67 research outputs found

    Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward

    Get PDF
    It has long been recognized that multi-agent reinforcement learning (MARL) faces significant scalability issues due to the fact that the size of the state and action spaces are exponentially large in the number of agents. In this paper, we identify a rich class of networked MARL problems where the model exhibits a local dependence structure that allows it to be solved in a scalable manner. Specifically, we propose a Scalable Actor-Critic (SAC) method that can learn a near optimal localized policy for optimizing the average reward with complexity scaling with the state-action space size of local neighborhoods, as opposed to the entire network. Our result centers around identifying and exploiting an exponential decay property that ensures the effect of agents on each other decays exponentially fast in their graph distance

    Scalable Reinforcement Learning of Localized Policies for Multi-Agent Networked Systems

    Get PDF
    We study reinforcement learning (RL) in a setting with a network of agents whose states and actions interact in a local manner where the objective is to find localized policies such that the (discounted) global reward is maximized. A fundamental challenge in this setting is that the state-action space size scales exponentially in the number of agents, rendering the problem intractable for large networks. In this paper, we propose a Scalable Actor-Critic (SAC) framework that exploits the network structure and finds a localized policy that is a O(ρ^(Îș+1))-approximation of a stationary point of the objective for some ρ ∈ (0,1), with complexity that scales with the local state-action space size of the largest Îș-hop neighborhood of the network

    Distributed Reinforcement Learning in Multi-Agent Networked Systems

    Get PDF
    We study distributed reinforcement learning (RL) for a network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size of the global state/action space can be exponential in the number of agents. Scalable algorithms are only known in cases where dependencies are local, e.g., between neighbors. In this work, we propose a Scalable Actor Critic framework that applies in settings where the dependencies are non-local and provide a finite-time error bound that shows how the convergence rate depends on the depth of the dependencies in the network. Additionally, as a byproduct of our analysis, we obtain novel finite-time convergence results for a general stochastic approximation scheme and for temporal difference learning with state aggregation that apply beyond the setting of RL in networked systems

    Distributed Reinforcement Learning in Multi-Agent Networked Systems

    Get PDF
    We study distributed reinforcement learning (RL) for a network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size of the global state/action space can be exponential in the number of agents. Scalable algorithms are only known in cases where dependencies are local, e.g., between neighbors. In this work, we propose a Scalable Actor Critic framework that applies in settings where the dependencies are non-local and provide a finite-time error bound that shows how the convergence rate depends on the depth of the dependencies in the network. Additionally, as a byproduct of our analysis, we obtain novel finite-time convergence results for a general stochastic approximation scheme and for temporal difference learning with state aggregation that apply beyond the setting of RL in networked systems

    Graphical Models and Symmetries : Loopy Belief Propagation Approaches

    Get PDF
    Whenever a person or an automated system has to reason in uncertain domains, probability theory is necessary. Probabilistic graphical models allow us to build statistical models that capture complex dependencies between random variables. Inference in these models, however, can easily become intractable. Typical ways to address this scaling issue are inference by approximate message-passing, stochastic gradients, and MapReduce, among others. Exploiting the symmetries of graphical models, however, has not yet been considered for scaling statistical machine learning applications. One instance of graphical models that are inherently symmetric are statistical relational models. These have recently gained attraction within the machine learning and AI communities and combine probability theory with first-order logic, thereby allowing for an efficient representation of structured relational domains. The provided formalisms to compactly represent complex real-world domains enable us to effectively describe large problem instances. Inference within and training of graphical models, however, have not been able to keep pace with the increased representational power. This thesis tackles two major aspects of graphical models and shows that both inference and training can indeed benefit from exploiting symmetries. It first deals with efficient inference exploiting symmetries in graphical models for various query types. We introduce lifted loopy belief propagation (lifted LBP), the first lifted parallel inference approach for relational as well as propositional graphical models. Lifted LBP can effectively speed up marginal inference, but cannot straightforwardly be applied to other types of queries. Thus we also demonstrate efficient lifted algorithms for MAP inference and higher order marginals, as well as the efficient handling of multiple inference tasks. Then we turn to the training of graphical models and introduce the first lifted online training for relational models. Our training procedure and the MapReduce lifting for loopy belief propagation combine lifting with the traditional statistical approaches to scaling, thereby bridging the gap between statistical relational learning and traditional statistical machine learning
    • 

    corecore