8 research outputs found

    Exploiting independence in a decentralised and incremental approach of diagnosis

    Get PDF
    It is now well-known that the size of the model is the bottleneck when using model-based approaches to diagnose complex systems. To answer this problem, decentralized/distributed approaches have been proposed. The global system model is described through its component models as a set of automata and the global diagnosis is computed from the component diagnoses (also called local diagnoses). Another problem, which is far less considered, is the size of the diagnosis itself. However, it can also be huge enough, especially when dealing with uncertain observations. It is why we recently proposed to slice the observation flow into temporal windows and to compute the diagnosis in an incremental way from these diagnosis slices. In this context, we define in this paper two independence properties (transition and state independence) and we show their relevance to get a tractable representation of diagnosis. To illustrate the impact on the diagnosis size, experimental results on a toy example are given

    Cooperative Monitoring to Diagnose Multiagent Plans

    Get PDF
    Diagnosing the execution of a Multiagent Plan (MAP) means identifying and explaining action failures (i.e., actions that did not reach their expected effects). Current approaches to MAP diagnosis are substantially centralized, and assume that action failures are inde-pendent of each other. In this paper, the diagnosis of MAPs, executed in a dynamic and partially observable environment, is addressed in a fully distributed and asynchronous way; in addition, action failures are no longer assumed as independent of each other. The paper presents a novel methodology, named Cooperative Weak-Committed Moni-toring (CWCM), enabling agents to cooperate while monitoring their own actions. Coop-eration helps the agents to cope with very scarcely observable environments: what an agent cannot observe directly can be acquired from other agents. CWCM exploits nondetermin-istic action models to carry out two main tasks: detecting action failures and building trajectory-sets (i.e., structures representing the knowledge an agent has about the environ-ment in the recent past). Relying on trajectory-sets, each agent is able to explain its own action failures in terms of exogenous events that have occurred during the execution of the actions themselves. To cope with dependent failures, CWCM is coupled with a diagnostic engine that distinguishes between primary and secondary action failures. An experimental analysis demonstrates that the CWCM methodology, together with the proposed diagnostic inferences, are effective in identifying and explaining action failures even in scenarios where the system observability is significantly reduced. 1

    Discrete and hybrid methods for the diagnosis of distributed systems

    Get PDF
    Many important activities of modern society rely on the proper functioning of complex systems such as electricity networks, telecommunication networks, manufacturing plants and aircrafts. The supervision of such systems must include strong diagnosis capability to be able to effectively detect the occurrence of faults and ensure appropriate corrective measures can be taken in order to recover from the faults or prevent total failure. This thesis addresses issues in the diagnosis of large complex systems. Such systems are usually distributed in nature, i.e. they consist of many interconnected components each having their own local behaviour. These components interact together to produce an emergent global behaviour that is complex. As those systems increase in complexity and size, their diagnosis becomes increasingly challenging. In the first part of this thesis, a method is proposed for diagnosis on distributed systems that avoids a monolithic global computation. The method, based on converting the graph of the system into a junction tree, takes into account the topology of the system in choosing how to merge local diagnoses on the components while still obtaining a globally consistent result. The method is shown to work well for systems with tree or near-tree structures. This method is further extended to handle systems with high clustering by selectively ignoring some connections that would still allow an accurate diagnosis to be obtained. A hybrid system approach is explored in the second part of the thesis, where continuous dynamics information on the system is also retained to help better isolate or identify faults. A hybrid system framework is presented that models both continuous dynamics and discrete evolution in dynamical systems, based on detecting changes in the fundamental governing dynamics of the system rather than on residual estimation. This makes it possible to handle systems that might not be well characterised and where parameter drift is present. The discrete aspect of the hybrid system model is used to derive diagnosability conditions using indicator functions for the detection and isolation of multiple, arbitrary sequential or simultaneous events in hybrid dynamical networks. Issues with diagnosis in the presence of uncertainty in measurements due sensor or actuator noise are addressed. Faults may generate symptoms that are in the same order of magnitude as the latter. The use of statistical techniques,within a hybrid system framework, is proposed to detect these elusive fault symptoms and translate this information into probabilities for the actual operational mode and possibility of transition between modes which makes it possible to apply probabilistic analysis on the system to handle the underlying uncertainty present

    Exploiting independence in a decentralised and incremental approach of diagnosis

    Get PDF
    It is well-known that the size of the model is a bottleneck when using model-based approaches to diagnose complex systems. To answer this problem, decentralised/distributed approaches have been proposed. Another problem, which is far less considered, is the size of the diagnosis itself. However, it can be huge enough, especially in the case of on-line monitoring and when dealing with uncertain observations. We define two independence properties (state and transition-independence) and show their relevance to get a tractable representation of diagnosis in the context of both decentralised and incremental approaches. To illustrate the impact of these properties on the diagnosis size, experimental results on a toy example are given

    Exploiting Independence in a Decentralised and Incremental Approach of Diagnosis

    No full text
    It is well-known that the size of the model is a bottleneck when using model-based approaches to diagnose complex systems. To answer this problem, decentralised/distributed approaches have been proposed. Another problem, which is far less considered, is the size of the diagnosis itself. However, it can be huge enough, especially in the case of on-line monitoring and when dealing with uncertain observations. We define two independence properties (state and transition-independence) and show their relevance to get a tractable representation of diagnosis in the context of both decentralised and incremental approaches. To illustrate the impact of these properties on the diagnosis size, experimental results on a toy example are given.
    corecore