33 research outputs found

    Data-efficient learning of feedback policies from image pixels using deep dynamical models

    Get PDF
    Data-efficient reinforcement learning (RL) in continuous state-action spaces using very high-dimensional observations remains a key challenge in developing fully autonomous systems. We consider a particularly important instance of this challenge, the pixels-to-torques problem, where an RL agent learns a closed-loop control policy ( torques ) from pixel information only. We introduce a data-efficient, model-based reinforcement learning algorithm that learns such a closed-loop policy directly from pixel information. The key ingredient is a deep dynamical model for learning a low-dimensional feature embedding of images jointly with a predictive model in this low-dimensional feature space. Joint learning is crucial for long-term predictions, which lie at the core of the adaptive nonlinear model predictive control strategy that we use for closed-loop control. Compared to state-of-the-art RL methods for continuous states and actions, our approach learns quickly, scales to high-dimensional state spaces, is lightweight and an important step toward fully autonomous end-to-end learning from pixels to torques

    Multi-Task Policy Search for Robotics

    No full text
    © 2014 IEEE.Learning policies that generalize across multiple tasks is an important and challenging research topic in reinforcement learning and robotics. Training individual policies for every single potential task is often impractical, especially for continuous task variations, requiring more principled approaches to share and transfer knowledge among similar tasks. We present a novel approach for learning a nonlinear feedback policy that generalizes across multiple tasks. The key idea is to define a parametrized policy as a function of both the state and the task, which allows learning a single policy that generalizes across multiple known and unknown tasks. Applications of our novel approach to reinforcement and imitation learning in realrobot experiments are shown

    Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

    Full text link
    Trial-and-error based reinforcement learning (RL) has seen rapid advancements in recent times, especially with the advent of deep neural networks. However, the majority of autonomous RL algorithms require a large number of interactions with the environment. A large number of interactions may be impractical in many real-world applications, such as robotics, and many practical systems have to obey limitations in the form of state space or control constraints. To reduce the number of system interactions while simultaneously handling constraints, we propose a model-based RL framework based on probabilistic Model Predictive Control (MPC). In particular, we propose to learn a probabilistic transition model using Gaussian Processes (GPs) to incorporate model uncertainty into long-term predictions, thereby, reducing the impact of model errors. We then use MPC to find a control sequence that minimises the expected long-term cost. We provide theoretical guarantees for first-order optimality in the GP-based transition models with deterministic approximate inference for long-term planning. We demonstrate that our approach does not only achieve state-of-the-art data efficiency, but also is a principled way for RL in constrained environments.Comment: Accepted at AISTATS 2018

    Multi-Task Policy Search

    No full text
    Learning policies that generalize across multiple tasks is an important and challenging research topic in reinforcement learning and robotics. Training individual policies for every single potential task is often impractical, especially for continuous task variations, requiring more principled approaches to share and transfer knowledge among similar tasks. We present a novel approach for learning a nonlinear feedback policy that generalizes across multiple tasks. The key idea is to define a parametrized policy as a function of both the state and the task, which allows learning a single policy that generalizes across multiple known and unknown tasks. Applications of our novel approach to reinforcement and imitation learning in real-robot experiments are shown
    corecore