variable is peripheral, it is vacuous by Theorem 3.

Theorem 3. Let Π be a proof of unsatisfiability of
BMCk(K, ϕ). If a variablep of ϕ is peripheral inΠ , thenϕ
is k-stepp-vacuous.

Proof: Let BMCk(K, ϕ) = CLK ∪ CLe and U be the UN-
SAT core returned by the SAT solver for BMCk(K, ϕ). Assume
that p is peripheral in BMCk(K, ϕ). Let Ue′ be the result of re-
placing each pi with xi in CLe ∩ U . Then (CLK ∩ U) ∪ Ue′ is
still unsatisfiable, since every resolution on xi must be local to
CLe∩U , and every resolution on pi must be local to CLK ∩U

by the peripherality of pi. Since Ue′ ⊆ CLe[pi ← xi | 0 ≤ i <

k], CLK ∪ CLe[pi ← xi | 0 ≤ i < k] is unsatisfiable as well.
Therefore, K |=k ϕ[p← x], and ϕ is p-vacuous.

In Figure 2, althoughp is not locally irrelevant inϕ, it
is peripheral, and thereforeϕ is p-vacuous. This also demon-
strates that peripherality is a strictly stronger notion than local
irrelevance. Theorem 4 shows that under our constraints this
is the strongest result that we can hope to establish.

Theorem 4. Assumeϕ is k-stepp-vacuous inK. Then, there
exists a resolution proofΠ of unsatisfiability ofBMCk(K, ϕ)
such thatp is peripheral inΠ .

Proof: Assume that ϕ is p-vacuous. Then, the BMC problem
BMCk(K, ϕ[p← x]) = CLK ∪CLe[pi ← xi | 0 ≤ i < k] is un-
satisfiable, and there exists a resolution proof Π establishing
this. We show that such a proof can be transformed to a proof
of unsatisfiability of BMCk(K, ϕ) = CLK ∪CLe in which each
pi is peripheral with respect to CLK and CLe.

Let Π be a resolution proof of BMCk(K, ϕ[p← x]).
We transform Π into a resolution proof Π ′ such that
(a) Roots(Π ′) ⊆ CLK ∪CLe[pi ← xi | 0 ≤ i < k], and (b) Π ′

has no clauses that contain both pi and xi for some 0 ≤ i < k.
Let UK = Roots(Π) ∩ CLK , and CLe′ = CLe[pi ← xi |

0 ≤ i < k]. Note that if pi occurs in any clause of UK , it is local

to UK . Let L be the set of all local variables of UK , C = ∃L·UK

be a formula resulting from existentially eliminating these local
variables, and CNF(C) be the CNF encoding of C. Clearly, for
any 0 ≤ i < k, pi does not appear in C. The set of clauses
CNF (C)∪CLe′ is unsatisfiable. Thus, there exists a resolution
proof Π ′′ establishing this such that Roots(Π ′′) ⊆ CLe′ ∪
CNF (C). Since UK ⇒ C, for each clause c ∈ C there exists a
resolution proof Πc such that Leaf (Πc) = c and Roots(Πc) ⊆
UK . By combining the proofs {Πc | c ∈ CNF (C)} and Π ′′, we
obtain a proof Π ′ of unsatisfiability of UK ∪CLe′ that does not
contain a clause with variables xi and pi.

Let Π ′′′ be a proof obtained from Π ′ by replacing each xi

with pi, for 0 ≤ i < k. Then, Π ′′′ is a proof of unsatisfiability
of BMCk(K, ϕ) in which all pi are peripheral.

This is one of the main contributions of this article: if a
variable appears in all proofs, but is detected as peripheral
in at least one of these proofs, it is vacuous. Conversely, ifa
variable appears in all proofs but is not peripheral in any of
them, it is definitively not vacuous.

Peripherality of a variable can be detected by traversing
the resolution proof from the roots to the leaf, keeping track
of the source of the variable in each clause. IfΠ is a reso-
lution proof whose root clauses are divided into two disjoint
sets,A∪B, then the labeling functionL is defined recursively
as shown in Figure 4, wherec is used to represent a clause.
This labeling function defines an algorithm for detecting pe-
ripherality.

A CNF variablev is peripheral iff the label of the empty
clause is not ‘AB’. Thus, to detect whether a formulaϕ is
p-vacuous, we need to check that all CNF variablespi corre-
sponding top (see Section 2) are peripheral. This can be done
by applying the labeling function described in Figure 4 with
A = CLK , andB = CLe for eachpi.

By applying this labeling function to the proof shown in
Figure 2, we can determine that variablep from EXAMPLE 2
is peripheral. Since there is only one time step,p is peripheral
iff p0 is peripheral.

– First, we name the root clauses, for later reference:

c1 = (¬r0) p0 6∈ c1 c1 ∈ A
c2 = (r0 ∨ p0) p0 ∈ c2 c2 ∈ A
c3 = (¬p0 ∨ q0) p0 ∈ c3 c3 ∈ A
c4 = (¬p0 ∨ ¬q0) p0 ∈ c4 c4 ∈ B
c5 = (p0) p0 ∈ c5 c5 ∈ B

– Second, we identify the derived clauses:

c6 = c1 ∧ c2, v = r0 c8 = c7 ∧ c4, v = q0
c7 = c6 ∧ c3, v = p0 c9 = c8 ∧ c5, v = p0

– Third, we apply the labeling function, as shown in Fig-
ure 4:

L(c1) = ‘∅’ L(c6) = ‘A’ v 6= p0

L(c2) = ‘A’ L(c7) = ‘∅’ v = p0

L(c3) = ‘A’ L(c8) = ‘B’ v 6= p0

L(c4) = ‘B’ L(c9) = ‘∅’ v = p0

L(c5) = ‘B’

AsL(c9) 6= ‘AB’, p0 is peripheral, sop is peripheral.
It is also possible to simultaneously keep track of the la-

bels for all CNF variables so that only a single pass through
Π is needed. The time complexity of the peripherality algo-
rithm is linear in the size of the resolution proof.

Theorem 5. For a resolution proofΠ that BMCk(K, ϕ) is
unsatisfiable, determining which variables ofϕ are periph-
eral can be done in time linear in the size ofΠ .

Proof: To determine which variables of ϕ are peripheral, the
labeling algorithm defined in Figure 4 must be run once on Π

for each variable p in ϕ. The labeling algorithm passes through
the resolution proof, visiting each node once in breadth-first
order. A constant amount of work must be done at each node
in order to determine the current node’s label based on the
labels of its two parents. Therefore, one run of the labeling
algorithm takes O(m) time, where m is the number of nodes in
Π . To run the labeling algorithm on all variables in ϕ requires
O(m × n) time, where n is the number of variables in Π . In
fact, the size of Π is O(m×n), because each of the m nodes
can have a clause of length at most n.

In this section, we defined three methods of detecting
vacuity based on examining the UNSAT core and the reso-
lution proof produced by BMC. Our evaluation of these al-
gorithms w.r.t. precision and execution times can be found in
Section 6.

The effectiveness of our algorithms depends on the struc-
ture of the resolution proof found by the SAT solver. It might
be possible to make them more effective by modifying the
SAT solver to guide it to a particular kind of a proof (e.g., by
changing the decision order heuristic), or to output multiple
proofs (if possible). Both of these are likely to significantly
change performance characteristics of a fine-tuned SAT solver.
For these reason, we have concentrated on using the original
resolution proof as is.

5 The Tool: VaqTree

We have implemented the algorithms presented in Section 4
in a vacuity detection tool calledVaqTree. To our knowledge,
this is the first vacuity detection tool for BMC.

The inputs toVaqTree are a model (encoded using the
specification language of NuSMV [5]) and an LTL property.
The tool generates the vacuity results for each variable present
in the property. Vacuity detection inVaqTree proceeds in two
phases: a “partial pass” that applies one of our methods, and
a “model-checking pass” that completes the analysis using
additional model-checking runs. The component diagram for
VaqTree is shown in Fig. 6. The four components interact se-
quentially:

SMV → CNF Translator receives as input a SMV file
containing a model and a property, which are translated into
two separate CNF files, one containingCLK and the other
CLe, respectively. This translation is done using NuSMV,
where we modified its BMC package so as to get the transla-
tion as two files (≈ 40 lines added to thebmcBmcNonInc.c
file).

Model
+

Property

SMV →

CNF
Translator

Proof-
outputting
SAT solver

CLK

CLe

Proof
Pruner

CLK

CLe

Π

Proof
Analyzer

Π

Naive
Vacuity

Vacuity
Results

VaqTree

Fig. 6:VaqTree components.

Proof-outputting SAT solver generates the resolution
proof (Π) for CLK ∪ CLe. We use MiniSat [10] as it can
explicitly generate resolution proofs when checking satisfia-
bility. Instead of using MiniSat’s binary proof format, we de-
veloped our own XML format which allows easier proof pre-
processing and facilitates future incorporation of other SAT
solvers.

Proof Pruner receivesCLK ,CLe andΠ and applies dif-
ferent preprocessing techniques toΠ , producing a proof from
which extraneous chains of resolution have been removed and
root clauses are annotated to include their origin (CLK or
CLe). This is a new component, written in Java (around 700
lines of code).

Proof Analyzer receives proofs that have been prepro-
cessed using theProof Pruner component and produces a list
of variables found to be vacuous, and a list of variables that
need to be tested using the naive method. This is a new com-
ponent, written in Java (around 1.3k lines of code). The Proof
Analyzer outputs the vacuity results for each timed variable
pi. This information gives anexplanation of non-vacuity, in-
dicating which time steps have been important for deciding
whether a given variable was vacuous, thus facilitating de-
bugging.

6 Practical Experience

We have runVaqTree on two benchmark suites. To evalu-
ate the overall performance of the tool and the effectiveness
of our partial vacuity detection methods, we have created
a benchmark suiteSA using various models and properties
from the NUSMV distribution. To evaluate the scalability of
the tool to industrial models, we have created a benchmark
suite SB from the models in the IBM Formal Verification
Benchmarks Library [14]. These models came with rather
simple properties (one temporal operator), and (as expected
from an industrial benchmark) did not exhibit a high degree
of vacuity. Thus, we used this suite to measure the “worst-
case” behavior of the tool, i.e., the amount of overhead in-
curred by our methods when no vacuity is found.

In the benchmarks, each test case consists of a modelM ,
a propertyϕ, and a boundk such thatM |=k ϕ. Note that
finding an appropriate boundk is orthogonal tok-vacuity de-
tection, which explains why our evaluation does not consider
the time needed to findk. The experiments were performed
on a Linux machine with a 2.8GHz P4 CPU, and 1GB of
RAM, with up to 700MB of RAM available to each process.

Currently,VaqTree is limited to proofs with up to 2.5 mil-
lion resolutions. InSA, this corresponds to a test case from
the asynchronousabp4model (roughly 30 boolean variables,
with k = 19). Our full results are available in Table 1. Below,
we discuss results obtained with each benchmark individu-
ally.

6.1 Results obtained withSA

This benchmark suite consists of 5 models:abp4, msi wtrans,
pci, andprod-cell from the NUSMV distribution (107 prop-
erties) andtoyFGS04from [15] (14 properties). On average,
the properties in the suite have 2 temporal operators (from
the set G, F, U and X), with a maximum of 4 operators, and
include both liveness and safety. 99 of the properties exhibit
vacuity, and 22 do not.

Scatter plots in Figure 7 compare the execution times of
VaqTree (parametrized with irrelevance, local irrelevance, and
peripherality), with naive detection for this benchmark. Exe-
cution times for naive detection include CNF theory genera-
tion and satisfiability testing for each variable of the property.
Execution times forVaqTree include the time for the partial
pass and the subsequent model-checking pass. Each point in
the plot represents a single test case. The X-axis represents
the time (in seconds) taken by naive detection. The Y-axis
represents the time (in seconds) taken byVaqTree when pa-
rameterized by each of our methods. Points below the diag-
onal indicate whereVaqTree was faster than naive detection;
points near the diagonal indicate cases where the partial pass
found a small percentage of the vacuous variables.

Figure 8 shows that onSA, VaqTree with irrelevance finds
the fewest vacuous variables among our partial methods, as
expected from the discussion in Section 4. Although Fig-
ure 7(b) and (c) look similar, the numbers (see Table 1) show
that local irrelevance is faster than peripherality in 96% of the
cases. This is consistent with the additional work periphera-
lity must perform to analyze the proof tree. A detailed com-
parison of local irrelevance and naive detection shows that
VaqTree with local irrelevance was faster or comparable to
naive detection in 95% of the test cases.VaqTree with local
irrelevance was faster than naive detection in 70 (58%) of the
test cases, out of which 30 cases were twice as fast, and 20
cases were faster by an order of magnitude. In the remaining
51 cases, local irrelevance was at most 3% slower in 86% of
these cases.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Lo
ca

l I
rr

el
ev

an
ce

 (
s)

Naive detection (s)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Lo
ca

l I
rr

el
ev

an
ce

 (
s)

Naive detection (s)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

P
er

ip
he

ra
lit

y
(s

)

Naive detection (s)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

P
er

ip
he

ra
lit

y
(s

)

Naive detection (s)

Fig. 7:SA : Comparison of execution times. Where applicable, all times include times for both the partial and model-checking passes.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Ir
re

le
va

nc
e

Local Irrelevance

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Lo
ca

l I
rr

el
ev

an
ce

Peripherality

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
er

ip
he

ra
lit

y

Naive detection

≥ 40%

Fig. 8:SA : Comparison of the number of vacuous variables detected by partial pass. Larger points represent more test cases than the smaller
points.

 10

 100

 1000

 10 100 1000

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

 10

 100

 1000

 10 100 1000

Ir
re

le
va

nc
e

(s
)

Naive detection (s)

 10

 100

 1000

 10 100 1000

Lo
ca

l I
rr

el
ev

an
ce

 (
s)

Naive detection (s)

 10

 100

 1000

 10 100 1000

Lo
ca

l I
rr

el
ev

an
ce

 (
s)

Naive detection (s)

 10

 100

 1000

 10 100 1000

P
er

ip
he

ra
lit

y
(s

)

Naive detection (s)

 10

 100

 1000

 10 100 1000

P
er

ip
he

ra
lit

y
(s

)

Naive detection (s)

Fig. 9:SB : Comparison of execution times. Where applicable, all times include times for both the partial and model-checking passes.

There are 10 cases whereVaqTree with peripherality took
much longer than naive detection. All of these cases are from
the abp4 model, and while they have the largest resolution
proofs of the benchmark suite (between 300,000 and 2M
clauses), other 300,000-clause test cases did not yield poor
performance. We conjecture that the poor performance is due
to a low clause/variable ratio [22] which favours naive detec-
tion in cases where vacuity is not present. Intuitively, a low
ratio indicates that the SAT instance is underconstrained,and
so a solution (if it exists) can be found quickly. On the other
hand, finding a proof ofunsatisfiabilityin a model with few
constraints can be more difficult. Naive detection on a non-
vacuous property requires solving satisfiable SAT instances,
since replacing variables falsifies the property. However,pe-
ripherality on a non-vacuous property requires time linear
in the size of the resolution proof obtained from the origi-
nal model-checking run. If all of these SAT instances have a
low clause/variable ratio, naive detection can be much faster
than peripherality. This situation was only observed on the
abp4 model, with clause/variable ratio of 1.5-1.8 – signifi-

cantly lower than any other test case with large proofs and
without vacuity.

We now turn to measuring the effectiveness of our meth-
ods, using the number of vacuous variables found during the
partial pass as a metric (see the scatter plots in Figure 8). This
number indicates how many additional model-checking runs
are needed to complete vacuity detection. Since our partial
methods can be ordered by increasing precision, Figure 8(a)
compares irrelevance and local irrelevance, Figure 8(b) – lo-
cal irrelevance and peripherality, and Figure 8(c) – periphera-
lity and naive detection. Each point in the plot represents aset
of test cases – a larger point means a larger set. The axes show
the number of vacuous variables detected by each method.
Points below the diagonal indicate where the X-axis method
detects more vacuous variables than the Y-axis method. The
plots show that local irrelevance is clearly more effectivethan
irrelevance. Contrary to our expectations, peripheralityper-
formed exactly as local irrelevance in all but 5 cases. Thus,lo-
cal irrelevance appears to be more cost-effective. Figure 8(c)
shows that our techniques are effective when compared with
naive detection: peripherality reduced the number of extra

model-checking runs by 40% in 54 out of 99 cases that ex-
hibited vacuity.

6.2 Results obtained withSB

This benchmark suite consists of 13 models from the IBM
Formal Verification Benchmarks Library [26] (18 properties).
The properties have a single temporal operator (G or F), and
include both safety and liveness. 12 of the properties exhibit
vacuity, and 6 do not. To evaluate the scalability ofVaqTree to
industrial models, we must first determine a reasonable bound
such thatM |=k ϕ. For this benchmark, we picked depth
k = 20, which is in line with the bounds used for analyzing
these models in [26, Sec. 2]. At thisk, some of the models
where too large to analyze using VaqTree, and some of the
properties did not hold. This is why we only report data for
13 models from this benchmark.

Table 1 shows detailed results of our experiments. In this
table, column “Benchmark” indicates the benchmark the test
case belongs to; “Test case” is the case’s unique identifier
inside the benchmark, “Model” is the SMV model tested;
“# var. in M ” is the number of variables in the model; “k”
is the number of steps used to run BMC; “op. inϕ” shows
the property operators (e.g.,2G means that two G operators
appear in the property); “# var. inϕ” is the number of atomic
variables present in the property; “# vac. vars.” is the num-
ber of vacuous variables; and “# resol. inΠ” is the number
of resolutions in the resolution proof. The next three columns
report the time needed for model-checking: “Gen. CNF” is
the time NuSMV took to generate the corresponding CNF
theory; “Test SAT” and “Gen.Π” are the time MiniSat took
to test satisfiability and generate the corresponding resolu-
tion proof respectively; and “Total” is the sum of the previous
three columns.

For the naive method, we report the total times for the
CNF theory generation (“Gen. CNF”) and for satisfiability
testing (“Test SAT”). One CNF theory is produced per atomic
variable. For irrelevance, local irrelevance and peripherality,
we report how many vacuous variables were found by the
partial pass (“# vac. vars. found”), how longVaqTree took to
do the corresponding analysis (“Anal.”) and how much time
was needed to do the completing pass (“Extra runs”).

For example, test caseSB 16 analyzes an eight-variable,
one temporal operator (G) property of theIBM FV 200223
model (which has 103 variables). All eight of these variables
are vacuous. The resolution proof generated whenk = 20 has
7,618 resolutions. This property was checked in 11.29 sec-
onds. Naive vacuity detection required eight model-checking
runs, taking 115.68 seconds to generate the corresponding
CNF theories and 2.36 seconds to test their satisfiability, re-
quiring a total of 118.04 seconds. Irrelevance took 0.36 sec-
onds to find one of the vacuous variables during the partial
pass. It then took 103.01 seconds to carry out the complet-
ing pass, so the total time required by irrelevance to find all
eight vacuous variables is 103.37 seconds. Local irrelevance
took 0.35 seconds to analyze the resolution proof, finding the

same vacuous variable as irrelevance, plus an additional vac-
uous variable. It takes 88.41 seconds to run the completing
pass, so the total time required by local irrelevance is 88.76
seconds. Finally, peripherality took 0.74 seconds to execute
the partial pass and found the same two vacuous variables; it
also required 88.41 seconds to run the completing pass, tak-
ing a total of 89.15 seconds to produce complete results for
test caseSB 16.

Our results clearly show that proof sizes for theSB bench-
mark can be handled byVaqTree. Interestingly, these are in
the same range as proof sizes forSA. This could be explained
by the fact that even though these models are more complex,
the properties are simpler.

Scatter plots in Figure 9 compare the execution times of
VaqTree parametrized with local irrelevance and periphera-
lity, with naive detection for this benchmark. Execution times
are measured as described in Section 6.1, and the graphs are
interpreted in the same way as those in Figure 7. SinceSB
had low vacuity, we did not expect our techniques to find it
without the help of naive detection. However, graphs in Fig-
ure 9 show that our techniques do in fact detect vacuity, as
indicated by the points that appear below the diagonal. Both
local irrelevance and peripherality detect the same amountof
vacuity inSB, but local irrelevance is slightly faster than pe-
ripherality.

Surprisingly, peripherality introduces a low overhead in
this benchmark – points over the diagonal are near it, unlike
what we see in Figure 7. To explain this behavior, we hypoth-
esized that in non-vacuous cases with low clause/variable ra-
tios and large proofs, peripherality is much slower than naive
detection. InSB, we found that 15 of the test cases have a
clause/variable ratio between 2.62-3.66, much higher thanthe
ratios encountered inSA. The remaining three cases had ra-
tios in the same range as theabp04model. However, two of
these produce trivial proofs, and the last one exhibits vacuity.
These results empirically support our hypothesis.

6.3 Conclusions

In summary, we observed that local irrelevance performs best
out of our proposed partial methods, finding most vacuity in
the least amount of time. In 95% of both benchmark suites,
we foundVaqTree with local irrelevance to be at most 3%
slower, and usually much faster, than the naive detection. In
several tests of theSA benchmark, peripherality was notice-
ably slower than naive detection. On the industrial benchmark
SB, the overhead produced by peripherality was negligible.
Interestingly, this suggests that peripherality may be a viable
alternative to local irrelevance on industrial models. We plan
to investigate this further in the future. Thus, we believe that
both local irrelevance and peripherality can be used to speed
up naive detection. We plan to enhance our methods by devel-
oping a heuristic based on the clause/variable ratio and proof
size that indicates when naive detection should be applied in-
stead.

7 Summary and Related Work

In this article, we showed how to exploit the UNSAT core
and resolution proof produced by a successful run of BMC
for vacuity detection. We introduced three vacuity detection
methods that can be applied with little overhead after one
model-checking run in order to quickly identify vacuous vari-
ables and reduce the number of additional model-checking
runs required. Two of these methods, irrelevance and local
irrelevance, exploit the UNSAT core, and the third, periphe-
rality, is based on analyzing the resolution proof. We builta
tool VaqTree, which is based on these methods, and showed
that it is effective for speeding up vacuity detection.

Related work on vacuity detection has been described in
Section 3. Additionally, our work is related to research in
declarative modeling. In particular, our use of the UNSAT
core to detect vacuity was inspired by [23], which addresses
the problem of identifying overconstraint in declarative mod-
els. While similar in spirit to vacuity detection in model check-
ing, declarative models have no explicit transition relation;
instead, transitions are expressed with constraints [17,25]. An
overconstraint occurs when the model satisfies a safety prop-
erty because all violations of the formula have been acciden-
tally ruled out by the declared constraints. In order to detect
such overconstraints, [23] introduces the idea ofcore extrac-
tion: declarative models are reduced to SAT instances, from
which an UNSAT core can be extracted if the property holds.
If a constraint’s clauses do not appear in the UNSAT core,
the constraint is calledirrelevant, and is a source of overcon-
straint (similar to Definition 2). The cone-of-influence tech-
nique [7] is also similar to Definition 2. However, as both of
these techniques are model-based, neither can be used to de-
tect vacuity.

Our experiments show that local irrelevance and pe-
ripherality can detect more vacuous variables than ir-
relevance. Therefore, detecting overconstraint in declarative
models may also benefit from methods that analyze the struc-
ture of the resolution proof. In the future, we propose to inves-
tigate how a notion equivalent to peripherality can be defined
in the declarative setting. Another goal of future work is to
increase the power of resolution proof-based vacuity detec-
tion methods. In this article, we restricted ourselves to using
results of only one BMC run, and to methods with linear time
complexity in the size of the resolution proof or better. How-
ever, it is possible that the most optimal trade-off between
speed and effectiveness of vacuity detection algorithms lies
in the domain of multiple resolution proofs, where we can
find the minimal UNSAT core [11] or reduce the resolution
proof using interpolation [8].

McMillan [19] uses interpolation to prove that a particular
bound is sufficient to imply the unbounded satisfaction of a
BMC problem. We intend to combine our techniques with
this algorithm in order to prove that bounded vacuity for the
correctk implies that the property also holds vacuously in the
unbounded case.

Interpolation can also be used to detect vacuity. Given
two sets of clauses,A andB, such thatA ∪ B is unsatis-

fiable, an interpolantC is a set of clauses whose variables
appear in bothA andB, such thatB ∪C is unsatisfiable and
A⇒ C [16]. Intuitively, if C is minimal, thenC is the reason
whyA ∪ B is unsatisfiable. This intuition suggests that if an
interpolant ofCLK andCLe could be found, then all vari-
ables not appearing in it could be considered vacuous. How-
ever, we did not include this technique in our empirical evalu-
ation, as our interpolant generator was comparatively slower.

Another means of speeding vacuity detection for BMC is
to iteratively check thek-step vacuity of each variable starting
with k = 0. SinceK 2k1

ϕ[p← x] impliesK 2k2
ϕ[p← x]

for all k2 > k1, if a variable is proven non-vacuous at some
step k, then it can be omitted from subsequent checks of
higherk. This method is orthogonal to our techniques, and
the vacuity detection at each step could be carried out by
VaqTree.

Acknowledgements.A preliminary version of this article has ap-
peared in [24]. We are grateful to anonymous referees for helping
improve the presentation and technical clarity of this article. This
work was supported in part by NSERC, OGS, and IBM.

References

1. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman,
A. Tiemeyer, and M. Vardi. “Enhanced Vacuity Detection in
Linear Temporal Logic”. InProceedings of the 15th Interna-
tional Conference on Computer Aided Verification (CAV’03),
volume 2725 ofLecture Notes in Computer Science, pages 368–
380, 2003.

2. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient De-
tection of Vacuity in ACTL Formulas”. InProceedings of the
9th International Conference on Computer Aided Verification
(CAV’97), volume 1254 ofLecture Notes in Computer Science,
pages 279–290, 1997.

3. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient De-
tection of Vacuity in Temporal Model Checking”.Formal Meth-
ods in System Design (FMSD), 18(2):141–163, March 2001.

4. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. “Symbolic
Model Checking without BDDs”. InProceedings of the 5th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’99), volume 1579 of
Lecture Notes in Computer Science, 1999.

5. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. “NUSMV 2:
An OpenSource Tool for Symbolic Model Checking”. InPro-
ceedings of the 14th International Conference on Computer
Aided Verification (CAV’02), volume 2404 ofLecture Notes in
Computer Science, pages 359–364, 2002.

6. A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. “Im-
proving the Encoding of LTL Model Checking into SAT”. In
Proceedings of the 3rd International Workshop on Verification,
Model Checking, and Abstract Interpretation (VMCAI’02), vol-
ume 2294 ofLecture Notes in Computer Science, pages 196–
207, 2002.

7. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT
Press, 1999.

8. W. Craig. “Linear Reasoning. A New Form of the Herbrand-
Gentzen Theorem”. Journal of Symbolic Logic (JSL),
22(3):250–268, 1957.

9. Y. Dong, B. Sarna-Starosta, C.R. Ramakrishnan, and S. A.
Smolka. “Vacuity Checking in the Modal Mu-Calculus”. In
Proceedings of the 9th International Conference on Algebraic
Methodology and Software Technology (AMAST’02), volume
2422 of Lecture Notes in Computer Science, pages 147–162.
Springer-Verlag, 2002.

10. N. Een and N. Sörensson. The MINI SAT Page.
http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/Main.html , April 2006.

11. R. Gershman, M. Koifman, and O. Strichman. “Deriving Small
Unsatisfiable Cores with Dominators”. InProceedings of the
18th International Conference on Computer Aided Verification
(CAV’06), volume 4144 ofLecture Notes in Computer Science,
pages 109–122, 2006.

12. A. Gurfinkel and M. Chechik. “Extending Extended Vacu-
ity”. In Proceedings of the 5th International Conference on
Formal Methods in Computer-Aided Design (FMCAD’04), vol-
ume 3312 ofLecture Notes in Computer Science, pages 306–
321, 2004.

13. A. Gurfinkel and M. Chechik. “How Vacuous Is Vacuous?”.
In Proceedings of the 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 ofLecture Notes in Computer Sci-
ence, pages 451–466, 2004.

14. IBM Haifa. CNF Benchmarks from IBM Formal Verification
Benchmarks Library, 2007.

15. M. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and
J. Gao. “Auto-generating Test Sequences Using Model Check-
ers: A Case Study”. InProceedings of the Third Interna-
tional Workshop on Formal Approaches to Testing of Software
(FATES’03), volume 2931 ofLecture Notes in Computer Sci-
ence, pages 42–59, 2003.

16. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. “Ab-
stractions from Proofs”. InProceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Langauges (POPL’04), pages 232–244, 2004.

17. D. Jackson. ALLOY : a Lightweight Object Modelling Notation.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(2):256–290, April 2002.

18. O. Kupferman and M. Vardi. “Vacuity Detection in Tempo-
ral Model Checking”. InProceedings of the 8th Advanced Re-
search Working Conference on Correct Hardware Design and
Verification Methods (CHARME’99), volume 1703 ofLecture
Notes in Computer Science, pages 82–96, 1999.

19. K. McMillan. “Interpolation and SAT-Based Model Check-
ing”. In Proceedings of the 15th International Conference on
Computer Aided Verification (CAV’03), volume 2725 ofLecture
Notes in Computer Science, pages 1–13, 2003.

20. K. Namjoshi. “An Efficiently Checkable, Proof-Based Formu-
lation of Vacuity in Model Checking”. InProceedings of the
16th International Conference on Computer Aided Verification
(CAV’04), volume 3114 ofLecture Notes in Computer Science,
pages 57–69, 2004.

21. M. Purandare and F. Somenzi. “Vacuum Cleaning CTL Formu-
lae”. In Proceedings of the 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 ofLecture
Notes in Computer Science, pages 485–499, 2002.

22. B. Selman, D. Mitchell, and H. Levesque. “Generating Hard
Satisfiability Problems”.Artificial Intelligence, 81(1-2):17–29,
March 1996.

23. I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and
M. Taghdiri. “Debugging Overconstrained Declarative Mod-
els Using Unsatisfiable Cores”. InProceedings of the 18th

International Conference on Automated Software Engineering
(ASE’03), pages 94–105, October 2003.

24. J. Simmonds, J. Davies, A. Gurinkel, and M. Chechik. “Ex-
ploiting Resolution Proofs to Speed Up LTL Vacuity Detection
for BMC”. In Proceedings of the 7th International Conference
on Formal Methods in Computer-Aided Design (FMCAD’07),
2007.

25. J. M. Spivey.The Z Notation: a Reference Manual. Prentice
Hall, 1992.

26. Emmanuel Zarpas. “Benchmarking SAT Solvers for Bounded
Model Checking”. InProceedings of the 8th International Sym-
posium on the Theory and Applications of Satisfiability Testing
(SAT’05), volume 3569 ofLecture Notes in Computer Science,
pages 340–354, 2005.

27. L. Zhang and Z. Fu. Boolean Satisfiability Research Group
at Princeton.http://www.princeton.edu/˜chaff/ ,
September 2006.

28. L. Zhang and S. Malik. “Validating SAT Solvers Using an Inde-
pendent Resolution-Based Checker: Practical Implementations
and Other Applications”. InProceedings of the International
Conference and Exposition on Design, Automation and Test in
Europe (DATE’03), pages 10880–10885, 2003.

Table 1: Statistics for vacuity detection experiments on NuSMV distribution and other examples.

Bench-Test Model (M) # var. k op. # var.# vac. # resol. Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)
mark case in M in ϕ in ϕ vars. in Π Gen. Test Gen. Total Gen. Test Total #

vac.
Anal. Extra Total #

vac.
Anal. Extra Total #

vac.
Anal. Extra Total

CNF (s)SAT (s)Π (s) (s) CNF (s)SAT (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s)
found found found

SA 1 pci 40 13 G,U 4 1 19792 4.69 0.23 5.9 10.82 20.66 2.77 23.43 0 0.34 23.43 23.77 0 0.34 23.43 23.77 0 0.81 23.43 24.24
SA 2 pci 40 13 G,U 4 3 1649 5.13 0.14 5.64 10.91 11.75 1.30 13.05 3 0.26 0 0.26 3 0.26 0 0.26 3 0.37 0 0.37
SA 3 pci 40 13 G,U 4 3 1649 5.09 0.13 5.32 10.54 12.03 2.14 14.17 3 0.26 0 0.26 3 0.25 0 0.25 3 0.37 0 0.37
SA 4 pci 40 13 G,U 3 1 7725 4.80 0.18 5.65 10.63 12.68 1.73 14.41 0 0.29 14.41 14.7 0 0.29 14.41 14.70 0 0.50 14.41 14.91
SA 5 pci 40 13 G,U 3 1 7555 4.76 0.18 5.55 10.49 12.36 1.56 13.92 0 0.28 13.92 14.20 0 0.28 13.92 14.20 0 0.50 13.92 14.42
SA 6 pci 40 13 G,U 4 3 1705 4.66 0.12 5.68 10.46 11.66 1.19 12.85 3 0.25 0 0.25 3 0.26 0 0.26 3 0.39 0 0.39
SA 7 pci 40 13 G,U 4 3 1705 4.67 0.14 5.42 10.23 11.68 1.40 13.08 3 0.25 0 0.25 3 0.26 0 0.26 3 0.37 0 0.37
SA 8 pci 40 13 G,U 5 3 4283 4.95 0.22 5.59 10.76 25.85 2.89 28.74 2 0.27 17.60 17.87 2 0.28 17.60 17.88 2 0.47 17.60 18.07
SA 9 pci 40 13 F,U 4 3 158 4.92 0.13 5.73 10.78 20.30 0.74 21.04 3 0.18 0 0.18 3 0.18 0 0.18 3 0.22 0 0.22
SA 10 pci 40 13 F,U 3 2 163 4.78 0.13 5.49 10.40 15.3 0.85 16.15 2 0.19 0 0.19 2 0.18 0 0.18 2 0.23 0 0.23
SA 11 pci 40 13F,U,X 4 3 165 4.7 0.13 5.4 10.23 20.78 0.79 21.57 3 0.18 0 0.18 3 0.18 0 0.18 3 0.23 0 0.23
SA 12 pci 40 13 F,U 4 3 162 4.85 0.14 5.41 10.40 20.25 1.01 21.26 3 0.18 0 0.18 3 0.19 0 0.19 3 0.23 0 0.23
SA 13 pci 40 13 F,U 4 3 160 5.04 0.13 5.44 10.61 20.39 0.73 21.12 3 0.19 0 0.19 3 0.17 0 0.17 3 0.23 0 0.23
SA 14 pci 40 13F,U,X 5 4 164 4.79 0.14 5.34 10.27 25.81 2.34 28.15 4 0.19 0 0.19 4 0.19 0 0.19 4 0.23 0 0.23
SA 15 pci 40 13F,U,X 5 4 162 4.70 0.13 5.40 10.23 25.46 1.54 27.00 4 0.19 0 0.19 4 0.19 0 0.19 4 0.22 0 0.22
SA 16 pci 40 13 G,X 26 19 17742 4.96 0.88 6.78 12.62 137.47 35.14172.61 8 0.41 115.16115.57 8 0.42 115.16115.58 8 1.70 115.16116.86
SA 17 pci 40 13 G,X 26 19 26814 4.86 1.11 6.87 12.84 134.29 36.13170.42 8 0.46 114.63115.09 8 0.47 114.63115.10 8 2.38 114.63117.01
SA 18 pci 40 13 G,X 26 19 66883 5.07 1.24 7.87 14.18 147.93 42.23190.16 8 0.60 130.62131.22 8 0.60 130.62131.22 8 5.67 130.62136.29
SA 19 pci 40 13 G,X 26 19 96762 4.87 2.7210.48 18.07 133.67 41.05174.72 8 0.74 118.51119.25 8 0.73 118.51119.24 8 7.96 118.51126.47
SA 20 pci 40 7 G,U 5 3 1526 1.56 0.08 3.26 4.90 8.73 0.64 9.37 2 0.24 5.99 6.23 2 0.24 5.99 6.23 2 0.36 5.99 6.35
SA 21 pci 40 4 G,X 26 24 2043 0.61 0.058 2.05 2.72 16.66 1.46 18.12 19 0.25 4.86 5.11 19 0.25 4.86 5.11 19 0.39 4.86 5.25
SA 22 pci 40 4 G,X 26 24 2127 0.59 0.055 2 2.64 16.61 1.56 18.17 19 0.26 5.17 5.43 19 0.25 5.17 5.42 19 0.41 5.17 5.58
SA 23 prod-cell 39 30 G,F 4 4 13946 11.06 0.61 6.59 18.26 40.37 0.94 41.31 4 0.39 0 0.39 4 0.38 0 0.38 4 0.90 0 0.90
SA 24 prod-cell 39 30 G,F 6 6 67307 10.53 0.38 5.20 16.11 77.67 1.80 79.47 0 0.65 79.47 80.12 0 0.64 79.47 80.11 1 4.62 66.41 71.03
SA 25 prod-cell 39 30 G,F 7 7 24146 11.3 0.32 4.87 16.49 85.36 1.75 87.11 1 0.55 74.66 75.21 1 0.54 74.66 75.20 1 1.97 74.66 76.63
SA 26 prod-cell 39 30 G,F 6 6 15898 9.98 0.19 4.12 14.29 75.39 1.87 77.26 0 0.44 77.26 77.70 0 0.44 77.26 77.70 0 1.35 77.26 78.61
SA 27 prod-cell 39 30 G,F 5 5 15734 9.50 0.28 4.64 14.42 62.85 1.24 64.09 0 0.42 64.09 64.51 0 0.41 64.09 64.50 1 1.19 51.52 52.71
SA 28 prod-cell 39 30 G,F 4 4 24615 9.25 0.16 4.18 13.59 40.61 1.29 41.90 0 0.41 41.90 42.31 0 0.40 41.90 42.30 0 1.47 41.90 43.37
SA 29 prod-cell 39 30 G,F 8 8 24747 10.34 0.23 4.54 15.11 100.24 1.99102.23 0 0.52 102.23102.75 0 0.53 102.23102.76 0 2.27 102.23104.50
SA 30 prod-cell 39 30 G,F 5 5 15177 9.27 0.35 4.31 13.93 55.87 3.61 59.48 0 0.41 59.48 59.89 0 0.40 59.48 59.88 0 1.17 59.48 60.65
SA 31 prod-cell 39 30 G,F 4 4 35955 8.89 1.01 6.47 16.37 43.87 2.52 46.39 0 0.51 46.39 46.90 0 0.49 46.39 46.88 1 1.87 35.48 37.35
SA 32 prod-cell 39 30 G,F 4 4 101479 9.24 0.69 6.22 16.15 43.35 3.18 46.53 0 0.71 46.53 47.24 0 0.71 46.53 47.24 0 4.63 46.53 51.16
SA 33 prod-cell 39 30 G,F 6 6 32716 9.91 0.86 6.93 17.70 74.37 2.40 76.77 0 0.58 76.77 77.35 0 0.57 76.77 77.34 0 2.30 76.77 79.07
SA 34 prod-cell 39 30 G,F 5 5 14854 9.39 0.30 4.98 14.67 54.8 6.69 61.49 5 0.41 0 0.41 5 0.40 0 0.40 5 1.09 0 1.09
SA 35 prod-cell 39 30 G,F 5 5 80108 9.10 0.99 6.81 16.90 52.65 4.40 57.05 0 0.73 57.05 57.78 0 0.74 57.05 57.79 0 4.36 57.05 61.41
SA 36 prod-cell 39 30 G,F 8 8 21654 11.43 0.35 4.64 16.42 118.41 2.92121.33 0 0.52 121.33121.85 0 0.52 121.33121.85 1 1.97 106.42108.39
SA 37 prod-cell 39 30 G,F 9 9 59079 10.31 0.40 5.91 16.62 108.15 5.90114.05 0 0.67 114.05114.72 0 0.66 114.05114.71 0 5.71 114.05119.76
SA 38 prod-cell 39 30 G,F 5 5 27070 9.25 0.37 5.04 14.66 54.85 2.24 57.09 0 0.53 57.09 57.62 0 0.54 57.09 57.63 0 1.72 57.09 58.81
SA 39 prod-cell 39 30 G,F 5 5 32664 8.98 0.48 5.29 14.75 53.81 1.95 55.76 0 0.55 55.76 56.31 0 0.55 55.76 56.31 0 2.01 55.76 57.77
SA 40 prod-cell 39 30 G,F 4 4 39312 9.18 0.44 5.15 14.77 41.74 1.50 43.24 0 0.54 43.24 43.78 0 0.54 43.24 43.78 0 1.99 43.24 45.23
SA 41 prod-cell 39 302G,2F 10 10 20771 11.78 0.20 4.71 16.69 148.20 3.00151.20 0 0.53 151.20151.73 0 0.53 151.20151.73 0 2.25 151.20153.45
SA 42 prod-cell 39 30 G,F 8 8 22039 11.42 0.72 6.03 18.17 123.54 3.03126.57 0 0.54 126.57127.11 0 0.53 126.57127.10 0 1.97 126.57128.54
SA 43 prod-cell 39 20 G,F 4 4 17565 4 0.11 2.81 6.92 17.37 0.35 17.72 0 0.38 17.72 18.10 0 0.38 17.72 18.10 1 0.91 13.82 14.73
SA 44 prod-cell 39 20 G,F 6 6 23833 3.97 0.13 2.70 6.80 29.07 0.69 29.76 0 0.42 29.76 30.18 0 0.42 29.76 30.18 0 1.41 29.76 31.17
SA 45 prod-cell 39 20 G,F 7 7 11023 3.84 0.12 2.69 6.65 31.11 0.66 31.77 1 0.38 27.35 27.73 1 0.37 27.35 27.72 1 0.90 27.35 28.25
SA 46 prod-cell 39 20 G,F 6 6 9364 3.84 0.14 3.31 7.29 25.84 0.46 26.30 4 0.36 8.63 8.99 4 0.35 8.99 9.34 4 0.74 8.99 9.73
SA 47 prod-cell 39 20 G,F 5 5 8380 4.01 0.13 2.91 7.05 23.12 0.74 23.86 1 0.34 19.60 19.94 2 0.33 13.69 14.02 2 0.67 13.69 14.36
SA 48 prod-cell 39 20 G,F 4 4 10822 3.92 0.08 2.49 6.49 15.16 0.56 15.72 0 0.33 15.72 16.05 0 0.34 15.72 16.06 0 0.7 15.72 16.42
SA 49 prod-cell 39 20 G,F 8 8 25923 4.20 0.16 2.95 7.31 32.73 0.87 33.60 0 0.48 33.60 34.08 0 0.48 33.60 34.08 0 1.85 33.60 35.45
SA 50 prod-cell 39 20 G,F 5 5 59884 3.86 0.42 4.48 8.76 19.35 0.50 19.85 0 0.55 19.85 20.40 0 0.55 19.85 20.40 0 2.64 19.85 22.49
SA 51 prod-cell 39 20 G,F 4 4 10793 3.84 0.18 3.23 7.25 15.07 0.66 15.73 2 0.36 8.14 8.50 4 0.36 0 0.36 4 0.71 0 0.71
SA 52 prod-cell 39 20 G,F 4 4 25764 4.01 0.16 2.84 7.01 16.81 0.52 17.33 0 0.40 17.33 17.73 0 0.39 17.33 17.72 0 1.15 17.33 18.48
SA 53 prod-cell 39 20 G,F 6 6 8120 4.15 0.15 3.33 7.63 27.20 0.52 27.72 6 0.34 0 0.34 6 0.33 0 0.33 6 0.70 0 0.70
SA 54 prod-cell 39 20 G,F 5 5 8840 3.8 0.10 2.76 6.66 19.72 1.24 20.96 3 0.33 8.80 9.13 4 0.34 4.21 4.55 4 0.69 4.21 4.90
SA 55 prod-cell 39 20 G,F 5 5 25425 3.9 0.22 3.81 7.93 21.18 1.03 22.21 0 0.43 22.21 22.64 0 0.42 22.21 22.63 0 1.26 22.21 23.47
Continued on Next Page. . .

Table 1 – Continued

Bench-Test Model (M) # var. k op. # var.# vac. # resol. Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)
mark case in M in ϕ in ϕ vars. in Π Gen. Test Gen. Total Gen. Test Total #

vac.
Anal. Extra Total #

vac.
Anal. Extra Total #

vac.
Anal. Extra Total

CNF (s)SAT (s)Π (s) (s) CNF (s)SAT (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s)
found found found

SA 56 prod-cell 39 20 G,F 8 8 20602 4.46 0.27 3.73 8.46 41.14 1.20 42.34 0 0.45 42.34 42.79 2 0.45 31.13 31.58 2 1.50 31.13 32.63
SA 57 prod-cell 39 20 G,F 9 9 10923 3.9 0.09 2.68 6.67 41.01 0.73 41.74 2 0.39 32.22 32.61 3 0.39 27.71 28.1 3 1.05 27.71 28.76
SA 58 prod-cell 39 20 G,F 5 5 11215 3.83 0.10 2.6 6.53 21.29 0.36 21.65 1 0.35 17.44 17.79 2 0.35 13.13 13.48 2 0.77 13.13 13.90
SA 59 prod-cell 39 20 G,F 5 5 9252 4.05 0.08 2.69 6.82 21.12 0.34 21.46 1 0.34 17.29 17.63 2 0.34 12.89 13.23 2 0.69 12.89 13.58
SA 60 prod-cell 39 20 G,F 4 4 16124 3.83 0.15 3.03 7.01 16.43 0.40 16.83 1 0.40 12.76 13.16 2 0.41 8.52 8.93 2 0.88 8.52 9.4
SA 61 prod-cell 39 202G,2F 10 10 14767 4.89 0.11 3.54 8.54 51.70 1.09 52.79 3 0.41 36.89 37.30 4 0.41 31.26 31.67 4 1.39 31.26 32.65
SA 62 prod-cell 39 20 G,F 8 8 15334 4.58 0.14 2.97 7.69 39.25 0.89 40.14 0 0.42 40.14 40.56 0 0.42 40.14 40.56 0 1.25 40.14 41.39
SA 63 prod-cell 39 10 G,F 4 4 2254 0.89 0.03 1.26 2.18 3.72 0.10 3.82 3 0.26 1.01 1.27 3 0.25 1.01 1.26 3 0.39 1.01 1.4
SA 64 prod-cell 39 10 G,F 6 6 2304 0.92 0.03 1.26 2.21 7.65 0.14 7.79 0 0.27 7.79 8.06 0 0.27 7.79 8.06 0 0.40 7.79 8.19
SA 65 prod-cell 39 10 G,F 7 7 5345 1 0.04 1.32 2.36 6.71 0.23 6.94 1 0.29 5.94 6.23 1 0.29 5.94 6.23 1 0.49 5.94 6.43
SA 66 prod-cell 39 10 G,F 6 6 5275 0.88 0.04 1.25 2.17 5.55 0.18 5.73 6 0.28 0 0.28 6 0.28 0 0.28 6 0.49 0 0.49
SA 67 prod-cell 39 10 G,F 5 5 5320 1.02 0.04 1.41 2.47 4.81 0.16 4.97 5 0.28 0 0.28 5 0.29 0 0.29 5 0.47 0 0.47
SA 68 prod-cell 39 10 G,F 4 4 3798 0.91 0.03 1.27 2.21 3.57 0.12 3.69 2 0.27 1.86 2.13 2 0.27 1.86 2.13 2 0.43 1.86 2.29
SA 69 prod-cell 39 10 G,F 8 8 2764 0.99 0.03 1.26 2.28 7.52 0.23 7.75 1 0.26 6.78 7.04 1 0.26 6.78 7.04 1 0.42 6.78 7.2
SA 70 prod-cell 39 10 G,F 5 5 5232 1.20 0.04 1.33 2.57 4.63 0.15 4.78 1 0.28 3.82 4.10 2 0.28 2.86 3.14 2 0.48 2.86 3.34
SA 71 prod-cell 39 10 G,F 4 4 4068 1.35 0.03 1.27 2.65 3.87 0.10 3.97 2 0.27 2.16 2.43 3 0.27 0.95 1.22 3 0.44 0.95 1.39
SA 72 prod-cell 39 10 G,F 4 4 2756 0.96 0.03 1.27 2.26 3.64 0.13 3.77 1 0.26 2.82 3.08 1 0.26 2.82 3.08 1 0.40 2.82 3.22
SA 73 prod-cell 39 10 G,F 6 6 4425 0.84 0.04 1.30 2.18 5.47 0.19 5.66 2 0.28 3.74 4.02 2 0.28 3.74 4.02 2 0.46 3.74 4.2
SA 74 prod-cell 39 10 G,F 5 5 3802 0.92 0.04 1.28 2.24 4.55 0.17 4.72 4 0.27 1.01 1.28 4 0.28 1.01 1.29 4 0.43 1.01 1.44
SA 75 prod-cell 39 10 G,F 5 5 2802 0.91 0.03 1.44 2.38 4.53 0.14 4.67 2 0.26 2.80 3.06 2 0.26 2.80 3.06 2 0.41 2.80 3.21
SA 76 prod-cell 39 10 G,F 8 8 3732 1.16 0.03 1.36 2.55 7.72 0.21 7.93 5 0.28 2.96 3.24 6 0.27 1.98 2.25 6 0.46 1.98 2.44
SA 77 prod-cell 39 10 G,F 9 9 3010 1.50 0.03 1.28 2.81 8.93 0.22 9.15 6 0.27 3.12 3.39 7 0.27 1.94 2.21 7 0.45 1.94 2.39
SA 78 prod-cell 39 10 G,F 5 5 2585 0.86 0.03 1.25 2.14 4.98 0.14 5.12 2 0.26 2.93 3.19 2 0.26 2.93 3.19 2 0.40 2.93 3.33
SA 79 prod-cell 39 10 G,F 5 5 2556 1.06 0.03 1.30 2.39 4.70 0.12 4.82 2 0.26 2.98 3.24 2 0.26 2.98 3.24 2 0.40 2.98 3.38
SA 80 prod-cell 39 10 G,F 4 4 5317 1.26 0.04 1.27 2.57 3.53 0.12 3.65 4 0.29 0 0.29 4 0.29 0 0.29 4 0.46 0 0.46
SA 81 prod-cell 39 102G,2F 10 10 2497 3.15 0.06 1.29 4.5 9.68 0.27 9.95 3 0.26 6.97 7.23 4 0.26 4.94 5.20 4 0.42 4.94 5.36
SA 82 prod-cell 39 10 G,F 8 8 2348 0.88 0.033 1.25 2.16 7.52 0.22 7.74 3 0.27 4.84 5.11 3 0.26 4.84 5.10 3 0.41 4.84 5.25
SA 83 abp4 13 19 G,F 1 0 1289374 2.79 10.7334.14 47.66 2.93 1.79 4.72 0 5.51 4.72 10.23 0 5.72 4.72 10.44 0 98.62 4.72103.34
SA 84 abp4 13 19 G,F 3 2 1050234 3.14 6.4529.43 39.02 8.43 20.76 29.19 0 5.07 29.19 34.26 0 5.22 29.19 34.41 0 67.54 29.19 96.73
SA 85 abp4 13 19 G,F 3 2 2246095 2.99 19.0349.63 71.65 8.81 26.43 35.24 0 8.23 33.78 42.01 0 8.22 33.78 42 0 412.30 33.78446.08
SA 86 abp4 13 19 G,2F 2 0 795705 3.07 5.0421.28 29.39 5.54 6.29 11.83 0 2.69 25.64 28.33 0 2.71 25.64 28.35 0 37.21 25.64 62.85
SA 87 abp4 13 17 G,F 1 0 379311 2.39 2.5511.55 16.49 2.93 1.79 4.72 0 1.42 4.72 6.14 0 1.41 4.72 6.13 0 8.41 4.72 13.13
SA 88 abp4 13 17 G,2F 2 0 335307 2.27 2.11 9.23 13.61 5.66 12.44 18.10 0 1.30 18.1 19.40 0 1.31 18.10 19.41 0 8.06 18.10 26.16
SA 89 abp4 13 17 G,F 3 2 362949 2.39 1.75 9.41 13.55 8.43 20.76 29.19 0 1.37 29.19 30.56 0 1.39 29.19 30.58 0 10.69 29.19 39.88
SA 90 abp4 13 17 G,F 4 2 929686 2.42 5.6121.78 29.81 12.32 18.24 30.56 0 2.98 30.56 33.54 0 2.94 30.56 33.5 0 39.35 30.56 69.91
SA 91 abp4 13 17 G,F 3 2 2342553 3.12 22.5949.16 74.87 8.68 25.10 33.78 0 6.88 33.78 40.66 0 6.92 33.78 40.70 0 408.34 33.78442.12
SA 92 abp4 13 17 G,2F 2 0 647422 2.57 3.1316.04 21.74 5.6 20.04 25.64 0 2.19 20.04 22.23 0 2.16 20.04 22.20 0 25.91 20.04 45.95
SA 93 toyFGS04 151 18 F 6 6 297 18.88 0.26 5.27 24.41 114.78 0.76115.54 3 0.23 57.39 57.62 3 0.22 57.39 57.61 3 0.29 57.39 57.68
SA 94 toyFGS04 151 18 F 12 12 308 19.13 0.16 5.28 24.57 224.79 1.40226.19 6 0.26 132.43132.69 6 0.26 132.43132.69 6 0.33 132.43132.76
SA 95 toyFGS04 151 18 F 6 0 318 18.35 0.15 5.17 23.67 126.28 32.03158.31 0 0.22 158.31158.53 0 0.22 158.31158.53 0 0.29 158.31158.60
SA 96 toyFGS04 151 18 F 4 0 308 18.57 0.14 5.45 24.16 75.18 22.26 97.44 0 0.22 97.44 97.66 0 0.22 97.44 97.66 0 0.27 97.44 97.71
SA 97 toyFGS04 151 18 G 4 0 8072 14.14 0.21 3.3 17.65 57.91 10.60 68.51 0 0.33 68.51 68.84 0 0.33 68.51 68.84 0 0.60 68.51 69.11
SA 98 toyFGS04 151 18 G 6 0 7985 14.47 0.21 3.63 18.31 88.94 11.48100.42 0 0.34 100.42100.76 0 0.34 100.42100.76 0 0.68 100.42101.10
SA 99 toyFGS04 151 18 F 6 6 293 19.80 0.15 5.61 25.56 111.91 0.66112.57 2 0.21 75.08 75.29 2 0.22 75.08 75.30 2 0.27 75.08 75.35
SA 100 toyFGS04 151 9 F 6 6 297 11.86 0.07 2.65 14.58 68.38 0.30 68.68 3 0.21 34.33 34.54 3 0.22 34.33 34.55 3 0.27 34.33 34.60
SA 101 toyFGS04 151 9 F 12 12 308 11.96 0.068 2.65 14.68 141.41 0.70142.11 6 0.22 70.92 71.14 6 0.22 70.92 71.14 6 0.29 70.92 71.21
SA 102 toyFGS04 151 9 F 6 0 318 11.89 0.07 2.52 14.48 67.95 6.33 74.28 0 0.21 74.28 74.49 0 0.21 74.28 74.49 0 0.27 74.28 74.55
SA 103 toyFGS04 151 9 F 4 0 308 11.86 0.07 2.57 14.50 50.15 3.90 54.05 0 0.21 54.05 54.26 0 0.22 54.05 54.27 0 0.26 54.05 54.31
SA 104 toyFGS04 151 9 G 4 0 4075 10.76 0.07 1.57 12.40 54.11 1.62 55.73 0 0.29 55.73 56.02 0 0.28 55.73 56.01 0 0.44 55.73 56.17
SA 105 toyFGS04 151 9 G 6 0 4115 10.74 0.07 1.59 12.40 81.59 2.43 84.02 0 0.29 84.02 84.31 0 0.29 84.02 84.31 0 0.47 84.02 84.49
SA 106 toyFGS04 151 9 G 6 6 293 13.13 0.07 2.57 15.77 74.49 0.31 74.80 2 0.21 50.14 50.35 2 0.21 50.14 50.35 2 0.26 50.14 50.4
SA 107 msi wtrans 30 40 G 5 3 66 21.85 0.20 8.39 30.44 120.15 65.70185.85 3 0.21 112.59112.80 3 0.20 112.59112.79 3 0.24 112.59112.83
SA 108 msi wtrans 30 40 F 5 4 66 23.53 0.20 9.15 32.88 120.16 73.28193.44 3 0.2 120.30120.50 3 0.21 120.30120.51 3 0.25 120.30120.55
SA 109 msi wtrans 30 40 F 6 4 66 21.56 0.21 8.46 30.23 156.61 93.23249.84 4 0.21 0 0.21 4 0.21 0 0.21 4 0.24 0 0.24
SA 110 msi wtrans 30 20 F 2 0 63 5.28 0.20 4.01 9.49 12.91 20.63 33.54 0 0.15 33.54 33.69 0 0.16 33.54 33.70 0 0.18 33.54 33.72
SA 111 msi wtrans 30 20 F 2 0 62 5.13 0.09 3.79 9.01 11.58 19.82 31.40 0 0.15 31.40 31.55 0 0.16 31.40 31.56 0 0.19 31.40 31.59
Continued on Next Page. . .

Table 1 – Continued

Bench-Test Model (M) # var. k op. # var.# vac. # resol. Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)
mark case in M in ϕ in ϕ vars. in Π Gen. Test Gen. Total Gen. Test Total #

vac.
Anal. Extra Total #

vac.
Anal. Extra Total #

vac.
Anal. Extra Total

CNF (s)SAT (s)Π (s) (s) CNF (s)SAT (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s)
found found found

SA 112 msi wtrans 30 20 G 6 0 374744 4.68 10.2121.20 36.09 32.04 26.13 58.17 0 1.78 58.17 59.95 0 1.80 58.17 59.97 0 16.42 58.17 74.59
SA 113 msi wtrans 30 20 G 6 0 274539 4.72 9.7619.65 34.13 28.92 28.27 57.19 0 1.48 57.19 58.67 0 1.51 57.19 58.70 0 11.99 57.19 69.18
SA 114 msi wtrans 30 20 G 5 3 66 5.27 0.10 3.85 9.22 27.92 15.65 43.57 3 0.16 26.75 26.91 3 0.16 26.75 26.91 3 0.19 26.75 26.94
SA 115 msi wtrans 30 20 F 5 4 66 5.17 0.11 3.94 9.22 27.5 16.62 44.12 3 0.16 27.25 27.41 3 0.15 27.25 27.40 3 0.19 27.25 27.44
SA 116 msi wtrans 30 20 F 6 4 66 5.31 0.10 3.91 9.32 33.3 18.60 51.90 4 0.19 0 0.19 4 0.19 0 0.19 4 0.22 0 0.22
SA 117 msi wtrans 30 20 G 2 0 1604 4.62 0.11 3.68 8.41 9.29 11.84 21.13 0 0.24 21.13 21.37 0 0.24 21.13 21.37 0 0.35 21.13 21.48
SA 118 msi wtrans 30 20 G,F 1 0 1001 5.41 0.10 3.94 9.45 5.73 8.20 13.93 0 0.22 13.93 14.15 0 0.23 13.93 14.16 0 0.30 13.93 14.23
SA 119 msi wtrans 30 20 G,F 1 0 932 5.39 0.21 3.94 9.54 5.79 12.09 17.88 0 0.22 17.88 18.10 0 0.22 17.88 18.10 0 0.29 17.88 18.17
SA 120 msi wtrans 30 20 G,F 2 0 927 5.58 0.10 0.47 6.15 12.39 18.96 31.35 0 0.22 31.35 31.57 0 0.22 31.35 31.57 0 0.32 31.35 31.67
SA 121 msi wtrans 30 20 G,F 8 0 371653 4.76 12.4924.41 41.66 41.96 30.22 72.18 0 1.79 72.18 73.97 0 1.80 72.18 73.98 0 16.16 72.18 88.34
SB 1 IBM FV 200203 111 20 G 8 8 7480 4.54 0.09 3.8 8.43 36.21 0.67 36.88 7 0.35 4.67 5.02 7 0.35 4.67 5.02 7 0.74 4.67 5.41
SB 2 IBM FV 200204 223 20 G 4 3 45065 7.62 0.92 5.71 14.25 29.66 3.83 33.49 0 0.59 33.49 34.08 0 0.59 33.49 34.08 0 1.67 33.49 35.16
SB 3 IBM FV 200205 310 20 G 2 1 32776 11.82 0.6210.02 22.46 22.97 1.31 24.28 1 0.44 12.21 12.65 1 0.44 12.21 12.65 1 1.02 12.21 13.23
SB 4 IBM FV 200209 233 20 F 9 9 2 8.96 0.17 0 9.13 81.02 1.22 82.24 9 0.17 0 0.17 9 0.17 0 0.17 9 0.17 0 0.17
SB 5 IBM FV 200210 224 20 G 3 2 78523 54.23 8.4546.09108.77 165.88 93.22 259.1 0 0.7 259.1 259.8 0 0.7 259.1 259.8 0 2.33 259.1261.43
SB 6 IBM FV 200210 224 20 G 4 3 177536 53.3 30.2156.61140.12 219.74 199.25418.99 0 1.12 418.99420.11 0 1.12 418.99420.11 0 5.8 418.99424.79
SB 7 IBM FV 200210 224 20 G 4 4 9119 53.97 0.9740.84 95.78 218.45 211.21429.66 3 0.32 112.58 112.9 3 0.32 112.58 112.9 3 0.61 112.58113.19
SB 8 IBM FV 200210 224 20 G 2 0 155775 54.99 9.2246.75110.96 108.76 165.1273.86 0 0.99 273.86274.85 0 0.99 273.86274.85 0 3.7 273.86277.56
SB 9 IBM FV 200210 224 20 G 2 1 197053 54.96 65.4379.32199.71 110.2 103.82214.02 0 1.09 214.02215.11 0 1.12 214.02215.14 0 4.5 214.02218.52
SB 10 IBM FV 200217 1 158420 G 2 0 96085 38.58 1.1514.23 53.96 75.78 2.35 78.13 0 1.07 78.13 79.2 0 1.08 78.13 79.21 0 2.47 78.13 80.6
SB 11 IBM FV 200217 2 158320 G 1 0 77553 38.5 0.8613.68 53.04 38.82 1.35 40.17 0 0.88 40.17 41.05 0 0.88 40.17 41.05 0 1.74 40.17 41.91
SB 12 IBM FV 200217 2 158320 G 2 1 73790 38.47 0.823.98 63.25 77.01 1.77 78.78 0 0.89 78.78 79.67 0 0.89 78.78 79.67 0 1.98 78.78 80.76
SB 13 IBM FV 200219 121 20 G 1 0 35769 9.56 6.4913.31 29.36 9.65 5.52 15.17 0 0.39 15.17 15.56 0 0.4 15.17 15.57 0 0.83 15.17 16
SB 14 IBM FV 200221 79 20 G 1 0 25508 8.8 5.6111.98 26.39 8.68 7.61 16.29 0 0.37 16.29 16.66 0 0.37 16.29 16.66 0 0.71 16.29 17
SB 15 IBM FV 200222 104 20 G 1 0 53300 14.58 7.7417.84 40.16 14.78 24.42 39.2 0 0.53 39.2 39.73 0 0.53 39.2 39.73 0 1.2 39.2 40.4
SB 16 IBM FV 200223 103 20 G 8 8 7618 14.52 0.6911.29 26.5 115.68 2.36118.04 1 0.36 103.01103.37 2 0.35 88.41 88.76 2 0.74 88.41 89.15
SB 17 IBM FV 200227 43 20 G 8 6 431223 3.09 4.5415.98 23.61 24.43 25.01 49.44 0 1.77 49.44 51.21 0 1.78 49.44 51.22 0 24.5 49.44 73.94
SB 18 IBM FV 200231 2 227 20 G 17 17 2 9.81 0.19 0 10 168.2 2.57170.77 17 0.19 0 0.19 17 0.19 0 0.19 17 0.19 0 0.19

