
Essays on Dynamic Optimization for Markets and Networks

Yuanling Gan

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2023

© 2023

Yuanling Gan

All Rights Reserved

Abstract

Essays on Dynamic Optimization for Markets and Networks

Yuanling Gan

We study dynamic decision-making problems in networks and markets under uncertainty about

future payoffs. This problem is difficult in general since 1) Although the current decision (poten-

tially) affects future decisions, the decision-maker does not have exact information on the future

payoffs when he/she commits to the current decision; 2) The decision made at one part of the net-

work usually interacts with the decisions made at the other parts of the network, which makes the

computation scales very fast with the network size and brings computational challenges in prac-

tice. In this thesis, we propose computationally efficient methods to solve dynamic optimization

problems on markets and networks, specify a general set of conditions under which the proposed

methods give theoretical guarantees on global near-optimality, and further provide numerical stud-

ies to verify the performance empirically. The proposed methods/algorithms have a general theme

as “local algorithms”, meaning that the decision at each node/agent on the network uses only partial

information on the network.

In the first part of this thesis, we consider a network model with stochastic uncertainty about

future payoffs. The network has a bounded degree, and each node takes a discrete decision at

each period, leading to a per-period payoff which is a sum of three parts: node rewards for indi-

vidual node decisions, temporal interactions between individual node decisions from the current

and previous periods, and spatial interactions between decisions from pairs of neighboring nodes.

The objective is to maximize the expected total payoffs over a finite horizon. We study a natural

decentralized algorithm (whose computational requirement is linear in the network size and plan-

ning horizon) and prove that our decentralized algorithm achieves global near-optimality when

temporal and spatial interactions are not dominant compared to the randomness in node rewards.

Decentralized algorithms are parameterized by the locality parameter L: An L-local algorithm

makes its decision at each node v based on current and (simulated) future payoffs only up to L

periods ahead, and only in an L-radius neighborhood around v. Given any permitted error ϵ > 0,

we show that our proposed L-local algorithm with L = O(log(1/ϵ)) has an average per-node-per-

period optimality gap bounded above by ϵ, in networks where temporal and spatial interactions are

not dominant. This constitutes the first theoretical result establishing the global near-optimality of

a local algorithm for network dynamic optimization.

In the second part of this thesis, we consider the previous three types of payoff functions

under adversarial uncertainty about the future. In general, there are no performance guarantees

for arbitrary payoff functions. We consider an additional convexity structure in the individual node

payoffs and interaction functions, which helps us leverage the tools in the broad Online Convex

Optimization literature. In this work, we study the setting where there is a trade-off between

developing future predictions for a longer lookahead horizon, denoted as k versus increasing spatial

radius for decentralized computation, denoted as r. When deciding individual node decisions at

each time, each node has access to predictions of local cost functions for the next k time steps in an

r-hop neighborhood. Our work proposes a novel online algorithm, Localized Predictive Control

(LPC), which generalizes predictive control to multi-agent systems. We show that LPC achieves a

competitive ratio of 1+ Õ(ρkT)+ Õ(ρrS) in an adversarial setting, where ρT and ρS are constants in

(0, 1) that increase with the relative strength of temporal and spatial interaction costs, respectively.

This is the first competitive ratio bound on decentralized predictive control for networked online

convex optimization. Further, we show that the dependence on k and r in our results is near-optimal

by lower bounding the competitive ratio of any decentralized online algorithm.

In the third part of this work, we consider a general dynamic matching model for online com-

petitive gaming platforms. Players arrive stochastically with a skill attribute, the Elo rating. The

distribution of Elo is known and i.i.d across players. However, the individual’s rating is only ob-

served upon arrival. Matching two players with different skills incurs a match cost. The goal is to

minimize a weighted combination of waiting costs and matching costs in the system. We investi-

gate a popular heuristic used in industry to trade-off between these two costs, the Bubble algorithm.

The algorithm places arriving players on the Elo line with a growing bubble around them. When

two bubbles touch, the two players get matched. We show that, with the optimal bubble expansion

rate, the Bubble algorithm achieves a constant factor ratio against the offline optimal cost when the

match cost (resp. waiting cost) is a power of Elo difference (resp. waiting time). We use players’

activity logs data from a gaming start-up to validate our approach and further provide guidance on

how to tune the Bubble expansion rate in practice.

Table of Contents

Acknowledgments . vii

Chapter 1: Introduction . 1

1.1 Dynamic decision-making on networks under stochastic uncertainty 2

1.2 Dynamic decision-making on networks under adversarial uncertainty 3

1.3 Dynamic match-making on online competitive gaming platforms 4

Chapter 2: Near-optimality of local algorithms on networks under stochastic uncertainty . . 5

2.1 Introduction . 5

2.1.1 Contribution . 7

2.1.2 Related work . 9

2.1.3 Notation and terminology . 11

2.2 Model . 12

2.3 Main Results and Algorithms . 15

2.3.1 Main theorem . 16

2.3.2 Local Algorithm . 18

2.4 Proof Outline of Theorem 2.3.1 . 19

2.4.1 Bounding the Locality Loss . 20

2.4.2 Bounding the Sampling Loss . 24

i

2.4.3 Bounding the total loss . 25

2.5 Computation Efficiency . 25

2.6 Numerical Experiments . 26

2.7 Concluding Remarks . 28

2.8 Proof details in Section 2.4 . 29

2.8.1 Proof of Lemma 2.4.1. 29

2.8.2 Proof of Lemma 2.4.2 . 33

2.8.3 Proof of Proposition 2.4.2. 36

2.9 Bound on the computational requirement. 39

2.10 Interactions must be small to have correlation decay 40

2.11 Description of the Experiment Setup . 43

Chapter 3: Decentralized Online Convex Optimization in Networked Systems 46

3.1 Introduction . 46

3.2 Problem Setting . 51

3.2.1 Information Availability Model . 54

3.3 Algorithm and Main Results . 55

3.3.1 Localized Predictive Control (LPC) . 56

3.3.2 Perturbation Analysis . 57

3.3.3 From Perturbations to Competitive Bounds 61

3.3.4 A Lower Bound . 63

3.4 Proof Outline . 65

3.4.1 Refined Analysis of Perturbation Bounds 65

ii

3.4.2 From Perturbation to Competitive Ratio 68

3.4.3 Roadmap to Generalize the Proof to Inexact Predictions 71

3.5 Application: Multiproduct Pricing . 72

3.5.1 Competitive Bound . 74

3.5.2 Numerical study . 74

3.6 Concluding Remarks . 80

Chapter 4: Dynamic matchmaking on gaming platforms 82

4.1 Introduction . 82

4.2 Model . 83

4.3 Bubble algorithm . 85

4.3.1 Lower bound on the average cost . 86

4.3.2 Performance bound for Bubble algorithm 88

4.4 Numerical studies . 91

4.4.1 Estimation of system parameters . 92

4.4.2 Select bubble expansion rate. 100

4.5 Conclusion . 102

References . 103

Appendix A: Details in Chapter 3 . 112

A.1 Notation Summary and Definitions in Chapter 3 112

A.2 Perturbation Bounds . 114

A.2.1 Proof of Theorem 3.3.1 . 114

iii

A.2.2 Proof of Theorem 3.3.2 . 120

A.2.3 Adding Constraints to Perturbation Bounds 132

A.3 Competitive Bounds . 134

A.3.1 Proof of Theorem 3.4.2 . 135

A.3.2 Proof of Lemma 3.4.5 . 136

A.3.3 Proof of Theorem 3.3.3 . 139

A.3.4 Proof of Corollary 3.3.4 . 142

A.4 Proof of Theorem 3.3.5 . 142

A.5 Proof of Corollary 3.3.6 . 153

A.6 Details in the multiproduct pricing application . 156

A.6.1 Proof of Lemma 3.5.1 . 156

A.6.2 Lemma A.6.1 and its proof . 157

A.6.3 Additional plots . 159

iv

List of Figures

2.1 Decision dynamics. 13

2.2 Illustration of Algorithm 1 . 20
2.3 Pictorial example of the induction argument of Lemma 2.4.2 23

2.4 Illustration of approximating for value-to-go estimation via sample averages. 26

2.5 Payoffs from solutions under local algorithms and the global optimal solution. . . 28

3.1 Illustration of information model . 54

3.2 Illustration of LPC with k = 3, r = 2 on a line graph. 57

3.3 Performance ratios of different pricing policies. 79

3.4 Performance ratios with exact/inexact predictions (LPC vs LPC-inexact). 80

4.1 Performance of different bubble algorithms . 100

4.2 Relative cost reduction with different expansion rates 102

A.1 Graph structure of G to obtain the lower bound: N blocks form a ring. Each block
contains d vertices. 150

A.2 Clock time elapsed for using different pricing policies. 159

A.3 Weekly pricing trajectories and base demands . 160

v

List of Tables

3.1 Degree quantiles of the product graph. 75

4.1 Arrival rates at each UTC hour . 93

4.2 High/Low arrival rates regimes . 94

4.3 Waiting time statistics . 95

4.4 Fitting results for waiting power . 96

4.5 Current matching distance statistics . 97

4.6 Fitting results for matching power . 98

4.7 MLE fitting results on the effect of waiting time for departed population 99

4.8 MLE fitting results on the effect of waiting time for matched population 99

4.9 Relative cost reduction compared to the benchmark 101

A.1 Notation related to the graph/network structures. 112

A.2 Notation related to the optimization problems. 113

vi

Acknowledgements

This thesis would not have been possible without the support of many people.

First and foremost, I would like to express my gratitude to my advisor, Prof. Kanoria for his

invaluable guidance and support throughout the years. He is brilliant and captures the essence of

the most technically difficult results. He taught me how to think about math problems with the

right intuition and position the research work in a broader context. Besides the academic

mentorship, Yash showed me great support and compassion when I went through several difficult

periods during my Ph.D. study. I appreciate those Zoom sessions organized by him as virtual

office spaces during the Pandemic to keep me connected with my advisor and other Ph.D.

students. I also appreciate his encouragement and help when I encounter setbacks during the

job-hunting process in this difficult and strange year. I would also like to thank Prof. Will Ma for

his guidance and support. I am continuously amazed by his remarkable productivity and success

in research work, teaching, poker competitions, gaming startups, and many other professional

services. I truly enjoyed his class on Revenue and Supply Chain Management and learned many

clever online algorithms. I am grateful for our research conversations and discussions.

I extend my sincere appreciation to my committee members, Prof. Omar Besbes, Prof. Kostas

Bimpikis, and Prof. Hongseok Namkoong, for their invaluable suggestions and feedback. I also

owe a debt of gratitude to other faculty and staff members at Columbia University, including but

not limited to Professor Santiago Balseiro, Carri Chan, Jing Dong, Awi Federgruen, Assaf Zeevi,

Daniel Russo, Hongyao Ma, Fanyin Zheng, Elizabeth Elam, Kira Grant, and Winnie Leung. I

would also like to thank fellow collaborators Xuan Zhang and Yiheng Lin for their constant

vii

sources of inspiration in both life and research. The past five years have been a journey filled with

ups and downs. I am thankful to many friends inside and outside Columbia: Xiaotian Xie, Peijun

Xiao, Lei Xiao, Xuan Zhang, Yue Hu, Shangzhou Xia, Mike Li, Muye Wang, Anand Kalvit,

Kumar Goutam, Jiaqi Lu, Pengyu Qian, Yun Wen, Wenxin Zhang, Zhen Huang, Yunbei Xu and

Yilun Chen who offered their help, believed in me during my moments of doubt and encouraged

me through their kindness.

Lastly, I express my heartfelt gratitude to my parents for their unwavering love, support, and

unbiased advice. Those Facetime calls with Mom and Dad every evening are the most relaxing

and beautiful time of my day. I also extend my appreciation to my boyfriend, Josh Wu, for being

my constant companion through thick and thin.

viii

Chapter 1: Introduction

Dynamic decision-making problems have evolved and become more crucial than ever in the

past twenty years due to the amount of available data. Dynamic policies are no longer just a con-

cept but are studied and implemented in many settings, such as dynamic pricing for e-commerce

companies, dynamic dispatching for ride-hailing platforms, dynamic matching for online gaming

platforms, and many more. A dynamic policy has advantages over static optimization in the sense

that this framework incorporates new information as time passes. But a poor design of dynamic

policies may bring less value to the table or even perform worse than a calibrated static policy due

to the following (and potentially other) reasons:

• A dynamic policy requires much more computation resources compared to a static policy

and is even infeasible to implement in practice.

• A dynamic policy oscillates a lot between each decision epoch and hurts the overall per-

formance. A well-known example from (Hazan, 2021) shows a naive dynamic Follow The

Leader algorithm can perform much worse compared to the best static policy due to oscilla-

tion.

• A dynamic policy is sensitive to future predictions and hard to quantify the performance

guarantees when prediction quality varies.

In this thesis, we study dynamic decision-making problems in networks and markets where the

objective is to collectively maximize the total payoff across the entire network over a finite horizon.

We propose methods and algorithms that avoid the potential drawbacks of dynamic policies and

quantify the policy performance theoretically as well as numerically.

1

1.1 Dynamic decision-making on networks under stochastic uncertainty

In the Chapter 2, we start with a stochastic framework to model the uncertainty about future

payoffs. The overall objective is an unweighted sum over a finite time horizon with potentially

nonstationary per-period payoffs. At each decision epoch, the decision-maker is aware of his/her

past decisions, and the current payoff function, but not the future payoff realizations. We assume

the future payoff distributions are known. To make the problem more general and interesting,

we are not assuming an analytical form of the distributions but only using simulated samples in

the decision process. Our goal is to identify under what conditions, local algorithms (which are

computationally efficient for large networks) are globally near-optimal.

This setup relates to Markov Decision Problem (MDP) in networks. In the Operations Research

field, the most classical books are (Bertsekas, 2011; Bertsekas, 2012) where an MDP is defined

by a tuple of the following four elements: state space, action space, transition probabilities, and

immediate payoff. For the canonical MDP problem, running the Dynamic Programming algorithm

outputs the global optimal solution; however, our setup includes problems with arbitrarily long

horizons and large network sizes (which give rise to a very large state space). This makes the

Dynamic Programming algorithm suffer the curse of dimensionality and infeasible for practical

uses. In the Approximated Dynamic Programming literature, the Rollout algorithm is a popular

heuristic that essentially truncates the horizon up to some time steps. However, this heuristic still

does not handle the complexity coming from the large network size.

In the Chapter 2, we use a similar idea as Rollout but extend it to a network setting. Specifically,

we consider “local algorithms” in both temporal and spatial dimensions. We characterize sufficient

conditions on the per-period payoff functions such that the temporal and spatial radius needed for

a global near-optimal solution (compared to the Bellman optimal) is “small”. Note that our model

does have a simpler structure than a typical MDP where we assume the transitions are deterministic

and the previous action is the current state for each node on the network. The stochasticity comes

from the random payoff functions, not the transitions. Our work may serve as a starting point

2

for developing a theoretical understanding of sufficient conditions for local algorithms achieving

global near-optimality in general network Markov Decision Problem settings.

1.2 Dynamic decision-making on networks under adversarial uncertainty

In the Chapter 3, we continue our exploration of local algorithms in an adversarial framework,

where the future payoffs are unknown and arbitrary. The overall objective is to minimize an un-

weighted sum over a finite time horizon. In both stochastic and adversarial models, the per-period

payoffs consist of three parts: node costs/rewards, temporal interactions, and spatial interactions.

In the adversarial framework, we further assume that the node costs are strongly convex, and the

interaction functions are convex. Our goal is to identify under what conditions, local algorithms

achieve near-optimal competitive ratios compared to the offline optimal benchmark. Moreover,

we explore the trade-off between investing more resources in developing predictions in a longer

horizon versus increasing (spatial) locality radius for decentralized computation.

This setup relates to Smoothed Online Convex Optimization (SOCO) problem which is first

introduced by Lin et al. (2012) to model dynamic power management in data centers. In contrast

to classical Online Convex Optimization, SOCO adds temporal interaction cost functions in the

model which further encourage nodes/agents to choose an action that is “compatible” with their

previous actions. For example, a temporal interaction could be a switching cost that penalizes large

deviations from the previous action, to make the trajectory of local actions “smooth”. However, the

SOCO model is not specific to network settings and hence the theoretical results do not incorporate

network structures.

In the Chapter 3, we generalize Model Predictive Control (MPC) algorithm in the SOCO liter-

ature to the network setting. We named the corresponding algorithm as Local Predictive Control

(LPC). We develop a general method of perturbation analysis to quantify the sensitivity of LPC

solutions in terms of future predictions as well as node decisions at other parts of the network. We

conclude this section by establishing a near-optimal competitive ratio guarantee for LPC and re-

source augmentation bounds in terms of trading off between the value of predictions and (spatial)

3

computation radius.

1.3 Dynamic match-making on online competitive gaming platforms

In Chapter 4, we consider a practical application of dynamic match-making for online gaming

platforms. We start with a popular heuristic (i.e., Bubble algorithm) in the gaming industry and

develop a more theoretical understanding of the heuristic. The algorithm places arriving players on

a scale of their skill attributes and then expands a bubble around each player. When two bubbles

touch, the two players get matched. Specifically, we would like to understand under what model

objective, this heuristic is near-optimal. Moreover, can the corresponding theoretical model guide

the practitioners to adjust the parameters in the bubble algorithm?

In this work, we are mostly interested in gaming startups where the market is relatively thin-

ner compared to the more established gaming companies. As a result, the waiting times are not

negligible. We propose a general model which focuses on the foundational trade-off in balanc-

ing between waiting times and matching qualities. Specifically, we consider an analytical form of

power laws where the waiting cost is the waiting time to some power and the matching cost is the

players’ skill differences to some other power. In this model, we show that the Bubble algorithm

achieves a constant factor competitive ratio compared to the offline optimal benchmark.

In the empirical study of this work, we estimate the aforementioned powers from the play-

ers’ activity logs dataset and provide insights on tuning the parameter in the Bubble algorithm to

achieve improvements in the players’ engagement metric.

4

Chapter 2: Near-optimality of local algorithms on networks under stochastic

uncertainty

2.1 Introduction

Many real-world contexts call for dynamic decision-making in networks with uncertainty about

the future: At each period, a decision is made at each node in the network and a central planner

aims to maximize the total payoff across the network. Examples of such settings include influ-

ence maximization in social networks (Tong et al., 2017; Banerjee, Jenamani, and Pratihar, 2020),

multi-product pricing on product networks (Candogan, Bimpikis, and Ozdaglar, 2012; Caro and

Gallien, 2012), and logistics planning on transportation networks (Devari, Nikolaev, and He, 2017;

Fatehi and Wagner, 2021). In all these settings, the resulting payoffs arise from individual deci-

sions at nodes, interactions among neighbors on the network, and temporal interactions between

consecutive decisions made at each node.

We outline an illustrative example from a version of the multiproduct pricing problem (Tal-

luri and Ryzin, 2006; Gallego and Topaloglu, 2019). Consider a retailer who dynamically decides

which products (or product groups) to put on sale at different times. Here, nodes in the network cor-

respond to products and the edges connect related (e.g., substitutable or complementary) products.

The payoff collected in each “period” (e.g, a week) includes several components: “Node rewards”

correspond to the revenue from each product at the given price, “edge interactions” capture the

change in product revenue if a related product (i.e., substitute or complement) is on discount, and

“temporal interactions” capture how the trajectory of past discounts on the product affect the rev-

enue from the product in that period. Future node rewards are uncertain because, e.g., the customer

demand for a product in the future is uncertain. The goal is to maximize the expected rewards over

a finite time horizon.

5

For another practical example, consider dynamic content recommendation problem (Yin et

al., 2015; Ullah and Lee, 2016) on a social platform such as Facebook, Instagram, and Twitter.

Here, the decision network is the social network, with nodes being the users and edges being

their connections. The payoff which accrues from recommendations again consists of several

components. First, there are “node rewards” which capture how interesting the post is to a given

user. Second, there are “edge interactions”: if the platform recommends the same post to a pair

(or a group) of friends around the same time, this produces an additional reward since shared

experiences with friends increase users’ engagement. Third, there are “temporal interactions”:

e.g., repeating similar content decreases users’ engagement and hence it is costly to show the

post again if it has already been shown to a user. The goal of the platform is to maximize the

expected rewards over a certain time horizon. Notably, there is uncertainty about future rewards –

for instance, a user might become inactive.

Besides the goal of maximizing payoffs in such contexts, it is desirable to have decision rules

that are “simple” in various ways such as computational efficiency, the potential to be computed

in a distributed manner, interpretability, and robustness to model misspecification. In a networked

optimization setting, an attractive class of algorithms is decentralized algorithms which obtain the

decisions of individual nodes based solely on information from the “nearby” part of the network

(Suomela, 2013). Motivated by the ubiquitousness of dynamic decision-making on networks and

the practicality of decentralized algorithms, we aim to answer the following research question:

Can decentralized algorithms be globally near-optimal in terms of maximizing collective re-

wards on networks under stochastic uncertainty about the future?

In this paper, we study a benchmark model of dynamic decision-making on bounded degree

graphs with stochastic uncertainty about the future. A decision must be taken at each node, in each

period. The global payoff consists of 1) per-period individual node rewards, which are random

functions over individual decisions; 2) per-period spatial interaction payoffs between neighboring

nodes, which are (possibly random) functions of pairs of decisions; and 3) temporal interaction

payoffs for individual node between consecutive periods, which are (possibly random) functions

6

of pairs of decisions. Importantly, we model the future payoff functions as stochastic, with known

distributions. The goal is to maximize the expected reward collected over a finite horizon.

2.1.1 Contribution

We establish a first theoretical result establishing global near-optimality of a local algorithm for

network dynamic optimization problems under stochastic uncertainty when temporal and spatial

interactions are not too strong relative to the randomness in node rewards and the graph degree.

Notably, our decentralized algorithm has a computational requirement linear in the network size

and the time horizon. In each period, for each node v (the “focal” node), the decision to be taken at

v is chosen as follows: Our algorithm simulates future reward realizations up to L periods ahead,

for an L-radius local neighborhood of v, where L denotes the locality parameter determined based

on how closely we want to approximate the global optimum. Crucially, L is independent of the

network size and time horizon. Our algorithm then solves the network optimization problem on

the local subgraph and extracts from the solution only the decision at the focal node v.

Our work extends the literature on correlation decay for static (i.e., single-period) optimiza-

tion in networks (Gamarnik, Goldberg, and Weber, 2014; Kerimov, 2014) which studies how the

effects of decisions at the boundary of a graph propagate towards the focal node. In the previous

static optimization setting, the total reward functions consist of node rewards and pairwise spatial

interactions. However, when generalizing to the dynamic setting, the value-to-go functions fur-

ther contain interactions between groups of nodes that are not direct neighbors of each other. Due

to such interaction-at-a-distance, previous technical machinery developed to establish correlation

decay in static networks does not generalize to our dynamic setting. We thus develop a novel ma-

chinery to establish correlation decay in dynamic decision-making settings (outlined in 2.4), which

handles the interaction-at-a-distance phenomenon.

We now summarize the approach taken in our new analysis for establishing the existence of

correlation decay and the global near-optimality of local algorithms. For any node at a given time,

we construct a sequence of local (dynamic) optimization problems on the subgraph around this

7

focal node with increasing locality radius starting from L and then compare the optimal decisions

at the focal node (pathwise for the realized reward functions) in two local (dynamic) optimization

problems: one with locality radius H and the other with radius H+1 for any H ≥ L. Specifically,

we ask: in the problem with radius H + 1, how large is the optimality gap caused by forcing the

focal node decision to be the optimal decision for the problem with radius H? We show, via a

delicate analysis summarized in the next paragraph, that this optimality gap is exponentially small

in H . Summing over H = L,L+ 1, . . . ,∞ yields a bound on the optimality gap caused by using

an L-local algorithm.

The aforementioned optimality gap from constraining the focal node decision is the sum of the

difference in the same-period payoff and the difference in the value-to-go functions. To overcome

the issue that the value-to-go functions involve interaction among groups of nodes, we construct

a spatial-temporal (ST) graph by making a clone of the original static network for each decision

period and connecting consecutive-period clones of each node via temporal interaction edges (see

2.1.3 for the definition of ST graphs). Note that each node in the ST graph corresponds to an

individual decision (at a particular node and period). On the ST graph, the total reward can be

decomposed to a sum of simple terms, one for each node and one for each edge, eliminating

group interactions-at-a-distance. Importantly, uncertainty about the future continues to pose a

challenge in the ST graph re-formulation: the future reward functions are unknown at time t while

the decision-maker has to commit to a decision at time t. Due to this additional challenge in the

temporal dimension, our optimization problem on the ST graph is still not the same as a static

optimization problem on the ST graph. We work with the dynamic programming framework and

prove that the difference in the value-to-go functions (from constraining a single node’s decision

policy) is upper bounded by the probability of having different node decisions at this single node

in the next period under two corresponding local optimization problems, multiplied by a constant

proportional to the temporal interaction strength. This yields a “contraction” argument via coupling

the future decisions up to H periods and then applying induction from “boundary” nodes of the

H-neighborhood in the ST graph (see Lemmas 2.4.1 and 2.4.2). Note that using the contraction

8

argument to show the convergence to the global optimal solution is an important technique in

iterative methods for nonlinear problems (Bertsekas and Tsitsiklis, 1989b). However, the key

difficulty in employing it is to construct an appropriate action space and associated norm such

that there indeed exists such a contraction mapping. In our work, we establish such a contraction

mapping for the random decision vectors as summarized above.

To demonstrate our results numerically, we conduct a synthetic experiment on random regular

graphs in 2.6. The experiment shows that when temporal and edge interactions don’t dominate

compared to the randomness in the node rewards and graph degree, our proposed decentralized

algorithm achieves a near-optimal payoff with a small local radius L.

2.1.2 Related work

Our paper contributes to the following related research areas: (1) Correlation decay for de-

centralized algorithms; (2) Dynamic optimization in networks and (3) Multi-agent reinforcement

learning.

Correlation decay for decentralized algorithms. Correlation decay is the cornerstone for the suc-

cess of numerous decentralized algorithms for static network optimization in the literature. It is

first developed in the domain of statistical physics. The seminal work of Dobrushin (1970) studies

graphical models (e.g., a Markov chain is a graphical model on a line graph) on infinite graphs

via correlation decay methods, investigating whether the joint distribution – the Gibbs measure –

is uniquely determined by the distribution of each random variable conditional on its neighbors.

Since then, the concept of correlation decay has expanded to applications beyond statistical physics

(Weitz, 2006; Chen, Liu, and Vigoda, 2020; Ding, Sly, and Sun, 2015; Montanari, 2019), includ-

ing wireless communication (Bandyopadhyay and Gamarnik, 2008; Gamarnik and Katz, 2009;

Weitz, 2006), combinatorial optimization (Gamarnik and Goldberg, 2010; Gamarnik, Goldberg,

and Weber, 2014), marginal inference on graphical models (Tatikonda and Jordan, 2002), etc. The

typical regime for static decision problems under which the correlation decay property holds is

when the underlying graph has a bounded degree (i.e., each node interacts with a constant number

9

of other nodes) (Weitz, 2006; Gamarnik and Goldberg, 2010; Gamarnik, Goldberg, and Weber,

2014). However, in our multi-period network model involving uncertainty about the future, there

exists an implicit interaction between every pair of nodes because their decisions for future periods

are correlated, and hence the underlying interaction graph no longer has a bounded degree, which

results in new challenges.

Dynamic optimization in networks. Dynamic decision-making in networks under uncertainty about

the future has been studied in a variety of contexts including network revenue management (Talluri

and Ryzin, 2006), network diffusion models (Leduc, Jackson, and Johari, 2017; Manshadi, Misra,

and Rodilitz, 2020; Akbarpour, Malladi, and Saberi, 2018), online matching under stochastic ar-

rivals (Aouad and Saritaç, 2020; Collina et al., 2020; Anderson et al., 2017; Sivan, 2013), and

choosing lockdown policies in a commuting network (Fajgelbaum et al., 2020), to name a few. In

most of these works the ideas used (e.g., shadow prices) are very different from ours. Some of

these previous work (Besbes, Gur, and Zeevi, 2016; Aouad and Saritaç, 2020) make use of local

decompositions that rely on their specific problem structures or require convexity in the reward

functions (Lin et al., 2022). We adopt a general framework, towards developing a foundational

understanding regarding the sufficiency of decentralized algorithms for obtaining near-optimality

in dynamic stochastic optimization problems (with no convexity assumptions on the reward func-

tions). Our paper contributes to this literature by providing an important theoretical foundation for

decision-making problems on large networks: that is, even though the network interactions may

be complicated and may evolve, considering only the local neighborhood around the focal node

already gives near-optimal performance when the strength of interactions is not too large.

Multi-agent reinforcement learning. In the setting of multi-agent reinforcement learning (MARL),

computational issues are central due to large global states and decision spaces (exponential in the

number of agents). A promising approach is to exploit local dependency structures (i.e., “agents”

only interact with neighboring agents in the network). Lin et al. (2020) consider a setting where the

transition of the global state has only local dependencies and the problem objective is to maximize

the discounted sum of global rewards. They propose an Actor-Critic method with state aggregation

10

defined based on the local neighborhood of each agent. Moreover, due to discounting, the Bellman

operator with state aggregation defines a contraction mapping of the Q functions. They show the

proposed algorithm converges to the stationary point of the global objective (note that a stationary

point yields a local optimum, at best). In contrast, maximizing the average reward per period

(as we consider) is fundamentally harder since the Bellman operator is no longer a contraction

(Bertsekas, 2011; Tsitsiklis and Roy, 2002). In a recent advance for such a setting, Qu et al.

(2020) establish convergence to an approximately stationary point of the Q functions. Still, this

result does not guarantee global near-optimality. We contribute to this literature by showing, in a

special case where the state transitions are simple (i.e., the current state is the previous decision),

global near-optimality of a local policy for the average reward problem with non-stationary reward

functions over an arbitrarily long horizon. Our work may serve as a starting point for developing

a theoretical understanding of sufficient conditions for local algorithms achieving global near-

optimality in general network Markov Decision Problem settings.

2.1.3 Notation and terminology

We denote our underlying graph as G = (V,E) with node (or vertex) set V and edge set E.

Given a graph G, we denote by V (G) and E(G) its node set and edge set, respectively. For two

nodes u, v ∈ G, we let distG(u, v) denote the length of a shortest path between u and v. If an edge

uv ∈ E (or equivalently denoted as {u, v}), we say u is a neighbor of v. For any node v ∈ V , we

denote by Γ(v) its set of neighbors: Γ(v) := {u ∈ V : uv ∈ E}; and denote by dG(v) := |Γ(v)| its

degree in G. We let dG denote the degree of graph G, which is the maximum degree of all nodes in

graph G. For a subgraph M of G and a vector y := {yv}v∈V indexed by vertices of G, we denote

by yM the subvector {yv}v∈V (M). For integer R ∈ N+, let BG(v,R) denote the subgraph induced

by all vertices whose distance to v is at most R. When the underlying graph is clear from context,

we drop the subscript for the above notations.

For a given integer K ≥ 1, we use [K] to denote the set {1, 2, · · · , K}. Given a graph

G = (V,E) and time horizon T , the spatial-temporal (ST) graph is constructed by making a

11

clone of G for each time t ∈ [T], and connecting copies of the same node between consecutive

times via edges. The nodes of the ST graphs are {(v, t) : v ∈ V, t ∈ [T]} and the edges are

{{(v1, t), (v2, t)} : v1v2 ∈ E, t ∈ [T]} ∪ {{(v, t), (v, t + 1)} : v ∈ V, t ∈ [T − 1]}. The ST graph

distance is defined as follows: given two ST nodes (v1, t1) and (v2, t2), distst((v1, t1), (v2, t2)) =

dist(v1, v2) + |t1 − t2|.

For a collection of random variables Y[k], σ(Y[k]) denotes the smallest sigma algebra generated

by Y[k].

2.2 Model

We consider a dynamic decision network (G = (V,E),Φ, T ,A, x0) with future stochastic

uncertainty. Here, G is an underlying undirected graph where individual decisions are made at

each node. Φ denotes the joint stochastic reward functions over the graph G during the planning

horizon. We consider a discrete-time model from time 0 to the planning horizon T . We denote by

A the discrete set that the decision of each node must be chosen from. The initial decision vector

taken on the network is given and is denoted by x0 ∈ A|V |. The global objective is to maximize

the collective (undiscounted) payoff from the entire graph over the time horizon. At the time t,

the per-period reward is the sum of three types of (random) reward functions: In the following, we

define each type of (random) reward functions and give an illustrating example when A = {N, Y}.

• Node reward: Each node v ∈ V earns a random reward Φv
t (x

v
t) : A → R, which depends on its

decision xvt at time t. E.g., A = {N, Y}, Φv
t (N) = 0 and Φv

t (Y) = 1 + ϵvt where ϵvt ∼ N(0, 1).

• Temporal interaction reward: Each node v ∈ V at each time t is associated with a random re-

ward function Φv
t−1,t(x

v
t−1, x

v
t) : A×A → R, which captures how consecutive decisions at node

v interact with each other. E.g., Φv
t−1,t(N, N) = Φv

t−1,t(N, N) = c, Φv
t−1,t(N, Y) = Φv

t−1,t(Y, N) = 0

for some c > 0, i.e., there is a reward c for making the same node decision in consecutive periods.

• Spatial interaction reward: Each edge uv ∈ E at each time t is associated with a random

reward function Φu,v
t (xut , x

v
t) : A × A → R, which captures how neighboring nodes interact

12

with each other at time t. E.g., Φuv
t (N, N) = Φuv

t (Y, Y) = c, Φuv
t (N, Y) = Φuv

t (Y, N) = 0 for c > 0,

i.e., there is a reward c when neighboring nodes make the same decision.

t = 0 ... x0

t = 1 ... x1

t = 2 ... x2

t = 3 ...

v1 v2 v3 v4 v5 ... vm

Figure 2.1: Decision dynamics.

Collectively, we let Φ := {Φv
t ,Φ

v
t−1,t,Φ

uv
t }t∈[T],v∈V,uv∈E denote joint random reward functions.

At each time t ∈ [T], node v ∈ V makes a decision xvt ∈ A := {0, 1, · · · , |A| − 1}. These reward

functions are endowed with a probabilistic structure: their function values are assumed to follow

known distributions. The random functions Φnode
t := {Φv

t }v∈V and Φinter
t := {Φv

t−1,t,Φ
uv
t }v∈V,uv∈E

are realized only at the beginning of time period t. We denote the realized reward functions as

{ϕv
t }v∈V , {ϕv

t−1,t}v∈V and {ϕuv
t }uv∈E . Moreover, we denote the random reward functions, and

their realization, at time t, collectively, by Φt and ϕt, respectively. Given any subgraph M of G,

let ΦM
t := {Φv

t ,Φ
v
t−1,t,Φ

uv
t }v∈V (M),uv∈E(M) and ϕM

t := {ϕv
t , ϕ

v
t−1,t, ϕ

uv
t }v∈V (M),uv∈E(M).

We call xt := {xvt }v∈V a decision vector at time t. At each time t, a decision vector xt must

be chosen after observing ϕt. We illustrate the dynamics under our model through an example

in Figure 2.1 with an example of a dynamic decision network (G = (V,E),Φ, T ,A, x0) with G

being a line graph, V = {v1, v2, · · · , vm}, E = {vi−1vi : i ∈ {2, 3, · · · ,m}}, and T = 3. At the

time t = 2, with the previous decision vector x1, realized rewards ϕ1, ϕ2 (represented by solid lines

and circles), and unrealized reward Φ3 (represented by dotted lines and circles), decision vector x2

needs to be chosen. Given realized reward function ϕt at time t, and decision vectors xt−1, xt, the

single-period reward collected at period t is

ft(xt;xt−1, ϕt) :=
∑
v∈V

ϕv
t−1,t(x

v
t−1, x

v
t) +

∑
v∈V

ϕv
t (x

v
t) +

∑
uv∈E

ϕu,v
t (xut , x

v
t) . (2.1)

13

The overall goal is to construct a dynamic decision-making policy xt, which is adapted to the avail-

able information up to time t, i.e., xt ∈ σ(x0, x[t−1],Φ[t]), that maximizes the expected collected

rewards over a finite horizon: R := EΦ

[∑T
t=1 ft(xt;xt−1,Φt)

]
.

Following the modeling convention in dynamic stochastic optimization (Cao, Zhang, and Poor,

2021; Bent and Van Hentenryck, 2004), we assume that Φt is independent of past reward functions

{ϕ[t−1]}. At time t, we observe the previous decision vector xt−1 and current single-period reward

realization, i.e., ϕt. By the principle of optimality, the optimal xt(xt−1, ϕt) maximizes the real-

ized value-to-go function: RVt−1(xt;xt−1, ϕt) := ft(xt;xt−1, ϕt) + Vt(xt;ϕt) , where the expected

value-to-go function Vt(xt) is recursively defined as

Vt(xt;ϕt) := E
Φt+1

[
max
xt+1

RVt(xt+1;xt,Φt+1)
]
, (2.2)

with VT (xT) = 0 at the end of the horizon. We denote by x∗ := {x∗t}1≤t≤T the optimal solution

of (2.2) and denote the optimal expected global reward as R∗ := EΦ

[∑T
t=1 ft(x

∗
t ;x

∗
t−1,Φt)

]
. For

any adaptive algorithm which makes decisions Algt ∈ σ(x0, x[t−1],Φ[t]) at time t, we define the

expected total rewards under Alg as R(Alg) := EΦ

[∑T
t=1 ft(Algt;Algt−1,Φt)

]
, with Alg0 ≡ x0.

Challenges. Our problem presents two main challenges: 1) Uncertainty about future rewards func-

tions is a source of complexity compared to a single-period problem. In a single-period problem

with random rewards, one observes reward realizations at all parts of the network at once and

then make the corresponding optimal decision. In our setup, reward realizations are revealed se-

quentially along the temporal dimension. When the reward function is realized at time t, we must

commit to a decision vector at time t. Under each realization ϕt, the optimal decision at time t,

i.e., xt may be different and this further impacts the consequent optimization problem at time t+1.

2) Our problem can be viewed as a dynamic programming problem with state variable at time t to

be xt−1. The state space is |A||V (G)|, which is exponential in the number of nodes in the network.

Thus, directly solving (2.2) above suffers from the curse of dimensionality and is impractical on

large networks. Instead, we explore decentralized algorithms which make each decision based on

14

available information about the nearby part of the network (and only a few periods into the future),

and find sufficient conditions under which such algorithms can achieve near-optimal collective

reward compared to the global optimal value R∗.

2.3 Main Results and Algorithms

We make the following assumptions on the reward functions.

Assumption 2.3.1. For some constants Cnode, g, ctime, cedge ∈ (0,∞), the distributions of reward

functions {Φt}t∈T satisfy the following:

• (Node rewards are bounded) For every v ∈ V and t ∈ [T], supa∈A |Φv
t (a)| ≤ Cnode.

• (Reward functions are independent across time) For every t ∈ [T], Φt are independent of

past decisions x[t−1] and past reward realizations ϕ[t−1].

• (Each node reward function is sufficiently random after conditioning on interaction func-

tions and other node rewards) For every v ∈ V , t ∈ [T], and decisions a ̸= a′ ∈ A,

P(Φv
t (a)− Φv

t (a
′) ∈ [b1, b2) | Φinter

t , {Φu
t }u̸=v) ≤ g(b2 − b1), for any b1 < b2.

• (Interactions are not too strong) With probability 1, for every v ∈ V , uv ∈ E, t ∈ [T] and

decisions a ̸= a′ ∈ A, the temporal interaction Φv
t−1,t(a, a

′) ∈ [−ctime, ctime], and the edge

interaction Φu,v
t (a, a′) ∈ [−cedge, cedge]. Moreover,

ρ := 4g(dcedge + 2ctime) ≤ 1

2(d+ 2)
.

We now provide intuitive interpretations for these assumptions. 1) The first condition provides

a uniform bound for the change in the global reward when a single node switches its single-period

decision. This assumption ensures that there is no single node whose decision at a certain period

15

has a dominant impact on the global reward. It is a standard assumption in the dynamic pro-

gramming and reinforcement learning literature (Tsitsiklis and Van Roy, 1996). 2) The second

condition demands independence of the rewards across time. E.g., considering the reward func-

tions described in Section 2 where A = {N, Y}, Φv
t (N) = 0, Φv

t (Y) = 1 + ϵvt where ϵvt ∼ N(0, 1),

this assumption requires the joint distributions of {ϵvt : v ∈ V }t≥1 to be independent across periods

t. Independence across time periods is a classic assumption in the dynamic (stochastic) optimiza-

tion setting (Bertsekas, 1995), and serves to simplify the technical development in our paper. 3)

The third condition guarantees sufficient randomness in the single-node reward function at each

period. For example, considering the same reward functions, we require {ϵvt : v ∈ V } to satisfy

that for each v ∈ V , t ∈ [T] and b1 < b2, P(ϵvt ∈ [b1, b2) | ϵut : u ̸= v) ≤ g(b2 − b1). Note that this

requirement allows reward functions at a given period to have arbitrary dependence across nodes.

4) The last condition requires that interactions are not too strong compared to the randomness in

node rewards. This condition (along with the sufficient randomness condition) is crucial for the

correlation decay property to emerge. In situations where there are long-range correlations, de-

centralized algorithms are in general not near-optimal (Weber, 2010; Gamarnik, 2014). Previous

work (Gamarnik, Goldberg, and Weber, 2014) studies a static version of our model and assumes the

magnitude of interactions is bounded by cedge = O(1
d2
). Our assumption that dcedge+2ctime = O(1

d
)

matches their requirement in the static case. That is, we do not require a stronger assumption on

the magnitude of interactions to accommodate the dynamic setting. Admittedly, this requirement

becomes more stringent as graph degree d increases. However, dependence on d is unavoidable: In

Section 2.10, we explicitly construct (static) decision networks with cedge = Θ(1/d) which exhibit

long-range correlations and show that local algorithms can perform poorly on such networks.

2.3.1 Main theorem

Definition 2.3.1. An algorithm for the dynamic decision network (G,Φ, T ,A, x0) is said to be

an L-local algorithm if: for the decision of any node v at time t the followings hold 1) The de-

cision only relies on the local information up to its L-radius neighborhood in the graph G, i.e.,

16

xvt ∈ σ(x
B(v,L)
t−1 ,Φ

B(v,L)
t); 2) The decision only relies on L-period-lookahead simulations of future

reward functions in this neighborhood, i.e., {ΦB(v,L)
τ : t+ 1 ≤ τ ≤ t+ L}.

Definition 2.3.2. Consider a dynamic decision network (G,Φ, T ,A, x0). An algorithm Alg is an

ϵ(-additive)-approximation algorithm if R∗ − R(Alg) ≤ |V |T ϵ, where R∗ is the global optimal

payoff, and R(Alg) is the payoff collected by Alg.

Note that there is a |V |T factor in the loss permitted because the total reward scales up linearly

with the number of nodes |V | times the time horizon T ; in other words, we permit an average

per-node-per-period loss of up to ϵ.

We next introduce a model parameter C, which is the largest possible change in total rewards

when one node changes its decision at one time. For any a, a′ ∈ A, changing from xvt = a to

xvt = a′ can cause at most 2 · Cnode difference in the node reward, d · 2cedge difference in the edge

rewards, and 2 · 2ctime difference in the temporal rewards. Hence, we define the constant

C := 2Cnode + 2dcedge + 4ctime. (2.3)

Theorem 2.3.1. Consider a dynamic decision network (G,Φ, T ,A, x0) where underlying graph

G has degree d ≥ 2. Suppose the reward functions Φ satisfy Assumption 2.3.1. Then, given any

ϵ > 0, for L ≜ ⌊log2 4C
ϵ
⌋, we can construct an L-local algorithm for the dynamic decision network

problem that is an ϵ-approximation algorithm.

The main contribution of 2.3.1 is theoretical, which establishes the global near-optimality

property of the class of decentralized algorithms in the network dynamic optimization setting un-

der Assumption 2.3.1. The constructed L-local algorithm (presented in 1) is a simple and intuitive

illustration of how one may use 2.3.1 to develop efficient decentralized algorithms: the computa-

tional requirement of 1 is O(|V |T epoly(1
ϵ
)), where the dependence on model parameters d, g, C and

|A| is suppressed in the O(·) notation.

The proof of 2.3.1 and the details on the computational requirement of an L-local algorithm

are presented in Section 2.4 and 2.5, respectively.

17

2.3.2 Local Algorithm

In this section, we present our local algorithm. Given t ∈ [T], the global decision problem is

max
xt

ft(xt;xt−1, ϕt) + Vt(xt). (2.4)

The algorithm, outlined in Algorithm 1, determines the decision of each node by solving a

decentralized version of (2.4). For each node v, the local algorithm utilizes all available reward

information from its local neighborhood B(v, L) and fixes the decision of each boundary node

u ∈ B(v, L) \B(v, L− 1) as a default decision 0. We define

fL
t (x

B(v,L)
t ;x

B(v,L)
t−1 , ϕ

B(v,L)
t) :=

∑
u∈B(v,L)

(ϕu
t (x

u
t)+ϕ

u
t−1,t(x

u
t−1, x

u
t))+

∑
uu′∈B(v,L)

ϕu,u′

t (xut , x
u′

t) (2.5)

as the single-period payoff on B(v, L) and

V L
t (x

B(v,L)
t) := E

Φt+1

[max
x
B(v,L)
t+1

fL
t+1(x

B(v,L)
t+1 ;x

B(v,L)
t , ϕ

B(v,L)
t+1) + V L

t+1(x
B(v,L)
t+1)] (2.6)

with terminal condition V L
min{t+L,T }(·) = 0 as the expected value-to-go function up to L-step

look-ahead on B(v, L). In addition, we denote by V̂ L,n
t (x

B(v,L)
t) the sample average estimate

of V L
t (x

B(v,L)
t) by simulating independent samples of ΦB(v,L)

t+1 , ΦB(v,L)
t+2 , · · · , ΦB(v,L)

min(T ,t+L). In the

remainder of the paper, for simplicity of notation, we omit to make the dependency on v and

B(v, L) explicit when the focal node v for the decentralized algorithm is clear from the context.

We illustrate the algorithm output Algv
t at time step t for a given focal node v ∈ V with L = 1

on the underlying line graph G in Figure 2.2, where the black circles, red lines, and blue lines

denote the individual node reward functions, spatial interaction functions, and temporal interaction

functions, respectively. The reward functions, either their realizations or simulations, are marked

by solid lines when solving Equation (2.7).

18

Algorithm 1 Obtain a near-optimal solution to the decision problem (2.4) at time t.

Input: decision network (G,Φ, T ,A,Algt−1), realized reward function ϕt, precision level ϵ.
Output: a near-optimal solution Algt for the problem in (2.4).

1: set the locality parameter L = ⌊log2 4C
ϵ
⌋ and sample size n = O((1

ϵ
)2 log2 d)

2: for all v ∈ V do
3: restrict to subgraph B(v, L)

4: let xt−1 = Algt−1 and yt ∈ AB(v,L) be an optimal solution to the following problem

R̂V
L,n

t−1(xt−1;ϕt) := max
xt∈AB(v,L)

fL
t (xt;xt−1, ϕt) + V̂ L,n

t (xt)

s.t. xut = 0, if dist(v, u) = L
(2.7)

where V̂ L,n
t (·) is an estimate of Vt(·) defined recursively in function V̂ L,n

τ (·) for t ≤ τ ≤
t+ L

5: set Algv
t = yvt

6: end for

1: function V̂ L,n
τ (xτ) ▷ Input: L, n, v, τ .

2: if τ = min{t+ L, T } then
3: set V̂ L,n

τ (xτ) = 0 for any xτ ∈ AB(v,L)

4: else
5: sample {ϕ(s)

τ+1}s∈[n] independently from Φτ+1

6: for any xτ ∈ AB(v,L), compute V̂ L,n
τ (xτ) :=

1
n

∑n
s=1 R̂V

L,n

τ (xτ ;ϕ
(s)
τ+1) where the summand

R̂V
L,n

τ (xτ ;ϕ
(s)
τ+1) is defined as in Equation (2.7) with t = τ + 1.

7: end if
8: end function

2.4 Proof Outline of Theorem 2.3.1

In this section, we outline the steps to establish the ϵ-approximation result in Theorem 2.3.1.

We show that with high probability, Algorithm 1 outputs the globally optimal decision at a given

focal node. Our analysis proceeds in two steps. The main technical contribution is the first step,

where we construct a sequence of local dynamic optimization problems with increasing local ra-

dius. We use the term locality loss to refer to the probability of making a suboptimal decision at

the focal node due to fixing the decision boundary of its L-local neighborhood suboptimally, e.g.,

to a default decision 0. This is the loss which is the unavoidable consequence of local decision-

making. We present our argument bounding the locality loss in Section 2.4.1. The second step is to

19

t− 1 ...

t ...

t+ 1 ...

t+ 2 ...

v1 v2 v3 v4 v5 ... vm

Figure 2.2: Illustration of Algorithm 1

bound the probability, termed the sampling loss, of making a suboptimal decision at the focal node

as a result of using approximate (local) value-to-go functions estimated from sample averages.

The second step relies on standard techniques such as Hoeffding’s inequality, which we present in

Section 2.4.2.

2.4.1 Bounding the Locality Loss

In this subsection, we bound the loss that is unavoidable from local decision-making, even if

one is able to perfectly estimate the local value-to-go functions. We define a sequence of decen-

tralized policies {π(H)}H≥L, indexed by the locality parameter H . Note that a policy defines a

mapping from available information so far to decision vectors. We use πv
t (H) to denote the deci-

sion of node v at time t under policy π(H), and collectively, we use πt(H) to denote the decision

vector at time t.

When solving for the decision at a focal node v ∈ V and time t ∈ [T], the policy π(H) focuses

on the subgraph B(v,H) ⊂ G. It assumes nodes outside of B(v,H) take a default decision 0 at all

times. Along the temporal dimension, the policy π(H) computes V H
t (·), an estimate of the (local)

value-to-go function, via an H-step look-ahead with the terminal condition V H
min(T ,t+H)(x) = 0 for

all decision vectors x ∈ AB(v,H). Formally, for a given focal node v at time t, π(H) solves the

following:

RVH
t−1(πt−1(H);ϕt) := max

xt∈AB(v,H)
fH
t (xt; πt−1(H), ϕt) + V H

t (xt)

s.t. xut = 0 if dist(v, u) = H .

(2.8)

20

where the H-step look-ahead value-to-go V H
t (xt;ϕt) in the objective is defined recursively via

V H
τ (xτ ;ϕτ) := E

Φτ+1

[RVH
τ (xτ ; Φτ+1)], (2.9)

for t ≤ τ < min{t+H, T }.

Recall that C := 2Cnode +2dcedge +4ctime and {x∗t}t∈[T] denotes the global optimal decision. In

this subsection, the probability space is over the joint reward distributions Φ = (Φ1, · · · ,ΦT). We

write P as a shorthand for PΦ.

Proposition 2.4.1. Given any ϵ > 0, with L = ⌊log2 4C
ϵ
⌋, we have for any v ∈ V and t ∈ [T],

P(πv
t (L) ̸= (xvt)

∗) ≤ ϵ/(2C).

Proposition 2.4.1 establishes that the probability of policy π(L) making a suboptimal decision

at the focal node v is exponentially small in the locality parameter L. This is a strong statement

that upper bounds the marginal probability of different decisions at time t at node v, under the

L-local policy and the global optimal policy, without assuming the decisions at previous time steps

are equal. In the remaining subsection, we present two important lemmas that prove Proposition

2.4.1. We consider a fixed t ∈ [T], a fixed focal node v ∈ V , and a fixed valueH and then compare

the focal node decisions at time t obtained under two local policies π(H) and π(H+1) (recall that

under policy π(H) (resp. π(H+1)), the locality parameter is fixed to H (resp. H+1) throughout,

i.e., from t = 0 onwards.). Formally, we compare the solutions of the optimization problems in

(2.8) when setting the locality parameter as H and H+1. For t ≤ τ ≤ t+H , we let wτ denote the

optimal solution of (2.8) at time τ when the locality parameter isH; and similarly, we let zτ denote

the optimal solution of (2.8) at time τ when the locality parameter isH+1. Moreover, we use wt−1

and zt−1 as shorthand notations for the decision vectors πt−1(H) and πt−1(H + 1), respectively.

For convenience, we extend the definition of zuτ (resp. wu
τ) to the entire network by setting zuτ = 0

for u ∈ V \B(v,H+1) (resp. wu
τ = 0 for u ∈ V \B(v,H)), and this does not change our original

optimization problem in Equation (2.8). Note that when τ > t, {wτ}t+1≤τ≤t+H and {zτ}t+1≤τ≤t+H

21

are the optimal “tentative” decisions from time t + 1 to time t + H under π(H) and π(H + 1).

That is, at time t, π(H) (resp. π(H+1)) only executes wt (resp. zt) and discards the other decision

vectors {wτ}t+1≤τ≤t+H (resp. {zτ}t+1≤τ≤t+H). Moreover, for t+ 1 ≤ τ ≤ t+H , note that zτ and

wτ are random vectors which are measurable with respect to realized random rewards up to time t,

i.e., σ(Φ[t]). Recall that ρ := 4g(dcedge + 2ctime) and Γ(v) denotes the neighbors of v.

Lemma 2.4.1. For time t ≤ τ ≤ t+H, and u ∈ V ,

P(wu
τ ̸= zuτ , w

Γ(u)
τ = zΓ(u)τ) ≤ (P(wu

τ−1 ̸= zuτ−1) + P(wu
τ+1 ̸= zuτ+1))ρ.

We first look at a special case to get some intuitive understanding of the above lemma: if both

P(wu
τ−1 ̸= zuτ−1) and P(wu

τ+1 ̸= zuτ+1) are equal to zero, then Lemma 2.4.1 implies P(wu
τ ̸=

zuτ , w
Γ(u)
τ = z

Γ(u)
τ) = 0. This reflects the fact that given an ST node (τ, u) in the ST graph

constructed from G, if all immediate neighbors (i.e., spatial neighbors Γ(u), temporal neighbors

(τ − 1, u) and (τ + 1, u)) take the same decisions under π(H) and π(H + 1), then by principle

of optimality, ST node (τ, u) take the same optimal decision under the above two policies. The

lemma constitutes the key element of our analysis where we overcome the challenge of analyzing

dynamics with uncertainty about the future. Note that wτ+1 and zτ+1 are as yet unrealized when

wτ and zτ are determined. Instead of bounding the probability of the focal node taking a subop-

timal decision when k-hop neighbors (2 ≤ k ≤ H) in the (static) spatial graph take suboptimal

decisions, we bound this probability in the ST graph since the interactions among nodes in the ST

graph are easier to track. In the ST graph, a node makes a suboptimal decision only if a spatial

or temporal neighbor is fixed suboptimally. The rigorous proof of Lemma 2.4.1 is more involved.

It argues that the event (wu
τ ̸= zuτ , w

Γ(u)
τ = z

Γ(u)
τ) happens only if the value difference of single-

node reward function due to taking different actions, i.e., Φu
τ (w

u
τ)−Φu

τ (z
u
τ) falls in a small interval

whose length is proportional to ctime(I{wu
τ−1 ̸= zuτ−1} + EΦτ+1 [I{wu

τ+1 ̸= zuτ+1}]). By the third

condition in Assumption 1, the probability of the event (wu
τ ̸= zuτ , w

Γ(u)
τ = z

Γ(u)
τ) is bounded above

by quantity proportional to g · ctime(I{wu
τ−1 ̸= zuτ−1} + EΦτ+1 [I{wu

τ+1 ̸= zuτ+1}]), which further

22

leads to the inequality in Lemma 2.4.1. We present the details in the Section 2.8.1.

After obtaining Lemma 2.4.1, we use induction on the ST graph distance to node (v, t) to upper

bound the probability of making different node decisions under π(H) and π(H + 1). We illustrate

our proof ideas in Figure 2.3 and defer the proof of Lemma 2.4.2 to Section 2.8.2. In Figure 2.3:

suppose we have proved Equation (2.11) for ST nodes (q, t′) with distst((v, t), (q, t′)) ≥ 3 (drawn

as circles) and in the induction step, consider each ST node (u, τ) with distst((v, t), (u, τ)) ≤ 2

(drawn as diamonds). By induction hypothesis, each of the ≤ d + 2 ST neighbors of (u, τ) has

probability ≤ ξH+1−3ρ = ξ3ρ taking different solutions under π(H) and π(H + 1). By Lemma

2.4.1, P(zuτ ̸= wu
τ) = P(zΓ(u)τ ̸= w

Γ(u)
τ)P(zuτ ̸= wu

τ |z
Γ(u)
τ ̸= w

Γ(u)
τ) + P(zΓ(u)τ = w

Γ(u)
τ)P(zuτ ̸=

wu
τ |z

Γ(u)
τ = w

Γ(u)
τ) ≤ d · ξ3ρ · P(zuτ ̸= wu

τ |z
Γ(u)
τ ̸= w

Γ(u)
τ) + 1 · (ξ3ρ+ ξ3ρ) · ρ ≤ ξ4ρ, where the last

inequality holds since P(zuτ ̸= wu
τ |z

Γ(u)
τ ̸= w

Γ(u)
τ) ≤ ρ (proved in Claim 1 in Section 2.8.2).

For ease of notation, we define another model parameter that is less than or equal to 1/2 by

Assumption 2.3.1

ξ := (d+ 2)ρ. (2.10)

Lemma 2.4.2. For t ≤ τ ≤ t+H and u ∈ B(v,H), we have

PΦ(w
u
τ ̸= zuτ) ≤ ξH+1−distst((v,t),(u,τ))ρ. (2.11)

t ρ ξρ ξ2ρ ξ3ρ ξ4ρ ξ4ρ ξ4ρ

t+ 1 ρ ξρ ξ2ρ ξ3ρ ξ4ρ ξ4ρ

t+ 2 ρ ξρ ξ2ρ ξ3ρ ξ4ρ

t+ 3 ρ ξρ ξ2ρ ξ3ρ

H + 1 = 6 H 4 3 2 1 0 spatial distance to v

(v, t)

Figure 2.3: Pictorial example of the induction argument of Lemma 2.4.2

Proof of Proposition 2.4.1. We first use Lemma 2.4.2 for (u, τ) = (v, t) and obtain

P(πv
t (H) ̸= πv

t (H + 1)) ≤ ξH+1ρ.

23

Then, observe that when the locality parameter H = +∞, we obtain the optimal node decision

(xvt)
∗. Finally, we use a union bound over all locality parameters H which is greater than or equal

to L.

P(πv
t (L) ̸= πv

t (+∞)) ≤
∑
H≥L

P(πv
t (H) ̸= πv

t (H + 1)) ≤
∑
H≥L

ξH+1ρ ≤ 2ξL+1ρ ≤ ϵ/(2C)

since ξ ≤ 1/2 by Assumption 2.3.1, L = ⌊log2 4C
ϵ
⌋ and ρ < 1.

2.4.2 Bounding the Sampling Loss

In this section, we aim to bound the loss in the total rewards due to approximating the expected

(local) value-to-go function using sample averages. The main result of this subsection is given in

Proposition 2.4.2, which states that Algorithm 1 obtains the same solution as the local policy π(L)

with high probability.

Proposition 2.4.2. Under the conditions in the Theorem 2.3.1, given any ϵ > 0, there exists a

function N = N(ϵ, d, g, C) = O((4C
ϵ
)2 log2 dg2C4) < ∞ such that if sample size n ≥ N , then for

any v ∈ V , t ≥ 0,

P(πv
t (L) ̸= Algv

t) ≤ ϵ/(2C).

Similar to the idea used in the proof of Lemma 2.4.1, the event πv
t (L) ̸= Algv

t happens

only if the difference in the value of the single-node reward function under different actions (i.e.,

Φv
t (π

v
t (L))−Φv

t (Algv
t)) falls in a small interval whose length is proportional to maxx∈AB(v,L)(V L

t (x)−

V̂ L,n
t (x))+maxx∈AB(v,L)(V̂

L,n
t (x)−V L

t (x)). We derive a recursive bound for the latter quantity in

terms of value-to-go functions in the next period; in particular, we show that EΦ[maxx∈AB(v,L)(V L
t (x)−

V̂ L,n
t (x))]+EΦ[maxx∈AB(v,L)(V̂

L,n
t (x))−V L

t (x)] is bounded above by EΦ[maxx∈AB(v,L)(V L
t+1(x)−

V̂ L,n
t+1 (x))] + EΦ[maxx∈AB(v,L)(V̂

L,n
t+1 (x)) − V L

t+1(x)] plus a small error. Since the terminal condi-

tion of the sample averages and expected (local) value-to-go functions are known, i.e., we have

V̂ L,n
t+L(x) = V L

t+L(x) = 0 for any x ∈ AB(v,L), we are able to bound both EΦ[maxx∈AB(v,L)(V L
t (x)−

V̂ L,n
t (x))] and EΦ[maxx∈AB(v,L)(V̂

L,n
t (x)) − V L

t (x)]. The proof of Proposition 2.4.2 is in Sec-

24

tion 2.8.3.

2.4.3 Bounding the total loss

We now show Algorithm 1 achieves the global near-optimal reward by establishing Theo-

rem 2.3.1.

Proof of Theorem 2.3.1. As a result of Proposition 2.4.1 and Proposition 2.4.2, we have that

for all v ∈ V , and t ∈ [T],

P(Algv
t ̸= (xvt)

∗) ≤ P(πv
t (L) ̸= (xvt)

∗) + P(Algv
t ̸= πv

t (L)) ≤ ϵ/C.

Recall the definition of C in Equation (2.3). Since the largest possible change in total rewards

when switching from one node action to another is upper bounded by C,

|R(ALG)−R∗| ≤
∑

v∈V,t∈[T]

P(Algv
t ̸= (xvt)

∗)C

≤ ϵ · |V |T .

2.5 Computation Efficiency

In this section, we investigate the computation requirement of Algorithm 1. In terms of sam-

pling, Algorithm 1 needs to simulate n = O((1
ϵ
)2 log2 d) samples from each of the reward functions

{Φt+1,Φt+2, · · · ,Φt+L}. We illustrate these sample paths in Figure 2.4. Each node in this tree is

a random vector consisting of reward functions in B(v, L). The following proposition shows the

computation requirement of Algorithm 1 for deciding the action of node v at each time step t.

Proposition 2.5.1. The computational requirement of Algorithm 1 is O(|V |T epoly(1
ϵ
)), where the

model parameters d, g, C and |A| are constants in the O(·) notation.

Algorithm 1 is decentralized and can compute decisions of each node v ∈ V (G) at time t

in parallel. The overall computation scales linearly with the number of nodes in the graph G

25

ϕt

ϕ
(1)
t+1

ϕ
(2)
t+1

...

ϕ
(n)
t+1

ϕ
(1)
t+2...
ϕ
(n)
t+2

...

ϕ
(1)
t+2...
ϕ
(n)
t+2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

ϕ
(1)
t+L

...

...

...

ϕ
(n)
t+L

Figure 2.4: Illustration of approximating for value-to-go estimation via sample averages.

and the length of horizon T . Without assuming any problem-specific structure, we can solve the

local optimization problem presented in the (2.7) by enumerating over node actions, which takes

O(L|A|2dLn) = O(epoly(1
ϵ
)) computation. We present the proof details in Section 2.9.

In terms of practical implementation, we note that under our framework, one may tailor the

solution method for the L-local problem based on problem-specific structure to reduce the com-

putational requirement. In Section 2.6, we provide an example where we combine mixed integer

programming and decentralized computing for solving a discrete optimization problem on a large

network. Another example is related to deep reinforcement learning problems, where the optimal

decisions can often be trained through a deep neural network with the input as states and the out-

put as actions. However, when the state/action space is large, training a densely connected neural

net requires a huge number of parameters and runs the risk of overfitting. When Assumption 1

is satisfied, Theorem 2.3.1 suggests, e.g., the use of convolutional layers instead of densely con-

nected layers to reduce the number of training parameters, while preserving the ability of the neural

network to express a near optimal solution.

2.6 Numerical Experiments

To test the presence (or absence) of correlation decay and the consequent success (or failure)

of local algorithms while varying interaction strength, we conducted a numerical experiment. We

summarize the simulation environment and main findings first and defer the details to Section 2.11.

26

Since our paper focuses on developing a theoretical understanding of where local algorithms can

(provably) perform well, this section serves to empirically confirm our main insight, and does

not attempt to develop new algorithms. Hence, the exact method through which one solves the

local optimization problem is not of relevance, and in this section, we opt for solving optimization

problems via Mixed Integer Program (MIP) based on our problem structure.

In this experiment, we first generate multiple dynamic decision networks, parameterized by the

same interaction strength c in both the temporal and spatial dimensions. These decision networks

share all other components (e.g., a random 3-regular graph as the underlying graph, binary action

set A = {0, 1}, uniform distribution on [−1, 1] as the single node reward distribution when taking

action 1) so that the differences in performance can be solely attributed to the interaction strength

c. For each decision network, multiple instances are generated by sampling the first-period node

rewards (allowing us to bootstrap confidence intervals for the performance). Then, for each in-

stance, we compute several solutions: one being the solution to the global optimization problem,

and the others obtained by our local algorithms with different choices of the locality parameter.

We formulate each global or local network optimization problem as a MIP and solve it through

Gurobi (Gurobi Optimization, LLC, 2022). Lastly, for each solution, we compute its relative pay-

off, which is the ratio between the total payoff under the local solution to that under the global

optimal solution.

We summarize the results in Figure 2.5, with one plot showing simply the relative payoffs (the

higher, the better) and the other showing the relative payoff gaps (1− relative payoff) in log scale

(the lower, the better). The experiment controls the sampling loss and thus, the loss in total reward

is solely due to the locality loss. The vertical line on each data point represents its 95% confi-

dence interval. The global optimal solutions correspond to the local solutions when the locality

parameter equals 12, which is the diameter of the underlying graph. Our experimental results cor-

roborate our theoretical finding in Theorem 2.3.1; when the interaction strength is small (or even

medium-sized), the error in payoffs is seen to decay exponentially in the locality parameter. This

is especially prominent in the second plot in Figure 2.5. We also observe that as the interaction

27

Figure 2.5: Payoffs from solutions under local algorithms and the global optimal solution.

strength gets larger, the optimality gap of the local algorithms increases: for a fixed locality pa-

rameter, the larger the interaction strength is, the smaller the relative payoff is. In addition, we

observe that when the interaction strength is large c ≥ 0.4, the optimality gap ceases to improve

(and remains non-trivial) for locality parameter values larger than 4. This suggests that in the setup

of our experiment, long-range correlations arise for interaction strength satisfies c ≥ 0.4, hurting

the performance of local decision-making.

2.7 Concluding Remarks

We introduced a benchmark model of the dynamic optimization problem in networks where

the global payoff includes spatial interactions and temporal interactions as well as individual node

rewards. At each time step, a decision vector has to be chosen for all parts of the network under

stochastic uncertainty about future reward functions. We establish that under small to moderate in-

teraction strengths, decentralized algorithms – which make dynamic decisions only using informa-

tion about the nearby part of the network – achieve global near-optimality. This theoretical insight

is of importance for network applications, where decentralized algorithms can provide significant

computational benefits, and moreover, do so (as we show) without sacrificing performance.

28

2.8 Proof details in Section 2.4

In this section, we present the details omitted in the proof outline.

2.8.1 Proof of Lemma 2.4.1.

For any node u with dist(v, u) > H + 1, we have defined zuτ = wu
τ = 0. Thus, we consider

node u such that dist(v, u) ≤ H +1. Define the local version of fτ (·) function concerning node u,

fu
τ (x

u;xΓ(u)τ , xuτ−1,Φτ) := Φu
τ−1,τ (x

u
τ−1, x

u) + Φu
τ (x

u) +
∑

q∈Γ(u)

Φu,q
τ (xuτ , x

q
τ).

Let z−u
τ (resp., w−u

τ) denote the actions at all nodes other than u under the vector zτ (resp., wτ).

Since zuτ is the optimal solution at time τ when restricting to the subgraph B(v,H + 1) and using

H + 1-step look-ahead, taking zuτ at node u at time τ outputs the maximum (local) value-to-go on

the subgraph,

fH+1
τ (zuτ , z

−u
τ ; zτ−1,Φτ) + V H+1

τ (zuτ , z
−u
τ) ≥ fH+1

τ (wu
τ , z

−u
τ ; zτ−1,Φτ) + V H+1

τ (wu
τ , z

−u
τ).

After rearranging the terms in the above inequality,

fu
τ (w

u
τ ; z

Γ(u)
τ , zuτ−1,Φτ)− fu

τ (z
u
τ ; z

Γ(u)
τ , zuτ−1,Φτ) ≤ V H+1

τ (zuτ , z
−u
τ)− V H+1

τ (wu
τ , z

−u
τ). (2.12)

Similarly, by optimality of wu
τ when restricting to the subgraph B(v,H) and using H-step look-

ahead,

fH
τ (wu

τ , w
−u
τ ;wτ−1,Φτ) + V H

τ (wu
τ , w

−u
τ) ≥ fH

τ (zuτ , w
−u
τ ;wτ−1,Φτ) + V H

τ (zuτ , w
−u
τ).

Hence, we define the following positive random variable which is effectively the optimality gap

29

between switching from action wu
τ to zuτ under policy π(H),

∆u
τ :=

[
fH
τ (wu

τ , w
−u
τ ;wτ−1,Φτ) + V H

τ (wu
τ , w

−u
τ)
]
−
[
fH
τ (zuτ , w

−u
τ ;wτ−1,Φτ) + V H

τ (zuτ , w
−u
τ)
]

=
[
fu
τ (w

u
τ ;w

Γ(u)
τ , wu

τ−1,Φτ)− fu
τ (z

u
τ , w

Γ(u)
τ ;wu

τ−1,Φτ)
]
+
[
V H
τ (wu

τ , w
−u
τ)− V H

τ (zuτ , w
−u
τ)
]

Let Aτ denote the event such that wu
τ ̸= zuτ and wΓ(u)

τ = z
Γ(u)
τ . Then,

∆u
τ I{Aτ} =

(
fu
τ (w

u
τ ;w

Γ(u)
τ , wu

τ−1,Φτ)− fu
τ (z

u
τ , w

Γ(u)
τ ;wu

τ−1,Φτ) + V H
τ (wu

τ , w
−u
τ)− V H

τ (zuτ , w
−u
τ)
)
I{Aτ}

=

(
fu
τ (w

u
τ ; z

Γ(u)
τ , zuτ−1,Φτ)− fu

τ (z
u
τ ; z

Γ(u)
τ , zuτ−1,Φτ)

+ Φu
τ−1,τ (w

u
τ−1, w

u
τ)− Φu

τ−1,τ (z
u
τ−1, w

u
τ)− Φu

τ−1,τ (w
u
τ−1, z

u
τ) + Φu

τ−1,τ (z
u
τ−1, z

u
τ)

+ V H
τ (wu

τ , w
−u
τ)− V H

τ (zuτ , w
−u
τ)

)
I{Aτ}

≤ 4ctimeI{zuτ−1 ̸= wu
τ−1}+

(
fu
τ (w

u
τ ; z

Γ(u)
τ , zuτ−1,Φτ)− fu

τ (z
u
τ ; z

Γ(u)
τ , zuτ−1,Φτ)

+ V H
τ (wu

τ , w
−u
τ)− V H

τ (zuτ , w
−u
τ)

)
I{Aτ}.

Then, by (2.12), we further have

∆u
τ I{Aτ} ≤4ctimeI{zuτ−1 ̸= wu

τ−1}+(
V H+1
τ (zuτ , z

−u
τ)− V H+1

τ (wu
τ , z

−u
τ) + V H

τ (wu
τ , w

−u
τ)− V H

τ (zuτ , w
−u
τ)
)
I{Aτ}︸ ︷︷ ︸

(♮)

(2.13)

Next, we expand out the expressions for the (local) value-to-go functions V H
τ , V H+1

τ in (♮).

30

Define the following functions over decision vectors at time τ + 1:

gτ (x) = gτ (x; Φτ+1) := fH+1
τ (x; zuτ , z

−u
τ ,Φτ+1) + V H+1

τ+1 (x),

hτ (x) = hτ (x; Φτ+1)) := fH
τ (x;wu

τ , w
−u
τ ,Φτ+1) + V H

τ+1(x),

δτ (x) = δτ (x; Φτ+1)) := Φu
τ,τ+1(w

u
τ , x

u)− Φu
τ,τ+1(z

u
τ , x

u).

where we omit their dependency on Φτ+1 to simplify the notations. Then, we have

RVH+1
τ (zuτ , z

−u
τ ; Φτ+1) = max

x∈AB(v,H+1)
gτ (x),

RVH+1
τ (wu

τ , z
−u
τ ; Φτ+1) = max

x∈AB(v,H+1)
gτ (x) + δτ (x)

and

RVH
τ (w

u
τ , w

−u
τ ; Φτ+1) = max

x∈AB(v,H)
hτ (x),

RVH
τ (z

u
τ , w

−u
τ ; Φτ+1) = max

x∈AB(v,H)
hτ (x)− δτ (x).

We again similarly omit the dependency on Φτ+1 to simplify the notations and note that zτ+1 is an

optimal solution for maxx∈AB(v,H+1) gτ (x) and wτ+1 is an optimal solution for maxx∈AB(v,H) hτ (x).

31

Hence,

(♮) = E
Φτ+1

[RVH+1
τ (zuτ , z

−u
τ)− RVH+1

τ (wu
τ , z

−u
τ) + RVH

τ (w
v
τ , w

−u
τ)− RVH

τ (z
u
τ , w

−u
τ)]I{Aτ}

≤ E
Φτ+1

[gτ (zτ+1)− (gτ (zτ+1) + δτ (zτ+1)) + hτ (wτ+1)− (hτ (wτ+1)− δτ (wτ+1))] I{Aτ}

= E
Φt+1

[δτ (wτ+1)− δτ (zτ+1)] I{Aτ}

= E
Φt+1

[
Φu

τ,τ+1(w
u
τ , w

u
τ+1)− Φu

τ,τ+1(z
u
τ , w

u
τ+1)− Φu

τ,τ+1(w
u
τ , z

u
τ+1) + Φu

τ,τ+1(z
u
τ , z

u
τ+1)

]
I{Aτ}

≤ 4ctime E
Φτ+1

[I{wu
τ+1 ̸= zuτ+1}]I{Aτ},

where the last inequality is since when zuτ+1 = wu
τ+1, the four terms on the RHS cancel out. Hence,

∆u
τ I{Aτ} ≤ 4ctime(I{zuτ−1 ̸= wu

τ−1}+ E
Φτ+1

[I{wu
τ+1 ̸= zuτ+1}]I{Aτ}).

Finally, we have

PΦ(w
u
τ ̸= zuτ , w

Γ(u)
τ = zΓ(u)τ) ≤ P(0 ≤ ∆u

τ I{Aτ} ≤ 4ctime(I{zuτ−1 ̸= wu
τ−1}+ E

Φτ+1

[I{wu
τ+1 ̸= zuτ+1}]))

= P(wu
τ−1 ̸= zuτ−1)P(0 ≤ ∆u

τ I{Aτ} ≤ 4ctime(1 + P(wu
τ+1 ̸= zuτ+1|wu

τ−1 ̸= zuτ−1))|wτ−1 ̸= zτ−1)

+ P(wu
τ−1 = zuτ−1)P(0 ≤ ∆u

τ I{Aτ} ≤ 4ctimeP(wu
τ+1 ̸= zuτ+1|wu

τ−1 = zuτ−1)|wτ−1 = zτ−1)

≤ P(wu
τ−1 ̸= zuτ−1) · g · 4ctime(1 + P(wu

τ+1 ̸= zuτ+1|wu
τ−1 ̸= zuτ−1))

+ P(wu
τ−1 = zuτ−1) · g · 4ctime(P(wu

τ+1 ̸= zuτ+1|wu
τ−1 = zuτ−1))

= 4gctime(P(wu
τ−1 ̸= zuτ−1) + P(wu

τ+1 ̸= zuτ+1))

≤ (P(wu
τ−1 ̸= zuτ−1) + P(wu

τ+1 ̸= zuτ+1))ρ

where the second last inequality is based on the following observation: conditional on previous

decisions, previous reward functions, current interactions and node reward functions at other nodes

except u, ∆u
τ I{Aτ} ∈ [0, s] for any s ≥ 0 if and only if Φv

τ (w
u
τ)− Φv

τ (z
u
τ) is within some length s

32

interval. Moreover, the probability of the above event is upper bounded by g multiplied by s due

to the third condition in Assumption 2.3.1: for any a ̸= a′ ∈ A, b1 < b2,

P(Φv
τ (a)− Φv

τ (a
′) ∈ [b1, b2) | Φinter

τ , {Φu
τ}u̸=v) ≤ g(b2 − b1).

2.8.2 Proof of Lemma 2.4.2

We define a new distance metric which is more suitable for the dynamic optimization problem

we are interested in. Denote node v ∈ V at time t ∈ [T] as the pair (v, t), which we henceforth

call a ST node. Define the ST distance between two ST nodes (v1, t1) and (v2, t2) as

distst((v1, t1), (v2, t2)) = dist(v1, v2) + |t1 − t2|.

In particular, if t1 = t2, then distst((v1, t1), (v2, t2)) = dist(v1, v2). We also define another parame-

ter:

ξ := (d+ 2)ρ. (2.14)

Note that ξ ≤ 1
2

under our assumption that ρ := 4g(dcedge + 2ctime) ≤ 1
2(d+2)

. Recall that Γ(u)

denotes the set of neighbors of u in G.

Before proving Lemma 2.4.2, we present the following claim.

Claim 1. Under the same setting as in Lemma 2.4.2, for t ≤ τ ≤ t+H and u ∈ B(v,H +1), we

have

PΦ(w
u
τ ̸= zuτ |wΓ(u)

τ , zΓ(u)τ) ≤ ρ.

Proof of Claim 1. Let Eτ denote the event wu
τ ̸= zuτ given wΓ(u)

τ , z
Γ(u)
τ . Then, we define the fol-

lowing positive random variable as in the proof of Lemma 2.4.1 which is effectively the optimality

gap between switching from action wu
τ to zuτ under policy π(H),

33

∆u
τ I{Eτ} :=

[
fH
τ (wu

τ , w
−u
τ ;wτ−1,Φτ) + V H

τ (wu
τ , w

−u
τ)
]
−
[
fH
τ (zuτ , w

−u
τ ;wτ−1,Φτ) + V H

τ (zuτ , w
−u
τ)
]

≤ Φu
τ (w

u
τ)− Φu

τ (z
u
τ) + d · 2cedge + 2 · 2ctime,

where the last inequality is because changing node action at u at time τ affects at most d spatial

edges and 2 temporal edges.

Since ∆u
τ I{Eτ} ≥ 0, we have the following bound under Eτ ,

Φu
τ (w

u
τ)− Φu

τ (z
u
τ) ≥ −(d · 2cedge + 2 · 2ctime).

Moreover, since zuτ is optimal under π(H + 1),

0 ≤
[
fH+1
τ (zuτ , z

−u
τ ; zτ−1,Φτ) + V H+1

τ (zuτ , z
−u
τ)
]
−
[
fH+1
τ (wu

τ , z
−u
τ ; zτ−1,Φτ) + V H+1

τ (wu
τ , z

−u
τ)
]

≤ Φu
τ (z

u
τ)− Φu

τ (w
u
τ) + d · 2cedge + 2 · 2ctime,

which leads to

Φu
τ (w

u
τ)− Φu

τ (z
u
τ) ≤ (d · 2cedge + 2 · 2ctime).

Combining these two bounds above, we have

P(wu
τ ̸= zuτ |wΓ(u)

τ , zΓ(u)τ) ≤ P(−(2dcedge + 4ctime) ≤ Φu
τ (w

u
τ)− Φu

τ (z
u
τ) ≤

(2dcedge + 4ctime)|wΓ(u)
τ , zΓ(u)τ)

≤ g · 2(2dcedge + 4ctime) = ρ.

Q.E.D.

34

Proof of Lemma 2.4.2. We prove the lemma by induction on the ST distance. By Claim 1 above,

for 0 ≤ τ < H and u ∈ B(v,H + 1),

PΦ(w
u
τ ̸= zuτ) ≤ ρ.

This serves as the base case for proof of Lemma 2.4.2: when (u, τ) satisfies distst((v, t), (u, τ)) ≥

H + 1, Lemma 2.4.2 holds. Suppose that for all k′ > k for some 0 ≤ k ≤ H , we have that if a

node (u, τ) satisfies distst((v, t), (u, τ)) ≤ k′, then PΦ(w
u
τ ̸= zuτ) ≤ ξH+1−k′ρ.

For the inductive step, we consider nodes (u, τ) with distst((v, t), (u, τ)) ≤ k for 0 ≤ k ≤ H .

For the following, to simply the notations, we write PΦ as P.

P(wu
τ ̸= zuτ) = P(wu

τ ̸= zuτ , w
Γ(u)
τ ̸= zΓ(u)τ) + P(wu

τ ̸= zuτ , w
Γ(u)
τ = zΓ(u)τ)

= P(wu
τ ̸= zuτ | wΓ(u)

τ ̸= zΓ(u)τ)P(wΓ(u)
τ ̸= zΓ(u)τ) + P(wu

τ ̸= zuτ , w
Γ(u)
τ = zΓ(u)τ)

≤ ρ(d · ξH−kρ) + P(wu
τ ̸= zuτ , w

Γ(u)
τ = zΓ(u)τ)

≤ ρ(d · ξH−kρ) + P(wu
τ−1 ̸= zuτ−1)ρ+ P(wu

τ+1 ̸= zuτ+1)ρ

≤ ρ(d · ξH−kρ) + 2(ξH−kρ)ρ

= (dρ+ 2ρ)ξH−kρ

≤ ξH+1−kρ

where the first inequality is by induction hypothesis since the spatial neighbors of u have ST

distance to (v, t) at most k + 1 as well as Claim 1; the second inequality is by Lemma 2.4.1;

the third inequality is again by the induction hypothesis. Hence we complete the induction step.

Q.E.D.

35

2.8.3 Proof of Proposition 2.4.2.

Suppose Algv
t ̸= πv

t (L). By optimality,

ϕv
t (π

v
t (L))− ϕv

t (Algv
t) + ∆−v

t := max
x
B(v,L)
t :xv

t=πv
t (L)

(
fL
t (xt) + V L

t (xt)
)
− max

x
B(v,L)
t :xv

t=Algvt

(
fL
t (xt) + V L

t (xt)
)
≥ 0.

Similarly,

ϕv
t (Algv

t)− ϕv
t (π

v
t (L)) + ∆−v,n := max

x
B(v,L)
t :xv

t=Algvt

(
fL
t (xt) + V̂ L,n

t (xt)
)
− max

x
B(v,L)
t :xv

t=πv
t (L)

(
fL
t (xt) + V̂ L,n

t (xt)
)
≥ 0.

Therefore,

−∆−v
t ≤ ϕv

t (π
v
t (L))− ϕv

t (Algv
t) ≤ ∆−v,n.

By the third condition in the Assumption 2.3.1, we have that

P (Algv
t (L) ̸= πv

t (L)) ≤ P
(
−∆−v

t ≤ Φv
t (π

v
t (L))− Φv

t (Algv
t) ≤ ∆−v,n

)
≤ g E

[
∆−v,n +∆−v

t

]
.

By definitions of ∆−v
t and ∆−v,n above, we have

∆−v,n +∆−v
t ≤ max

x
B(v,L)
t :xv

t=πv
t (L)

(
V L
t (xt)− V̂ L,n

t (xt)

)
+ max

x
B(v,L)
t :xv

t=Algvt

(
V̂ L,n
t (xt)− V L

t (xt)

)

Therefore, it suffices to show that

E

[
max
x
B(v,L)
t

(
V L
t (xt)− V̂ L,n

t (xt)
)]

≤ ϵ

4gC
and E

[
max
x
B(v,L)
t

(
V̂ L,n
t (xt)− V L

t (xt)
)]

≤ ϵ

4gC
.

36

By definition, given any xt+L ∈ AB(v,L), V̂ L,n
t+L(xt+L) = V L

t+L(xt+L) = 0. Hence,

E[maxxt+L(V̂
L,n
t+L(xt+L)− V L

t+L(xt+L))] = 0.

Next, for t ≤ τ ≤ t + L − 1, we derive a recursive relation between E[maxxτ (V̂
L,n
τ (xτ) −

V L
τ (xτ))] and E[maxxτ+1(V̂

L
τ+1(xτ+1)− V L

τ+1(xτ+1))]. Given any xτ ∈ AB(v,L)

V̂ L,n
τ (xτ)− V L

τ (xτ) =
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V̂ L,n

τ+1(xτ+1))− E[max
xτ+1

(fL
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]

=
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V̂ L,n

τ+1(xτ+1))−
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1))

+
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1))− E[max
xτ+1

(fL
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]

≤ max
xτ+1

(V̂ L,n
τ+1(xτ+1)− V L

τ+1(xτ+1)) +
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1))

− E[max
xτ+1

(fL
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]

We now bound the expectation of latter two terms on the right-hand side of the above inequality.

Let Y (s) := maxxτ+1(f
L
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1)). Then, {Y (s)}1≤s≤n are independent

random variables with expectation µ := E[maxxτ+1(f
L
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]. Note

that

E[
1

n

n∑
s=1

Y (s) − µ] =
1

n
E[

n∑
s=1

Y (s) − nµ] ≤ 1

n
E
∣∣∣ n∑
s=1

Y (s) − nµ
∣∣∣

Let m̃ denote the number of nodes in B(v, L). m̃ = 1 + d + · · · + dL ≤ dL+1

d−1
. Since m̃d/2 is

the maximum number of edges in B(v, L) by the handshaking lemma, we have that

Y (s) = RVL
τ (xτ ;ϕτ+1(s)) ≥ −Lm̃Cnode − Lm̃

d

2
cedge − Lm̃ctime =: lb,

where this lower bound is achieved when all nodes receive the worst possible individual reward

−Cnode, all temporal interactions are −ctime, and all edge interactions are −cedge. Similarly, we ob-

37

tain the upper bound when all nodes receive the best possible individual reward Cnode, all temporal

interactions are ctime and all edge interactions are cedge,

Y (s) = RVL
τ (xτ ;ϕτ+1(s)) ≤ Lm̃Cnode + Lm̃

d

2
cedge + Lm̃ctime =: ub.

Since lb ≤ Y (s) ≤ ub,

1

n
E
∣∣∣ n∑
s=1

Y (s) − nµ
∣∣∣ = 1

n

∫
t≥0

P(
∣∣∣ n∑
s=1

Y (s) − nµ
∣∣∣ ≥ t)dt

≤ 2

n

∫
t≥0

e
− 2t2

n(ub−lb)2 dt

=
1√
n
(ub − lb)

∫
x≥0

e−
x2

2 dx

=

√
2π

2
√
n
(ub − lb)

where the first equality is by the property of expectation of non-negative random variables, the

first inequality is by Hoeffding’s inequality, the second equality is by change of variables (i.e., we

define a new variable x := 2t√
n(ub−lb)), and the last equality is since

∫
x≥0

e−
x2

2 dx =
√
2π
2

.

Taking expectation of maxxτ (V̂
L,n
τ (xτ)− V L

τ (xτ)), we have

E[max
xτ

(V̂ L,n
τ (xτ)− V L

τ (xτ))] ≤ E[max
xτ+1

(V̂ L
τ+1(xτ+1)− V L

τ+1(xτ+1))] +

√
2π

2
√
n
(ub − lb)

≤ E[max
xτ+1

(V̂ L
τ+1(xτ+1)− V L

τ+1(xτ+1))] +

√
2π

2
√
n
Lm̃C

(2.15)

where the last inequality is due to C := 2Cnode + 2dcedge + 4ctime ≥ 2Cnode + dcedge + 2ctime.

Applying Equation (2.15) L times for t ≤ τ ≤ t+ L− 1, we have

E[max
xt

(V̂ L
t (xt)− V L

t (xt))] ≤
√
2π

2
√
n
L2m̃C ≤ ϵ

4gC
,

for n ≥ N(ϵ, d, g, C) = 8πg2C4L4m̃2

ϵ2
. Under the condition in the Theorem 2.3.1, let L = ⌊log2 4C

ϵ
⌋.

38

Then,

N(ϵ, d, g, C) =
8πg2C4

ϵ2
(log2

4C

ϵ
)4(

4C

ϵ
)2 log2 d(

d

d− 1
)2

= O((
4C

ϵ
)2 log2 dg2C4)

(2.16)

where O(·) notation omits logarithmic factors. Similarly, for such n ≥ N(ϵ, d, g, C), we have

E[max
xt

(V L
t (xt)− V̂ L

t (xt))] ≤
√
2π

2
√
n
L2m̃C ≤ ϵ

4gC
.

Altogether, we have

E

[
max
x
B(v,L)
t

(
V L
t (xt)− V̂ L,n

t (xt)
)]

≤ ϵ

4gC
and E

[
max
x
B(v,L)
t

(
V̂ L,n
t (xt)− V L

t (xt)
)]

≤ ϵ

4gC

as desired.

2.9 Bound on the computational requirement.

To establish Proposition 2.5.1, we prove the following lemma on computation requirement for

any L-local (L ≥ 1) algorithm. Then, the computation needed in Proposition 2.5.1 is by letting

L = ⌊log2 4C
ϵ
⌋ and n = N(ϵ, d, g, C) defined in Equation (2.16).

Lemma 2.9.1. The computation requirement for Algv
t for v ∈ V and t ∈ [T] under Algorithm 1

is LK2n where n is the sample size and K = |A|dL is an upper bound on the number of decision

vectors to enumerate over for the optimization problem in (2.7).

Proof of Lemma 2.9.1. We show this by induction. Let aτ denote the amount of computation

needed to compute V̂ L,n
τ (·). Since V̂ L,n

t+L(·) = 0, at+L = 0. Suppose now we obtain V̂ L,n
τ (·) function

with computational effort aτ . Given a decision vector xτ−1 and a realization ϕτ , the optimal xτ can

be solved by enumerating all possible decision vectors (the number of nodes in B(v, L) without

constraints are
∑L−1

i=0 d
i ≤ dL), whose cardinality is at most K. Under the assumption that {Φt}t

39

are independent, we can use the same estimation for V̂ L,n
τ (·) for different realizations of Φτ−1.

This implies:

aτ−1 = K · n ·K + aτ ,

where the first K is the number of possible decision vectors xτ−1, n is the number of samples,

and the second K is the computation needed for enumeration. Hence, we have at = LK2n =

L|A|2dLn.

Proof of Proposition 2.5.1 Let L = ⌊log2 4C
ϵ
⌋. Then, we have

|A|2dL ≤ e2 ln |A|·(4C
ϵ
)log2 d

.

Moreover, we let the sample size n = N(ϵ, d, g, C) = O((4C
ϵ
)2 log2 dg2C4) defined in Equa-

tion (2.16). With d, g, C and |A| as constants, by Lemma 2.9.1, the computation needed for

Algorithm 1 is upper bounded by

L|A|2dLn = O(e2 ln |A|·(4C
ϵ
)log2 d

(
1

ϵ
)2 log2 d) = O(epoly(1

ϵ
)).

2.10 Interactions must be small to have correlation decay

In this section, we construct a sequence of static (i.e., single period) decision networks indexed

by graph degree d with cedge = Θ(1/d) such that there is no near-optimal local algorithm for

these networks. The decision networks we construct satisfy all parts of Assumption 2.3.1 except

the small-interaction requirement 4g(dcedge + 2ctime) ≤ 1
2(d+2)

. Thus, our construction justifies the

need for the upper bound on the strength of the interactions in Assumption 2.3.1. Admittedly, there

is some gap between our assumption cedge ≤ Θ(1/d2), and the scale cedge = Θ(1/d) at which we

show here that long-range correlations arise. In comparison, previous work (Gamarnik, Goldberg,

and Weber, 2014) also assumed cedge ≤ Θ(1/d2) to obtain correlation decay in a static random

decision network. In our dynamic setting, we have the same scaling to ensure no long-range

correlation.

40

Definition 2.10.1. A d-regular graph G = (V,E) is an γ-edge expander for γ ∈ (0, 1) if for any

S ⊆ V such that |S| ≤ |V |/2, the number of edges between S and V \S (the “cut size”) is at least

|S|dγ, i.e.,

cut(S) := |{(i, j) ∈ E : i ∈ S, j ∈ V \S}| ≥ |S|dγ .

Construction. Fix degree d ≥ 35. It is well known that there exists m1 < ∞, such that for

any even integer m with m > m1, there is a d-regular graph with m nodes that is a 1
3
-edge

expander (Friedman, 2008; Vadhan et al., 2012). In fact, a random d-regular graph has this property

asymptotically almost surely (a.a.s.).1 That is, let G be uniformly drawn from random d-regular

graphs with m nodes where m ≥ m1, then G is a 1
3
-edge expander almost surely. We define a

static random decision network (G,Φ) with action set {0, 1} as follows:

• Node rewards: The node rewards Φv(1) are i.i.d. from Uniform[−1, 1]; and Φv(0) = 0.

• Edge rewards: The edge rewards are “ferromagnetic”:

Φu,v(xu, xv) :=

cedge if xu = xv

0 otherwise ,

where cedge := 6/d.

Since the constructed decision network is static, there are no temporal interactions in our construc-

tion and hence we omit x0.

The following claim shows that there does not exist near-optimal local algorithms when the

small interaction condition in Assumption 2.3.1 does not hold.

Claim 2. For the decision network (G,Φ) uniformly drawn from d−regular random graph with

m nodes, the optimal action vector is either all 1s or all 0s a.s. Each of these possibilities arises

with probability 1/2. In particular, the optimal solution has long-range correlations. In particular,

1Random d-regular graphs are “almost Ramanujam”, i.e., the absolute value of the second largest eigenvalue of
their adjacency matrix is bounded above by 2

√
d− 1 + ϵ a.a.s. as proved in (Friedman, 2008). The claimed edge

expansion property then follows, e.g., using (Vadhan et al., 2012, Theorem 4.14).

41

any L-local algorithm which treats the possible node actions 1 and 0 symmetrically achieves an

expected payoff at least m/3 below the optimal.

Proof of Claim 2. Consider any action vector x such that the majority of actions is 1. We show

that the payoff of x is less than the payoff of all 1s. Let S be the set of nodes where x takes action

0. Since G is a 1
3
-edge expander a.s., cut(S) ≥ |S|d/3. It follows that the total edge rewards

under x are at least cedge|S|d/3 = 2|S| smaller than that under all 1s. On the other hand, the

difference between the total node rewards under x and that under all 1s is
∑

v∈S Φ
v(1) ≥ −|S|

since Φv(1) ∈ [−1, 1], i.e., the total rewards under x is at least 2|S| − |S| = |S| smaller than

the total rewards under all 1s. Similarly, one can show that for any action vector x such that the

majority of actions is 0, the total reward under x is at least m − |S| smaller than the total reward

under all 0s. It follows that the optimal solution is either all 1s or 0s. Moreover, the optimal

solution is all 1s if
∑

v∈V ϕ
v(1) ≥ 0 and all 0s otherwise. Since the distribution of i.i.d Uniform

distribution [−1, 1] is symmetric, each of these above possibilities arises with probability 1
2
.

Now consider any given L and any L-local algorithm which treats 1 and 0 symmetrically. By

symmetry, each node decision is a priori equally likely to be 1 or 0. By symmetry, each node

decision is a priori equally likely to be 1 or 0. It follows that in a large network, about half the

decisions will be 1 and the other half will be 0 under the L-local algorithm. Formally speaking,

the expected number of 1s is m/2, and the variance in the total number of 1s is Var[
∑

v∈V I{xv =

1}] =
∑

v∈V Var[I{xv = 1}] =
∑

v∈V (
1
2
)2 = 1

4
m.

Hence for any m > 250, we know by Chebyshev’s inequality that with probability at least 0.9,

the number of 1s will be in the range |S| ∈ (0.4m, 0.6m), i.e., the payoff will be at least 0.4m

below the optimal (see the previous paragraph) Combining, the local algorithm suffers an expected

payoff loss at least 0.9× 0.4m ≥ m/3.

Q.E.D.

42

2.11 Description of the Experiment Setup

In the following, we explain in detail the simulation environment of our experiment. There

are 5 dynamic decision networks parameterized by interaction strength c for both the spatial and

temporal dimensions, with c = 0.1, 0.2, 0.3, 0.4, and 0.5. These decision networks share all other

components, which we list below.

• Graph G: Using the NetworkX package in Python, we randomly generate2 a 3-regular graph

with 500 vertices.

• Time horizon T : To simplify the simulation and reduce the computational effort, we set the

time horizon to be 2 for all decision networks.

• Interaction function: Both the spatial interaction and the temporal interaction are ferromag-

netic, meaning that agreeing actions incur a bonus of c, whereas disagreeing actions result

in no reward.

• Action set A: We assume a binary action set – that is, for all v ∈ V and t ∈ [T], xvt ∈ {0, 1},

where action zero is viewed as the default action, meaning that Φv
t (0) = 0.

• Node reward: The random node rewards, for both time periods, when taking action 1 are

assumed to i.i.d. and follow the uniform distribution on [−1, 1].

We sample n1 = 10 instances for each decision network, where these instances differ in terms

of the realized node rewards at the first time period. Having multiple realizations allows us to

compute the confidence intervals for the performance of our algorithm. We denote by {ϕv,(i)
1 }v∈V

the realized first-period node rewards (when taking action 1) in the i-th instance, where each ϕv,(i)
1

is sampled according to the node reward distribution, i.e., uniformly from [−1, 1]. Note that the

realized node rewards {ϕv,(i)
1 }v∈V for each i ∈ [n1] are shared by all the i-th instances of all

decision networks.
2statistics source: https://networkx.org/documentation/stable/reference/generated/networkx.

generators.random_graphs.random_regular_graph.html

43

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.random_regular_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.random_regular_graph.html

To remove the loss in rewards due to sampling, we control the variability in the second-period

node rewards. That is, we pre-generate two independent sets of samples of node rewards for

the second time period. The first set contains n2,est = 100 samples, which are used to compute

solutions at the first time period; and the second set contains n2,eval = 30 samples, which are used

to estimate the total payoff under the solutions computed using the first set of samples. We denote

the node rewards when taking action 1 by {ϕv,(i)
2,est}v∈V for the i-th sample in the first set and by

{ϕv,(i)
2,eval}v∈V for the i-th sample in the second set.

For each instance, we compute several solutions, with one obtained by solving the global op-

timization problem, and the others obtained by our local algorithms with different locality param-

eters. To solve the network optimization problem, either globally or locally, we write down the

problem as a MIP. The decision variables of the MIP are:

• node actions for the first time period: {xv1}v∈V ;

• disagreement indicator of neighboring nodes for t = 1: {ye1}e∈E;

• node actions for the second time period for each sample j: {xv,(j)2 }v∈V,j∈[n2,est];

• disagreement indicator of neighboring nodes for t = 2 for each sample j: {ye,(j)2 }e∈E,j∈[n2,est];

• temporal disagreement indicator for each node for each sample j: {yv,(j)}v∈V,j∈[n2,est].

And the formulation of our MIP is given below.

44

max
∑
v∈V

ϕ
v,(i)
1 · xv1 +

∑
e=(u,v)∈E

c · (1− ye1)+

1

n2,est

∑
j∈[n2,est]

[∑
v∈V

ϕ
v,(j)
2,est · x

v,(j)
2 +

∑
e∈E

c · (1− y
e,(j)
2) +

∑
v∈V

c · (1− yv,(j))

]
s.t. ye1 ≥ xu1 − xv1 ∀ e = (u, v) ∈ E

ye1 ≥ xv1 − xu1 ∀ e = (u, v) ∈ E

y
e,(j)
2 ≥ x

u,(j)
2 − x

v,(j)
2 ∀ e = (u, v) ∈ E, j ∈ [n2,est]

y
e,(j)
2 ≥ x

v,(j)
2 − x

u,(j)
2 ∀ e = (u, v) ∈ E, j ∈ [n2,est]

yv,(j) ≥ xv1 − x
v,(j)
2 ∀ v ∈ V, j ∈ [n2,est]

yv,(j) ≥ x
v,(j)
2 − xv1 ∀ v ∈ V, j ∈ [n2,est]

xv1, y
e
1, x

v,(j)
2 , y

e,(j)
2 , yv,(j) ∈ {0, 1} ∀ v ∈ V, e ∈ E, j ∈ [n2,est]

Note that V and E are either nodes and edges of the entire graph when solving for the global

optimal solution, or nodes and edges of a local graph when solving for the solution using our local

algorithm. Although the MIP is given for obtaining a first time period solution, a similar MIP can

be used to estimate the payoff of a given first time period solution, where we take {xv1}v∈V as given

and replace rewards {ϕv,(j)
2,est} with {ϕv,(j)

2,eval}.

45

Chapter 3: Decentralized Online Convex Optimization in Networked

Systems

3.1 Introduction

A wide variety of multi-agent systems can be modeled as optimization tasks in which individ-

ual agents must select actions based on local information with the goal of cooperatively learning

to minimize a global objective in an uncertain, time-varying environment. This general setting

emerges in applications such as formation control (Chen and Wang, 2005; Oh, Park, and Ahn,

2015), power systems control (Molzahn et al., 2017; Shi et al., 2021), and multiproduct price op-

timization (Caro and Gallien, 2012; Candogan, Bimpikis, and Ozdaglar, 2012). In all these cases,

it is key that the algorithms used by agents use only local information due to the computational

burden created by the size of the systems, the information constraints in the systems, and the need

for fast and/or interpretable decisions.

At this point, there is a mature literature focused on decentralized optimization, e.g. (Bert-

sekas and Tsitsiklis, 1989a; Boyd, Parikh, and Chu, 2011; Shi et al., 2015; Nedić, Olshevsky, and

Rabbat, 2018), see (Xin et al., 2020) for a survey; however, the design of learning policies for

uncertain, time-varying environments requires decentralized online optimization. The literature

studying decentralized online optimization is still nascent (see the related work section for a dis-

cussion of recent papers, e.g. (Li, Yi, and Xie, 2021b; Yuan, Proutiere, and Shi, 2021; Yi et al.,

2020)) and many challenging open questions remain.

Three issues of particular importance for real-world applications are the following.

First, temporal coupling in actions is often of first-order importance to applications. For ex-

ample, startup costs, ramping costs, and switching costs are prominent in settings such as power

systems and cloud computing, and lead to penalties for changing actions dramatically over time.

46

The design of online algorithms to address such temporal interaction costs has received significant

attention in the single-agent case recently, e.g, smoothed online optimization (Goel et al., 2019;

Lin, Goel, and Wierman, 2020), convex body chasing (Argue et al., 2020; Sellke, 2020), online

optimization with memory (Agarwal et al., 2019; Shi et al., 2020), and dynamic pricing (Besbes

and Lobel, 2015; Chen and Farias, 2018).

Second, spatial interaction costs are of broad importance in practical applications. Such costs

arise because of the need for actions of nearby agents to be aligned with one another, and are

prominent in settings such as economic team theory (Marschak, 1955; Marschak and Radner,

1972), combinatorial optimization over graphs (Hochba, 1997; Gamarnik and Goldberg, 2010),

and statistical inference (Wainwright and Jordan, 2008). An example is (dynamic) multiproduct

pricing, where the price of a product can impact the demand of other related products (Song and

Chintagunta, 2006).

Third, leveraging predictions of future costs has long been recognized as a promising way to

improve the performance of online agents (Morari and Lee, 1999; Lin et al., 2012; Badiei, Li, and

Wierman, 2015; Chen et al., 2016; Shi, Lin, and Jiao, 2019; Li, Qu, and Li, 2020). As learning

tools become more prominent, the role of predictions is growing. By collecting data from repeated

trials, data-driven learning tools make it possible to provide accurate predictions for near future

costs. For example, in multiproduct pricing, good demand forecasts can be constructed up to a

certain time horizon and are invaluable in setting prices (Caro and Gallien, 2012).

In addition to the three issues above, we would like to highlight that existing results for de-

centralized online optimization focus on designing algorithms with low (static) regret (Hosseini,

Chapman, and Mesbahi, 2016; Li, Yi, and Xie, 2021b) , i.e., algorithms that (nearly) match the

performance of the best static action in hindsight. In a time-varying environment, it is desirable

to instead obtain stronger bounds, such as those on the dynamic regret or competitive ratio, which

compare to the dynamic optimal actions instead of the best static action in hindsight, e.g., see re-

sults in the centralized setting such as (Lin, Goel, and Wierman, 2020; Li, Qu, and Li, 2020; Shi

et al., 2020).

47

This paper aims to address decentralized online optimization with the three features described

above. In particular, we are motivated by the open question: Can a decentralized algorithm make

use of predictions to be competitive for networked online convex optimization in an adversarial

environment when spatial and temporal costs are considered?

Contributions. This paper provides the first competitive algorithm for decentralized learn-

ing in networked online convex optimization. Agents in a network must each make a decision

at each time step, to minimize a global cost which is the sum of convex node costs, spatial in-

teraction costs and temporal interaction costs. We propose a predictive control framework called

Localized Predictive Control (LPC, Algorithm 2) and prove that it achieves a competitive ratio

of 1 + Õ(ρkT) + Õ(ρrS), which approaches 1 exponentially fast as the prediction horizon k and

communication radius r increase simultaneously. Our results quantify the improvement in com-

petitive ratio from increasing the communication radius r (which also increases the computational

requirements) versus increasing the prediction horizon k, and imply that – as a function of problem

parameters – one of the two “resources” k and r emerges as the bottleneck to algorithmic perfor-

mance. Given any target competitive ratio, we find the minimum required prediction horizon k and

communication radius r as functions of the temporal interaction strength and the spatial interaction

strength, resp.

Further, we show that LPC is order-optimal in terms of k and r by proving a lower bound on

the competitive ratio for any online algorithm. We formalize the near optimality of our algorithm

by showing that a resource augmentation bound follows from our upper and lower bounds: our

algorithm with given k and r performs at least as well as the best possible algorithm that is forced

to work with k′ and r′ which are a constant factor smaller than k and r respectively.

The algorithm we propose, LPC, is inspired by Model Predictive Control (MPC). After fixing

the prediction horizon k and the communication radius r, each agent makes an individual decision

by solving a k-time-step optimization problem, on a local neighborhood centered at itself and with

radius r. In doing so, the algorithm utilizes all available information and makes a “greedy” deci-

sion. One benefit of this algorithm is its simplicity and interpretability, which is often important

48

for practical applications. Moreover, since the algorithm is local, the computation needed for each

agent is independent of the network size.

Our main results are enabled by a new analysis methodology which obtains two separate decay

factors for the propagation of decision errors (a temporal decaying factor ρT and spatial decay-

ing factor ρS) through a novel perturbation analysis. Specifically, the perturbation analysis seeks

to answer the following question: If we perturb the boundary condition of an agent v’s r-hop

neighborhood at the time step which is τ -th later than the present, how does that affect v’s current

decision, in terms of spatial distance r and temporal distance τ? With our analysis, we are able to

bound the impact on v’s current decision by O(ρτTρ
r
S), where the decay factors ρT and ρS increase

with the strength of temporal/spatial interactions among individual decisions. This novel analysis

is critical for deriving a competitive ratio that distinguishes the decay rate for temporal and spatial

distances.

To illustrate the use of our results in a concrete application, Section 3.5 provides a detailed

discussion of dynamic multiproduct pricing, which is a central problem in revenue management.

The resulting revenue maximization problem fits into our theoretical framework, and we deduce

from our results that LPC guarantees near optimal revenue, in addition to reducing the computa-

tional burden (Schlosser, 2016) and providing interpretable prices (Biggs, Sun, and Ettl, 2021) for

products.

Related Work. This paper contributes to the literature in three related areas, each of which we

describe below.

Distributed Online Convex Optimization. Our work relates to a growing literature on distributed

online convex optimization with time-varying cost functions over multi-agent networks. Many

recent advances have been made including distributed OCO with delayed feedback (Cao and Basar,

2021), coordinating behaviors among agents (Li, Yi, and Xie, 2021a; Cao and Başar, 2021), and

distributed OCO with a time-varying communication graph (Hosseini, Chapman, and Mesbahi,

2016; Akbari, Gharesifard, and Linder, 2017; Yuan, Proutiere, and Shi, 2021; Li, Yi, and Xie,

2021b; Yi et al., 2020). A common theme of the previous literature is the idea that agents can only

49

access partial information of time-varying global loss functions, thus requiring local information

exchange between neighboring agents. To the best of our knowledge, our paper is the first in this

literature to provide competitive ratio bounds or consider spatial and temporal costs, e.g., switching

costs.

Online Convex Optimization (OCO) with Switching Costs. Online convex optimization with

switching costs was first introduced in (Lin et al., 2012) to model dynamic power management in

data centers. Different forms of cost functions have been studied since then, e.g., (Chen, Goel,

and Wierman, 2018; Shi et al., 2020; Lin, Goel, and Wierman, 2020), in order to fit a variety

of applications from video streaming (Joseph and Veciana, 2012) to energy markets (Kim and

Giannakis, 2017). The quadratic form of switching cost was first proposed in (Goel and Wierman,

2019) and yields connections to optimal control, which were further explored in (Lin et al., 2021).

The literature has focused entirely on the centralized, single-agent setting. Our paper contributes

to this literature by providing the first analysis of switching costs in a networked setting with a

decentralized algorithm.

Perturbation Analysis of Online Algorithms. Sensitivity analysis of convex optimization prob-

lems studying the properties of the optimal solutions as a function of the problem parameters has

a long and rich history (see (Fiacco and Ishizuka, 1990) for a survey). The works that are most

related to ours consider the specific class of problems where the decision variables are located on

a horizon axis, or consider a general network and aim to show the impact of a perturbation on a

decision variable is exponentially decaying in the graph distance from that variable, e.g., (Shin,

Anitescu, and Zavala, 2021; Shin and Zavala, 2021; Lin et al., 2021). The idea of using expo-

nentially decaying perturbation bounds to analyze an online algorithm is first proposed in (Lin

et al., 2021), where only the temporal dimension is considered. This style of perturbation analysis

is key to the proof of our competitive bounds and, to prove our competitive bounds, we provide

new perturbation results that separate the impact of spatial and temporal costs in a network for the

first time. Additionally, our analysis is enabled by new results on the decay rate of a product of

exponential decay matrices, which may be of independent interest.

50

Notation. A complete notation table can be found in Section A.1. Here we describe the most

commonly used notation. In a graph G = (V , E), we use dG(v, u) to denote the distance (i.e. the

length of the shortest path) between two vertices v and u. N r
v denotes the r-hop neighborhood of

vertex v, i.e., N r
v := {u ∈ V | dG(u, v) ≤ r}. ∂N r

v denotes the boundary of N r
v , i.e., ∂N r

v =

N r
v \ N r−1

v . We generalize these notations to temporal-spatial graphs as follows. Let × denote

the Cartesian product of sets, and N
(k,r)
(t,v) := {τ ∈ Z | t ≤ τ < t + k} × N r

v , ∂N
(k,r)
(t,v) :=

N
(k,r)
(t,v) \ N (k−1,r−1)

(t,v) . For any subset of vertices S, we use E(S) to denote the set of all edges that

have both endpoints in S, and define S+ = {u ∈ V | ∃v ∈ S s.t. dist(u, v) ≤ 1} (i.e., S and

its 1-hop neighbors). Let ∆ denote the maximum degree of any vertex in G; h(r) := supv |∂N r
v |.

We say a function is in C2 if it is twice continuously differentiable. We use ∥·∥ to denote the

(Euclidean) 2-norm for vectors and the induced 2-norm for matrices.

3.2 Problem Setting

We consider a set of agents in a networked system where each agent individually decides on an

action at each time step and the agents cooperatively seek to minimize a global cost over a finite

time horizon H . Specifically, we consider a graph G = (V , E) of agents. Each vertex v ∈ V

denotes an individual agent, and two agents v and u interact with each other if and only if they are

connected by an undirected edge (v, u) ∈ E . At each time step t = 1, 2, . . . , H , each agent v picks

an n-dimensional local action xvt ∈ Dv
t , where n is a positive integer and Dv

t ⊂ Rn is a convex set

of feasible actions. The global action at time t is the vector of agent actions xt = {xvt }v∈V , and

incurs a global state cost, which is the sum of three types of local cost functions:
• Node costs: Each agent v incurs a time-varying node cost f v

t (x
v
t), which characterizes agent v’s

local preference for its local action xvt .

• Temporal interaction costs: Each agent v incurs a time-varying temporal interaction cost

cvt (x
v
t , x

v
t−1), that characterizes how agent v’s previous local action xvt−1 interacts with its cur-

rent local action xvt .

51

• Spatial interaction costs: Each edge e = (v, u) incurs a time-varying spatial interaction cost1

set (x
v
t , x

u
t). This characterizes how agents v and u’s current local actions affect each other.

In our model, the node cost is the part of the cost that only depends the agent’s current local ac-

tion. If the other two types of costs are zero functions, each agent will trivially pick the minimizer

of its node cost. Temporal interaction costs encourage agents to choose a local action that is “com-

patible” with their previous local action. For example, a temporal interaction could be a switching

cost which penalizes large deviations from the previous action, in order to make the trajectory of

local actions “smooth”. Such switching costs can be found in work on single-agent online convex

optimization, e.g., (Chen, Goel, and Wierman, 2018; Goel et al., 2019; Lin, Goel, and Wierman,

2020). Spatial interaction costs, on the other hand, can be used to enforce some collective behav-

ior among the agents. For example, spatial interaction can model the probability that one agent’s

actions affects its neighbor’s actions in diffusion processes on social networks (Kempe, Kleinberg,

and Tardos, 2015); or model interactions between complement/substitute products in multiproduct

pricing (Candogan, Bimpikis, and Ozdaglar, 2012).

Our analysis is based on standard smoothness and convexity assumptions on the local cost

functions (see Section A.1 for definitions of smoothness and strong convexity):

Assumption 3.2.1. For µ > 0, ℓf < ∞, ℓT < ∞, ℓS < ∞, the local cost functions and feasible

sets for all t, v, e satisfy:

• f v
t : Rn → R≥0 is µ-strongly convex, ℓf -smooth, and in C2;

• cvt : Rn × Rn → R≥0 is convex, ℓT -smooth, and in C2;

• set : Rn × Rn → R≥0 is convex, ℓS-smooth, and in C2;

• Dv
t ⊆ Rn satisfies int(Dv

t) ̸= ∅ and can be written as Dv
t := {xvt ∈ Rn | (gvt)i(xvt) ≤ 0,∀1 ≤

i ≤ mv
t }, where each (gvt)i : Rn → R is a convex function in C2.

Note that the assumptions above are common, even in the case of single-agent online convex

optimization, e.g., see (Li, Qu, and Li, 2020; Shi et al., 2020; Lin et al., 2021).

1Since e is an undirected edge, the order we write the two inputs (the action of v and the action of u) does not
matter. Note that set can be asymmetric for agents v and u, e.g., set (x

v
t , x

u
t) = set (x

u
t , x

v
t) = ∥xv

t + 2xu
t ∥

2.

52

It is useful to separate the global stage costs into two parts based on whether the cost term de-

pends only on the current global action or whether it also depends on the previous action. Specif-

ically, the part that only depends on the current global action xt is the sum of all node costs and

spatial interaction costs. We refer to this component as the (global) hitting cost and denote it as

ft(xt) :=
∑
v∈V

f v
t (x

v
t) +

∑
(v,u)∈E

s
(v,u)
t (xvt , x

u
t).

The rest of the global stage cost involves the current global action xt and the previous global action

xt−1. We refer to it as the (global) switching cost and denote it as

ct(xt, xt−1) =
∑
v∈V

cvt (x
v
t , x

v
t−1).

Combining the global hitting and switching costs, the networked agents work cooperatively to

minimize the total global stage costs in a finite horizon H starting from a given initial global

action x0 at time step 0: cost(ALG) :=
∑H

t=1 (ft(xt) + ct(xt, xt−1)) , where ALG denotes the

decentralized online algorithm used by the agents. The offline optimal cost is the clairvoyant

minimum cost one can incur on the same sequence of cost functions and the initial global action

x0 at time step 0, i.e., cost(OPT) := minx1:H

∑H
t=1 (ft(xt) + ct(xt, xt−1)) .

We measure the performance of any online algorithm ALG by the competitive ratio (CR),

which is a widely-used metric in the literature of online optimization, e.g., (Chen, Goel, and Wier-

man, 2018; Goel et al., 2019; Argue, Gupta, and Guruganesh, 2020).

Definition 3.2.1. The competitive ratio of online algorithmALG is the supremum of cost(ALG)/cost(OPT)

over all possible problem instances, i.e.,CR(ALG) := supG,H,x0,{fv
t ,c

v
t ,s

e
t ,D

v
t } cost(ALG)/cost(OPT).

Finally, we define the partial hitting and switching costs over subsets of the agents. In partic-

ular, for a subset of agents S ⊆ V , we denote the joint action over S as xSt := {xvt | v ∈ S} and

53

u1

u2

v

u3

u4

t+ 2

u1

u2

v

u3

u4

t+ 1

u1

u2

v

u3

u4

t
fv
t

cvt

set

u1

u2

v

u3

u4

t− 1

history
future

Figure 3.1: Illustration of information model

define the partial hitting cost and partial switching cost over S as

fS
t (x

S+

t) :=
∑
v∈S

f v
t (x

v
t) +

∑
(v,u)∈E(S+)

s
(v,u)
t (xvt , x

u
t),

cSt (x
S
t , x

S
t−1) :=

∑
v∈S

cvt (x
v
t , x

v
t−1), (3.1)

This notation is useful for presenting decentralized online algorithms where the optimizations are

performed over the r-hop neighborhood of each agent.

3.2.1 Information Availability Model

We assume that each agent has access to local cost functions up to a prediction horizon k into

the future, for themselves and their neighborhood up to a communication radius r. In more detail,

recall that N r
v denotes the r-hop neighborhood of agent v, i.e., N r

v := {u ∈ V | dG(u, v) ≤ r}.

Before picking a local action xvt at time t, agent v can observe k steps of future node costs, temporal

interaction costs, and spatial interaction costs within its r-hop neighborhood, {{(fu
τ , c

u
τ) | u ∈

N r
v}, {seτ | e ∈ E(N r

v)}}t≤τ<t+k , and the previous local actions in N r
v : {xut−1 | u ∈ N r

v}.

We provide an illustration of the local cost functions known to agent v at time t with k = 2,

r = 1, V = {u1, u2, v, u3, u4} and E = {(u1, u2), (u2, v), (v, u3), (u2, u3), (u3, u4)}) in Figure

3.1. In the figure, the black circles, blue lines, and orange lines denote the node costs, temporal

54

interaction costs, and spatial interaction costs respectively. The known functions are marked by

solid lines. Note that, in addition to the local cost functions, agent v also knows the local actions

in N r
v at time t− 1, which are not illustrated in the figure.

To simplify notation, in cases when the prediction horizon exceeds the whole horizon length

H , we adopt the convention that f v
t (x

v
t) =

µ
2
∥xvt ∥

2, cvt ≡ set ≡ 0 and Dv
t = Rn for t > H . These

extended definitions do not affect our original problem with horizon H .

As in many previous works studying the power of predictions in the online optimization litera-

ture, e.g., (Yu et al., 2020; Lin, Goel, and Wierman, 2020; Li, Qu, and Li, 2020; Lin et al., 2021),

we assume the k-step predictions of cost functions are exact and leave the case of inexact predic-

tions for future work. This model is reasonable in the case where the predictors can be trained to

be very accurate for the near future. Although we focus on exact predictions, we also discuss how

to extend this available information model to include inexact predictions in Section 3.4.3.

3.3 Algorithm and Main Results

Algorithm 2 Localized Predictive Control (for agent v)
Parameters: k and r.
for t = 1 to H do

Receive information {xut−1 | u ∈ N r
v} and

{{(fu
τ , c

u
τ) | u ∈ N r

v}, {seτ | e ∈ E(N r
v)}}t≤τ<t+k.

Choose local action xvt to be the (t, v)-th element in

ψ
(k,r)
(t,v)

(
{xut−1 |u∈N r

v},
{
θuτ |(τ, u)∈∂N

(k,r)
(t,v)

})
the solution of (3.2), where θuτ := argminy∈Du

τ
fu
τ (y).

end for

In this section we present our main results, which show that our simple and practical LPC algo-

rithm can achieve an order-optimal competitive ratio for the networked online convex optimization

problem. We first introduce LPC in Section 3.3.1. Then, we present the key idea that leads to our

competitive ratio bound: a novel perturbation-based analysis (Section 3.3.2). Next, we use our

55

perturbation analysis to derive bounds on the competitive ratio in Section 3.3.3. Finally, we show

that the competitive ratio of LPC is order-optimal in Section 3.3.4. An outline that highlights the

major novelties in our proofs can be found in Section 3.4.

3.3.1 Localized Predictive Control (LPC)

The design of LPC is inspired by the classical model predictive control (MPC) framework (Gar-

cia, Prett, and Morari, 1989), which leverages all available information at the current time step to

decide the current local action “greedily”. In our context, when an agent v wants to decide its action

xvt at time t, the available information includes previous local actions in the r-hop neighborhood

and k-step predictions of all local node costs, temporal/spatial interaction costs. The boundaries of

all available information, which are formed by {t− 1} ×N r
v and ∂N (k,r)

(t,v) , are illustrated in Figure

3.2 where the underlying graph is replicated over the time dimension. The orange node marks the

decision variable at (t, v). The green part denotes the decisions in N r
v at time (t − 1). The blue

“U” shape denotes the boundary of available information for node v at time t. Edge e := (v, q).

The pseudocode for LPC is presented in Algorithm 2. For each agent v at time step t, LPC

fixes the actions on the boundaries of available information and then solves for the optimal actions

inside the boundaries. Specifically, define ψ(k,r)
(t,v)

(
{yut−1 | u ∈ N r

v}, {zuτ | (τ, u) ∈ ∂N
(k,r)
(t,v) }

)
as the

optimal solution of the problem

min
t+k−1∑
τ=t

(
f (Nr−1

v)
τ

(
x(N

r
v)

τ

)
+ c(N

r
v)

τ

(
x(N

r
v)

τ , x
(Nr

v)
τ−1

))
s.t. xut−1 = yut−1,∀u ∈ N r

v ,

xuτ = zuτ ,∀(τ, u) ∈ ∂N
(k,r)
(t,v) , (3.2)

xuτ ∈ Du
τ ,∀(τ, u) ∈ N

(k−1,r−1)
(t,v) ,

where the partial hitting cost and partial switching cost fS
τ and cSτ for a subset S of agents were

defined in (3.1). Note that ψ(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
is a matrix of actions (in Rn) indexed by (τ, u) ∈

N
(k−1,r−1)
(t,v) . (When the context is clear, we use the shorthand ψ

(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
.) Once the

56

parameters {yut−1} and {zuτ } are fixed, the agent v can leverage its knowledge of the local cost

functions to solve (3.2).

t+ 2

t+ 1

t
(t, v)

fv
t

cvt

set

t− 1
v qr = 2

history
future

Figure 3.2: Illustration of LPC with k = 3, r = 2 on a line graph.

LPC fixes the parameters {yut−1} to be {xut−1}, which are the previous local actions in N r
v , and

fixes the parameters {zuτ } to be the minimizers of local node cost functions at nodes in ∂N (k,r)
(t,v) . The

selection of the parameters at nodes in ∂N (k,r)
(t,v) plays a similar role as the terminal cost of classical

MPC in centralized settings.

For a single-agent system, MPC-style algorithms are perhaps the most prominent approach

for optimization-based control (Garcia, Prett, and Morari, 1989) because of their simplicity and

excellent performance in practice. LPC extends the ideas of MPC to a multi-agent setting in a

networked system by leveraging available information in both the temporal and spatial dimensions,

whereas classical MPC focuses only on the temporal dimension. This change leads to significant

technical challenges in the analysis.

3.3.2 Perturbation Analysis

The key idea underlying our analysis of LPC is that the impact of perturbations to the actions

at the boundaries of the available information of an agent decay quickly, in fact exponentially fast,

in the distance of the boundary from the agent. This quick decay means that small errors cannot

build up to hurt algorithm performance.

In this section, we formally study such perturbations by deriving several new results which

generalize perturbation bounds for online convex optimization problems on networks. Our bounds

57

capture both the effect of temporal interactions as well as spatial interactions between agent ac-

tions, which is a more challenging problem compared to previous literature which considers either

temporal interactions (Lin et al., 2021) or spatial interactions (Shin, Anitescu, and Zavala, 2021)

but not both simultaneously.

More specifically, recall from Section 3.3.1 that for each agent v at time t, LPC solves an

optimization problem ψ
(k,r)
(t,v) where actions on the boundaries of available information (i.e., {t −

1} × N r
v and ∂N (k,r)

(t,v)) are fixed. By the principle of optimality, we know that if the actions on

the boundaries are selected to be identical with the offline optimal actions, the agent can decide its

current action optimally by solving ψ(k,r)
(t,v) . However, due to the limits on the prediction horizon and

communication radius, LPC can only approximate the offline optimal actions on the boundaries

(we do this by using the minimizer of node cost functions). The key idea to our analysis of the

optimality gap of LPC is by first asking: If we perturb the parameters of ψ(k,r)
(t,v) , i.e., the actions on

the information boundaries, how large is the resulting change in a local action xv0t0 for (t0, v0) ∈

N
(k,r)
(t,v) \ ∂N (k,r)

(t,v) (in the optimal solution to (3.2))?

Ideally, we would like the above impact to decay exponentially fast in the graph distance be-

tween node v0 and the communication boundary for node v (i.e., r minus the graph distance be-

tween v0 and v), as well as in the temporal distance between t0 and t. We formalize this goal

as exponentially decaying local perturbation bound in Definition 3.3.1. We then show in Theo-

rem 3.3.1 and Theorem 3.3.2 that such bounds hold under appropriate assumptions.

Definition 3.3.1. Define xv0t0 := ψ
(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
(t0,v0)

, and (xv0t0)
′ := ψ

(k,r)
(t,v)

(
{(yut−1)

′}, {(zuτ)′}
)
(t0,v0)

for arbitrary boundary parameters {(yut−1)}, {(zuτ)} and {(yut−1)
′}, {(zuτ)′}. We say an exponen-

tially decaying local perturbation bound holds if for non-negative constants

C1 = C1(ℓT/µ, (∆ℓS)/µ) <∞,

C2 = C2(ℓT/µ, (∆ℓS)/µ) <∞,

ρT = ρT (ℓT/µ) < 1, ρS = ρS((∆ℓS)/µ) < 1,

58

for any (t0, v0) and arbitrary boundary parameters {(yut−1)
′}, {(zuτ)′}, {(yut−1)}, {(zuτ)}, we have:

∥∥xv0t0 − (xv0t0)
′∥∥

≤ C1

∑
(u,τ)∈∂N(k,r)

(t,v)

ρ
|t0−τ |
T ρ

dist(v0,u)
S ∥zuτ − (zuτ)

′∥

+ C2

∑
u∈Nr

v

ρ
t0−(t−1)
T ρ

dist(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥ .

Perturbation bounds were recently found to be a promising tool for the analysis of adaptive

control and online optimization models (Lin et al., 2021). The exponentially decaying local per-

turbation bound defined above is similar in spirit to two recent results, i.e., (Lin et al., 2021)

derives a similar perturbation bound for line graphs and (Shin, Anitescu, and Zavala, 2021) for

general graphs with local perturbations. In fact, one may attempt to derive such a bound by ap-

plying these results directly; however, a major weakness of the direct approach is that it will yield

ρT = ρS , i.e., it cannot distinguish between spatial and temporal dependencies, and the bound de-

teriorates as max{ℓT/µ, ℓS/µ} increases. For instance, even if the temporal interactions are weak

(i.e., ℓT/µ ≈ 0), ρT = ρS can still be close to 1 if ℓS/µ is large, leading to a large slack in the

perturbation bound for small prediction horizons k.

We overcome this limitation by redefining the action variables. Specifically, to focus on the

temporal decay effect, we regroup all local actions in {τ} × N r
v as a “large” decision variable for

time τ (in Figure 3.1 we would group each horizontal blue plane in N r
v to create a new variable).

After regrouping, we have (k + 1) “large” decision variables located on a line graph, where the

strength of the interactions between consecutive variables is upper bounded by ℓT . On the other

hand, to focus on spatial decay, we regroup all local actions in {τ | t − 1 ≤ τ < t + k} × {v} as

a decision variable (in Figure 3.1 we would group each vertical orange line connecting from t− 1

to t + k − 1 to create a new variable). After regrouping, we have |V| “large” decision variables

located on G, where the strength of the interactions between two neighbors is upper bounded by

ℓS . Averaging over the two perturbation bounds (since we have two valid bounds, their average is

59

also a valid bound) provides the following exponentially decaying local perturbation bound (see

(A.4) in Section A.2.1 for details of the proof).

Theorem 3.3.1. Under Assumption 3.2.1, the exponentially decaying local perturbation bound

(Definition 3.3.1) holds with C1 = C2 =
2
√
∆ℓSℓT
µ

, and

ρT =

√
1− 2

(√
1 + (2ℓT/µ) + 1

)−1

,

ρS =

√
1− 2

(√
1 + (∆ℓS/µ) + 1

)−1

.

Note that, as ℓT/µ (respectively ℓS/µ) tends to zero, ρT (respectively ρS) in Theorem 3.3.1 also

tends to zero with the scaling ρT = Θ(
√
ℓT/µ) (resp. ρS = Θ(

√
ℓS/µ)).

Next, we provide a tighter bound (through a refined analysis) for the regime where µ is much

larger than ℓT , ℓS . Specifically, we establish a bound with the scaling ρT = Θ(ℓT/µ) and ρS =

Θ(ℓS/µ). Again, it is not possible to obtain this result from previous perturbation bounds in the

literature.

Theorem 3.3.2. Recall h(γ) := supv∈V |∂Nγ
v |. Given any b1, b2 > 0, define a =

∑
γ≥0(

1+b1
1+b1+b2

)γh(γ),

ã =
∑

γ≥0(
1

1+b1
)γh(γ) and γS =

√
1+∆ℓS/µ−1√
1+∆ℓS/µ+1

. Suppose Assumption 3.2.1 holds, a, ã < ∞ and

µ ≥ max{8ãℓT ,∆ℓS(b1 + b2)/4}. Then the exponentially decaying local perturbation bound

(Definition 3.3.1) holds with C1 = C2 = max{ a2

2ã(1−4ãlT /µ)
, 2a2∆ℓS/µ
γS(1+b1+b2)(1−4ãlT /µ)

}

ρT =
4ãℓT
µ

, ρS = (1 + b1 + b2)γS.

Note that ρT , ρS < 1 follow from the condition on µ. Also observe that γS = Θ(ℓS/µ) as

ℓS/µ→ 0.

The main difference between this result and Theorem 3.3.1 is, instead of dividing and redefin-

ing the action variables, we explicitly write down the perturbations along spatial edges and along

temporal edges in the original temporal-spatial graph. We observe that per-time-step spatial in-

teractions are characterized by a banded matrix and that the inverse of the banded matrix exhibits

60

exponential correlation decay, which implies the exponentially decaying local perturbation bounds

holds if the perturbed boundary action and the impacted local action we consider are at the same

the time step. However, for a multi-time-step problem, to characterize the impact at a local action

at some time step due to perturbation at a boundary action at a different time step is a difficult

problem. The main technical contribution of this proof is to establish that a product of exponen-

tially decaying matrices still satisfies exponential decay under the conditions in Theorem 3.3.2. In

addition, we obtain a tight bound on the decay rate of the product matrix (see Lemma 3.4.3), which

may be of independent interest.

Our condition on a, ã < ∞ and µ > max{8ãℓT ,∆ℓS(b1 + b2)/4} characterizes a tradeoff

between the allowable neighborhood boundary sizes h(γ), and how large µ needs to be compared

to the interaction cost parameters ℓT , ℓS . At one extreme, if h(γ) = ∆γ , then by setting b1 = 2∆−1

and b2 = 4∆2 − 2∆, we obtain a = ã = 2 but must make a strong requirement on µ, namely,

µ > max{16ℓT ,∆3ℓS(1 − 1
4∆2)}. At the other extreme, if h(γ) ≤ O(poly(γ)) (as is the case

if G is a grid), then a, ã < ∞ holds for any b1, b2 > 0, we can impose a weaker requirement

on µ: for example, taking b1 = b2 = 1 yields a requirement µ > max{8ãℓT ,∆ℓS/2} (where

ã =
∑

γ≥0(
1
2
)γh(γ)); which grows only linearly in ∆, and compares favorably with the µ > Ω(∆3)

requirement which arose earlier.

Proofs of Theorem 3.3.1 and Theorem 3.3.2 are in Section A.2.

3.3.3 From Perturbations to Competitive Bounds

We now present our main result, which bounds the competitive ratio of LPC using the expo-

nentially decaying local perturbation bounds defined in the previous section.

Before presenting the result, we first provide some intuition as to why the perturbation bounds

are useful for deriving the competitive ratio bound. Specifically, to bound the competitive ratio

requires bounding the gap between LPC’s trajectory and the offline optimal trajectory. This gap

comes from the following two sources: (i) the per-time-step error made by LPC due to its limited

prediction horizon and communication radius; and (ii) the cumulative impact of all per-time-step

61

errors made in the past. Intuitively, the local perturbation bounds we derive in Section 3.3.2 allow

us to bound the per-step error made jointly by all agents in LPC, and then we use the perturbation

bounds from (Lin et al., 2021) help us to bound the second type of cumulative errors.

We present our main result in the following theorem and defer a proof outline to Section 3.4.2.

A formal proof can be found in Section A.3.3.

Theorem 3.3.3. Suppose Assumption 3.2.1 and the exponentially decaying local perturbation

bound in Definition 3.3.1 holds. Define ρG := 1 − 2 ·
(√

1 + (2ℓT/µ) + 1
)−1

, and define

C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S . If parameters r and k of LPC are large enough such that

O
(
h(r)2 · ρ2rS + C3(r)

2 · ρ2kT · ρ2kG
)
≤ 1

2
,

then the competitive ratio of LPC is upper bounded by

1 +O
(
h(r)2 · ρrS

)
+O

(
C3(r)

2 · ρkT
)
.

Here the O(·) notation hides factors that depend polynomially on ℓf/µ, ℓT/µ, and (∆ℓS)/µ; see

Section A.3.3.

Recall that h(r) denotes the size of the largest r-hop boundary in G. The bound in Theo-

rem 3.3.3 implies that if h(r) can be upper bounded by poly(r) · ρ−
(1−ι)r

2
S for some constant ι > 0,

the competitive ratio of LPC can be upper bounded by 1 +O(ριrS) +O(ρkT), because C3(r) can be

upper bounded by some constant that depends on ι in this case. Therefore, the competitive ratio

improves exponentially with respect to the prediction horizon k and communication radius r.

Note that the assumption h(r) ≤ poly(r) ·ρ−
(1−ι)r

2
S is not particularly restrictive: For commonly

seen graphs like an m-dimensional grid, h(r) is polynomial in r, so ι = 1 works. More generally,

for graphs with bounded degree ∆ < ∞, there exists δ = δ(∆) > 0 such that, for any graph with

node degrees bounded above by ∆ and any ℓS/µ ≤ δ, we have ρS (from either Theorem 3.3.1

or Theorem 3.3.2) will be small enough that, e.g., h(r) ≤ ∆r = O(ρ
− r

4
S); i.e., ι = 1/2 works.

62

Thus we can eliminate the dependence on h(r) and C3(r) in the competitive ratio by making

additional assumptions on ℓS/µ. This result is stated in Corollary 3.3.4 whose proof is deferred

to Section A.3.4. Corollary 3.3.4 is a corollary of Theorem 3.3.3 and Theorem 3.3.2. We use the

bound in Theorem 3.3.2 and not the bound in Theorem 3.3.1 because Theorem 3.3.2 is tighter

when ℓS/µ is small.

Corollary 3.3.4. Suppose Assumption 3.2.1 and inequalities ℓS/µ ≤ ∆−7, and ℓT/µ ≤ 1/16

hold. If r and k satisfy that O
(
ρrS + ρ2kT · ρ2kG

)
≤ 1

2
, then the competitive ratio of LPC is upper

bounded by 1+O
(
ρ
r/2
S

)
+O

(
ρkT
)
, where ρS and ρT are given by Theorem 3.3.2 with parameters

b1 = 2∆ − 1 and b2 = 4∆2 − 2∆. The O(·) notation hides factors that depend polynomially on

ℓf/µ, ℓT/µ, and (∆ℓS)/µ, see Section A.3.4 for the full constants.

3.3.4 A Lower Bound

We show that the competitive ratio in Theorem 3.3.3 is order-optimal by deriving a lower

bound on the competitive ratio of any decentralized online algorithm with prediction horizon k

and communication radius r. The specific constants and a proof of Theorem 3.3.5 can be found in

Section A.4.

Theorem 3.3.5. When ∆ ≥ 3, the competitive ratio of any decentralized online algorithm is lower

bounded by 1 + Ω(λkT) + Ω(λrS). Here, the decay factor λT is given by

λT =

(
1− 2

(√
1 + (4ℓT/µ) + 1

)−1
)2

.

The decay factor λS is given by

λS =

(∆ℓS/µ)

3+3(∆ℓS/µ)
if ∆ℓS/µ < 48

max

(
(∆ℓS/µ)

3+3(∆ℓS/µ)
,
(
1− 4

√
3 · (∆ℓS/µ)−

1
2

)2)
otherwise.

The Ω(·) notation hides factors that depend polynomially on 1/µ, ℓT , and ℓS .

63

While Theorem 3.3.5 highlights that Theorem 3.3.3 is order-optimal, the decay factors λT , λS

in the lower bound differ from their counterparts ρT , ρS in the upper bound for LPC. To understand

the magnitude of the difference, we compare the bounds on graphs with bounded degree ∆. The

decay factors are a function of the interaction strengths, which are measured by ℓS/µ and ℓT/µ.

Our lower bound on the temporal decay factor λT and upper bound ρT only differ by a constant

factor in the log-scale, and the same holds for the lower/upper bound in terms of the spatial decay

factor.

To formalize this comparison, we derive a resource augmentation bound that bounds the addi-

tional “resources” that LPC needs to outperform the optimal decentralized online algorithm.2 Here

the prediction horizon k and the communication radius r can be viewed as the “resources” available

to a decentralized online algorithm in our setting. We ask how large do k and r given to LPC need

to be, to ensure that it beats the optimal decentralized online algorithm given a communication

radius r∗ and prediction horizon k∗?

We formally state our result in the following corollary and provide a proof in Section A.5.

Corollary 3.3.6. Under Assumption 3.2.1, suppose the optimal decentralized online algorithm

achieves a competitive ratio of c(k∗, r∗) with prediction horizon k∗ and communication radius r∗.

Additionally assume that h(γ) = Õ
(
ρ
−γ/4
S

)
and ∆ ≥ 3, where the Õ notation hides a factor

that depends polynomially on γ. As k∗, r∗ → ∞, LPC achieves a competitive ratio at least as

good as that of the optimal decentralized online algorithm when LPC uses a prediction horizon of

k = (4 + o(1))k∗ and a communication radius of r = (32 + o(1))r∗.

Finally, note that we establish Corollary 3.3.6 based on the local perturbation bound in Theo-

rem 3.3.1 rather than Theorem 3.3.2 for simplicity, because it does not make assumptions on the

relationship among µ, ℓT , and ℓS . We expect that Theorem 3.3.2 can give better resource augmen-

tation bounds under stronger assumptions on µ, ℓT , and ℓS .

2See, e.g., Roughgarden (2020), for an introduction to this flavor of bounds for expressing the near-optimality of
an algorithm.

64

3.4 Proof Outline

In this section, we outline the major novelties in our proofs for the tighter exponentially de-

caying local perturbation bound in Theorem 3.3.2 and the main competitive ratio bound for LPC

in Theorem 3.3.3. The full details of the proofs of these and other results are in the appendices

following this one.

3.4.1 Refined Analysis of Perturbation Bounds

We begin by outlining the four-step structure we use to prove Theorem 3.3.2. Our goal is to

highlight the main ideas, while deferring a detailed proof to Section A.2.2.

Step 1. Establish first order equations

We define h as the objective function in (3.2), where actions on the boundary are fixed as

{zuτ |(τ, u) ∈ ∂N
(k,r)
(t,v) } and the actions at time t − 1 are fixed as {xut−1|u ∈ N r

v}. We denote those

fixed actions as system parameter

ζ := (x
(Nr

v)
t−1 , {zuτ |(τ, u) ∈ ∂N

(k,r)
(t,v) }).

To avoid writing the time index t repeatedly, we use x̂i to denote actions at time t − 1 + i for

0 ≤ i ≤ k. The main lemma in for this step is the following.

Lemma 3.4.1. Given θ ∈ R, system parameter ζ and perturbation vector e, we have

d

dθ
ψ(ζ + θe) =M−1

(
R(1)e0 +R(k−1)ek +

k−1∑
τ=1

K(τ)eτ

)

where

M = ∇2
x̂1:k−1

h(ψ(ζ + θe), ζ + θe),

R(1) := −∇x̂0∇x̂1:k−1
h(ψ(ζ + θe), ζ + θe),

65

R(k−1) := −∇x̂k
∇x̂1:k−1

h(ψ(ζ + θe), ζ + θe),

K(τ) := −∇
x̂
(∂Nr

v)
τ

∇x̂1:k−1
h(ψ(ζ + θe), ζ + θe).

The proof for Lemma 3.4.1 using first order conditions at the global optimal solution for convex

function h(·, ζ + θe) and then takes derivatives with respect to to θ. See Section A.2.2 for a proof.

Step 2: Exploit the structure of matrix M

M is a hierarchical block matrix with the first level of dimension (k − 1) × (k − 1). When

fixing the first level indices (i.e. time indices) in M , the lower level matrices are non-zero only if

the difference in the time indices is ≤ 1. Hence we decompose M to a block diagonal matrix D

and tri-diagonal block matrix A with zero matrix on the diagonal. Each diagonal block in D is a

graph-induced banded matrix, which captures the Hessian of h in a single time step. Denote each

diagonal block as Di,i for 1 ≤ i ≤ k − 1. Further, for 1 ≤ i ≤ k − 1, Ai,i−1 (similarly Ai,i+1)

captures the temporal correlation of individual’s action between consecutive time steps. Given this

decomposition,

M−1 = (D + A)−1 = D−1(I + AD−1)−1.

For the ease of notation, we denote I + AD−1 by P. Note that P is not necessarily a symmetric

matrix. Nevertheless, under technical conditions on P ’s eigenvalues, we have the following power

series expansion (Shin, Zavala, and Anitescu, 2020). The details are presented in the Lemma 3.4.2

in Section A.2.2.

Lemma 3.4.2. Under the condition µ > 2ℓT , we have

P−1 =
∑
ℓ≥0

(I − P)ℓ. (3.3)

To understand the the power series in (3.3), consider the special case where each block Ai,j =

ℓT · I , and Di,i = Q. Denote P − I as J , which is equivalent to AD−1. Then, we have Ji,i = 0,

Ji,i−1 = Ji,i+1 = ℓTQ
−1, Ji,j = 0 when |i− j| > 1. Intuitively, J captures the “correlation over

66

actions” after one time step. More generally, for ℓ ≥ 0 and any two time indices τ ′, τ ,

J ℓ
τ ′,τ = ℓℓTQ

−ℓb(ℓ, τ, τ ′),

where b(ℓ, τ, τ ′) is a constant depending on ℓ, τ, τ ′ and equal to zero if ℓ < |τ − τ ′|.

Given that Q is a graph-induced banded matrix, Q−1 satisfies exponential-decay properties,

which makes it plausible that Q−ℓ is an exponential decay matrix with a slower rate.

For the general case, we need to bound terms similar to
∥∥(D−1

i1,i1
D−1

i2,i2
· · ·D−1

iℓ,iℓ
)u,v
∥∥. This is

the goal of Step 3.

Step 3: Properties for general exponential-decay matrices

The goal of this step is to establish that a product of exponential decay matrices still exhibits

exponential decay property under technical conditions about the underlying graph.

Lemma 3.4.3. Given any graph M = (V ′, E ′) and integers d, ℓ ≥ 1, suppose block matrices

Ai ∈ R|V ′|d×|V ′|d all satisfy exponential decay properties, i.e. exists Ci ≥ 0, and 0 ≤ λ < 1, s.t.,

∥(Ai)u,q∥ ≤ Ciλ
dM(u,q) for any node u, q ∈ M.

Select some δ > 0 s.t. λ′ = λ+ δ < 1. If ã :=
∑∞

k=0(
λ
λ′)

k(supu∈V ′ |∂Nk
u |) <∞, then

∏ℓ
i=1Ai

satisfies exponential decay properties with decay rate λ′, i.e.,

∥∥∥∥∥(
ℓ∏

i=1

Ai)u,v

∥∥∥∥∥ ≤ C ′(λ′)
dM (u,v)

.

where C ′ = (ã)ℓ
∏ℓ

i=1Ci.

A proof of Lemma 3.4.3 can be found in the Section A.2.2.

67

Step 4: Establish correlation decay properties of matrix M

The last step of the proof is to study the properties of M . To accomplish this, we first show

that, for time indices i, j ≥ 1, J ℓ has the following properties:

• (J ℓ)i,j = 0 if ℓ < |i− j| or ℓ− |i− j| is odd.

• (J ℓ)i,j is a summation of terms
∏ℓ

k=1Ajk,ikD
−1
ik,ik

and the number of such terms is bounded

by
(

ℓ
(ℓ−|i−j|)/2

)
.

We formally state and prove the above observation in Lemma A.2.2. We can further use Theorem

3.4.3 on block matrices Ajk,ikD
−1
ik

, which gives the following lemma.

Lemma 3.4.4. Recall γS :=

√
1+(∆ℓS/µ)−1√
1+(∆ℓS/µ)+1

. Select δ > 0 s.t. γ′S = γS + δ < 1 and b :=∑
γ≥0(

γS
γ′
S
)γh(γ). Given ℓ, i, j ≥ 1 and u, q ∈ V , we have

∥∥((J ℓ)i,j)u,q
∥∥ ≤

(
ℓ

(ℓ− |i− j|)/2

)
(b
2ℓT
µ

)ℓ(γ′S)
dist(u,q).

Intuitively speaking, Lemma 3.4.4 bounds the correlations over actions for node u at time step

t− 1 + i and action for node q at time step t− 1 + j. We present its proof in the Section A.2.2.

Recall that, for 1 ≤ i, j ≤ k − 1,

M−1
i,j = D−1

i,i

∑
ℓ≥0

(−J)ℓi,j.

With the exponential decaying bounds on matrix J ℓ, we can thus conclude Theorem 3.3.2 by

following a similar procedure as in the proof of Theorem 3.1 of (Lin et al., 2021). We present the

details in Lemma A.2.3.

3.4.2 From Perturbation to Competitive Ratio

We now show how to use the result proven in the previous section to prove our competitive ratio

bounds in Theorem 3.3.3. Our starting point is the assumption that the exponentially decaying local

68

perturbation bound in Definition 3.3.1 holds for some C1, C2 > 0 and ρS, ρT ∈ [0, 1), which is

established using the proof approach outlined in the Section 3.3.3.

As we discussed in Section 3.3.3, our proof contains two key parts: (i) we bound the per-time-

step error of LPC (Lemma 3.4.5); and (ii) show that the per-time-step error does not accumulate to

be unbounded (Theorem 3.4.2).

A key observation that enables the above analysis approach is that the aggregation of local per-

time-step error made by each agent at xvt can be viewed as a global per-time-step error in the joint

global action xt. Following this observation, we first introduce a global perturbation bound that

focuses on the global action xt rather than the local actions xvt . Recall that ft denotes the global

hitting cost (see Section 3.2). Define the optimization problem that solves the optimal trajectory

from global state xt−1 to xt+p−1

ψ̃p
t (y, z) = argmin

xt:t+p−1

t+p−1∑
τ=t

(fτ (xτ) + cτ (xτ , xτ−1))

s.t. xt−1 = y, xt+p−1 = z, (3.4)

and another one that solves the optimal trajectory from global state xt−1 to the end of the game

ψ̃t(y) = argmin
xt:T

T∑
τ=t

(fτ (xτ) + cτ (xτ , xτ−1))

s.t. xt−1 = y. (3.5)

The following global perturbation bound can be derived from Theorem 3.1 in (Lin et al., 2021):

Theorem 3.4.1 (Global Perturbation Bound). Under Assumption 3.2.1, the following perturbation

bounds hold for optimization problems (3.4) and (3.5):

∥∥∥ψ̃p
t (y, z)t0 − ψ̃p

t (y
′, z′)t0

∥∥∥ ≤ CGρ
t0−t+1
G ∥y − y′∥+ CGρ

t+p−1−t0
G ∥z − z′∥ ,∥∥∥ψ̃t(y)t0 − ψ̃t(y

′)t0

∥∥∥ ≤ CGρ
t0−t+1
G ∥y − y′∥ ,

69

where ρG = 1− 2 ·
(√

1 + 2ℓT
µ

+ 1
)−1

and CG = 2ℓT
µ

.

To make the concept of per-time-step error rigorous, we formally define it as the distance

between the actual next action picked by LPC and the clairvoyant optimal next action from previous

action xt−1 to the end of the game:

Definition 3.4.1 (Per-step error magnitude). At time step t, given the previous state xt−1, the (de-

centralized) online algorithm ALG picks xt ∈ Dt. We define error et as

et :=
∥∥∥xt − ψ̃t(xt−1)t

∥∥∥ .
Using the local perturbation bound in Definition 3.3.1, we show the per-time-step error of LPC

decays exponentially with respect to prediction length k and communication range r. This result

is stated formally in Lemma 3.4.5, and the proof can be found in Section A.3.2.

Lemma 3.4.5. For LPC with parameters r and k, et satisfies

e2t = O
(
h(r)2 · ρ2rS + C3(r)

2 · ρ2kT ρ2kG
)
·
∥∥xt−1 − x∗t−1

∥∥2
+O

(
h(r)2 · ρ2rS

) t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ)

+O
(
C3(r)

2 · ρ2kT
)
ft+k−1(x

∗
t+k−1),

where C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S .

Using the global perturbation bound in Theorem 3.4.1, we show
∑T

t=1 ∥xt − x∗t∥
2 can be upper

bounded by the sum of per-time-step errors of LPC in Theorem 3.4.2. The proof can be found in

Appendix A.3.1.

Theorem 3.4.2. Let x0, x∗1, x
∗
2, . . . , x

∗
H denote the offline optimal global trajectory and x0, x1, x2, . . . , xH

denote the trajectory of ALG. The trajectory of ALG satisfies that

H∑
t=1

∥xt − x∗t∥
2 ≤ C2

0

(1− ρG)2

H∑
t=1

e2t ,

70

where C0 := max{1, CG} and CG is defined in Theorem 3.4.1.

To understand the bound in Theorem 3.4.2, we can set all per-time-step error et to be zero

except a single time step τ . We see the impact of eτ on the total squared distance
∑T

t=1 ∥xt − x∗t∥
2

is up to some constant factor of eτ . This is because the impact of eτ on ∥xt − x∗t∥ decays exponen-

tially as t increases from τ to T .

By substituting the per-time-step error bound in Lemma 3.4.5 into Theorem 3.4.2, one can

bound
∑T

t=1 ∥xt − x∗t∥
2 by the offline optimal cost, which can be converted to the competitive

ratio bound in Theorem 3.3.3.

3.4.3 Roadmap to Generalize the Proof to Inexact Predictions

In this section, we present a roadmap to generalize our proof to the case where predictions

of future cost functions are inexact. In the information availability model in Section 3.2.1, one

can study inexact predictions by introducing additional disturbance parameters {δvt , wv
t , w

e
t} to the

3 types of cost functions and generalize them to ft(xvt , δ
v
t), c

v
t (x

v
t , x

v
t−1, w

v
t), s

e
t (x

v
t , x

u
t , w

e
t) for all

t ∈ [H], v ∈ V , e = (v, u) ∈ E . {δvt , wv
t , w

e
t} represents the disturbances in the cost functions

that are hard to predict exactly. Before the decentralized online algorithm decides each local ac-

tion, it receives the generalized cost functions f v
t (·, ·), cvt (·, ·, ·), set (·, ·, ·) and noisy predictions of

the true disturbance parameters {δvt , wv
t , w

e
t} within k time steps and an r-hop neighborhood. In

the LPC algorithm (Algorithm 2), the optimization problem ψ
(k,r)
(t,v) can then be solved with the

noisy predictions of disturbance parameters. To analyze the performance of LPC in the presence

of prediction errors, one can first generalize the exponentially decaying perturbation bounds in

Theorem 3.3.1 and Theorem 3.3.2 to include the perturbations on disturbance parameters similar

to what we already did in Theorem A.2.1. The prediction error on disturbance parameters will

result in an additional additive term in the per-step error bound in Lemma 3.4.5. If one is will-

ing to assume that the total sum of prediction errors is O(cost(OPT)), as in (Antoniadis et al.,

2020), one can derive a competitive ratio for LPC by substituting the per-step error bound into

Theorem 3.4.2. It is worth noting that the resulting competitive ratio will inevitably depend on the

71

quality of predictions, and will converge to a limit larger than 1 (under imperfect predictions) as

the prediction horizon k and the communication radius r increase.

3.5 Application: Multiproduct Pricing

The networked online convex optimization problem captures many applications where deci-

sions at each node must be made online in a networked system. In this section, we give a concrete

example - the multiproduct pricing problem, which has been proposed/studied in the previous rev-

enue management literature (Talluri and Ryzin, 2006; Gallego and Topaloglu, 2019; Song and

Chintagunta, 2006; Caro and Gallien, 2012; Candogan, Bimpikis, and Ozdaglar, 2012; Chen and

Chen, 2015).

We consider a setting where a large company sells n different products and wants to maximize

its revenue by adjusting the prices of these products adaptively in a time-varying market. Each

vertex/agent v ∈ V corresponds to a product and xvt denotes its price at time t. An edge connects

two products v and u if they interact, e.g., because the products are complements or substitutes.

We assume a classical linear demand model based on Talluri and Ryzin (2006) and Gallego

and Topaloglu (2019) where the demand of v at time t, denoted as dvt , is given by

dvt = avt − kvt x
v
t︸ ︷︷ ︸

Part 1

Part 2︷ ︸︸ ︷
+

∑
u∈N1

v\{v}

η
(u→v)
t xut +b

v
tx

v
t−1︸ ︷︷ ︸

Part 3

,

with parameters avt , k
v
t , b

v
t > 0, η(u→v)

t ∈ R and xv0 := 0 for any node v. Here, Part 1 corre-

sponds to the nominal demand at price xvt ; Part 2 adds the network externalities from v’s comple-

ments/substitutes, and Part 3 reflects the pent-up demand of product v due to high price at time

t − 1. Note that the coefficient η(u→v)
t can be different with η(v→u)

t . For each undirected edge

e = (u, v), we define an aggregate coefficient

γet :=
1

2

(
η
(u→v)
t + η

(v→u)
t

)
. (3.6)

72

Moreover, only the aggregated {γet }t,e appear as network parameters after our reformulation.

The full revenue maximization problem can be written as

max
H∑
t=1

∑
v∈V

xvt d
v
t =

H∑
t=1

∑
v∈V

xvt (a
v
t − kvt x

v
t +

∑
u∈N1

v\{v}

η
(u→v)
t xut + bvtx

v
t−1)

s.t. 0 ≤ xvt ≤ pvt ,

(3.7)

Under minor conditions, we can reformulate the revenue maximization problem above into our

theoretical framework. The proof details are deferred in Section A.6.1.

Lemma 3.5.1. Let3 ξvt := kvt −
∑

u∈N1
v\v

|γ(u,v)t | − bvt+bvt+1

2
for v ∈ V and 1 ≤ t ≤ H . Suppose

there exists µ > 0, ℓf > 0, b > 0 and γ > 0, s.t. inft,v ξ
v
t ≥ µ/2 > 0, supv∈V,t∈H k

v
t ≤ ℓf/2,

supv∈V,t∈H b
v
t ≤ b, and sup(u,v)∈E,t∈H |η(u→v)

t | ≤ γ. Then, Equation (3.7) has the same global

optimization solution as the following problem:

min
H∑
t=1

∑
v∈V

f v
t (x

v
t) + cvt (x

v
t , x

v
t−1) +

H∑
t=1

∑
e∈E

set (x
u
t , x

v
t)

s.t. 0 ≤ xvt ≤ pvt

(3.8)

where

f v
t (x

v
t) := ξvt

(
xvt −

avt
2ξvt

)2

,

s
(u,v)
t (xut , x

v
t) := |γ(u,v)t |

(
xut − sgn

(
γ
(u,v)
t

)
· xvt
)2
,

cvt (x
v
t , x

v
t−1) :=

bvt
2

(
xvt − xvt−1

)2
.

In the cost minimization formulation, the node cost function f v
t (x

v
t) is nonnegative, µ-strongly

convex, and ℓf -smooth; the spatial interaction function is nonnegative, convex and (4γ)-smooth;

the temporal interaction function is nonegative, convex and (2b)-smooth.

In the remainder of this section, we discuss the performance and practical benefits of LPC

3bvH+1 := 0 for any node v

73

algorithms in the multiproduct pricing application. The decentralized nature of LPC is important in

this setting. Interpretable pricing algorithms (Biggs, Sun, and Ettl, 2021) are attractive in practice.

Our local pricing algorithm is indeed interpretable since the current price of a given product is

transparently determined by reliable predictions of demand in the near future as well as interactions

with directly related products. In addition, LPC needs less computation effort when exactly solving

the global multiproduct pricing problem is computationally challenging in practice. Specifically,

large online e-commerce companies maintain millions of products, which makes the entire network

difficult to store, let alone do computation over. Moreover, due to the ease of changing prices, e-

commerce companies often use dynamic pricing and change prices on a weekly (or quicker) basis,

which magnifies the computational burden.

3.5.1 Competitive Bound

We first state an immediate corollary of Theorem 3.3.3 and Lemma A.6.1. This result estab-

lishes the competitive bound in the revenue maximization setting of the product networks. We

defer the details of Lemma A.6.1 in Section A.6.2.

Corollary 3.5.1. Define b̃ := sup(u,v)∈E,t∈[H] a
u
t /a

v
t , c̃ := supv∈V,t∈[H]

avt
pvt

. Under the same con-

ditions as stated in Theorem 3.3.3, the competitive ratio of LPC for the revenue maximization

problem is at least

1− η

2
(O
(
h(r)2 · ρrS

)
+O

(
C3(r)

2 · ρkT)
)
,

where ∆ denotes the degree of the product network and η := max{2(ℓf +∆b̃γ)/µ, c̃/µ}.

3.5.2 Numerical study

In this section, we illustrate the performance of our algorithm in a practical setting. We in-

troduce our experiment setup, including the construction of a product graph, parameter regimes

of the demand function, several candidate pricing policies, and their performance measured in the

relative ratios (defined as the revenue achieved by a given algorithm divided by the global optimal

revenue).

74

count mean std min 25% 50% 75% max

degree 2202.0 6.1 11.8 1.0 1.0 3.0 6.0 99.0

Table 3.1: Degree quantiles of the product graph.

Product graph

We construct product graphs based on the previous work in McAuley, Pandey, and Leskovec

(2015). Specifically, we utilize their results for popular products in the Baby clothes category

on the Amazon.com website. Methodologically, they build topic models trained to automatically

discover topics from the text (for example, product reviews and descriptions) that are successful

at predicting and explaining product relationships. They also incorporate other features such as

rating, product specifications, prices, and brands. For each given product in the Baby clothes

category, McAuley, Pandey, and Leskovec (2015) outputs its top 25 complements, and top 25

substitutes, ranked from the highest likelihood to the lowest likelihood. Since the product graph

is deterministic in our model framework, we set a threshold of −0.1 for the likelihood scores to

translate from the probabilistic product relationship in McAuley, Pandey, and Leskovec (2015). If

the score is great than or equal to −0.1, we add the corresponding directed edge with its edge type

(i.e., complementary or substitutable) to the product graph. Then, we remove nodes 4 with degrees

more than 100 from the graph and further remove the isolated nodes after the previous removal.

Finally, we obtain a product graph with 2202 nodes and 6680 (directed) edges. The quantiles of

degree distribution are presented in Table 3.1.

Demand functions

We consider a dynamic pricing problem with a horizon of six weeks i.e. H = 6. During each

week, the intercept for the demand function, avt , is generated from a uniform distribution in the

4Two reasons are driving this decision. First, when the degree is greater than 100, it is greater than 95% percentiles
of the degree distribution. We view those nodes as outliers from the typical degree values and should be handled
separately. Second, for our problem remains solvable (or converge in a reasonable time) for Gurobi, we need to
maintain a certain level of convexity for the node cost functions. For nodes with degrees greater than 100, the node
cost functions are not convex.

75

interval [1, 9]. We consider the feasible price interval to be [0, 5] and the slope kvt := kv is sampled

from a uniform distribution in [0.95, 1.05] for 5 all t ∈ [H] and v ∈ V . We consider the cross-

product interaction strengths c to be bounded above by 0.09. Then, for each node, we simulate the

cross-product sensitivity coefficients ηu→v
t from a uniform distribution [c

2
, c] if there is a comple-

mentary edge from u to v, or from a uniform distribution [−c,− c
2
] if there is a substitutable edge

from u to v. Similarly, we simulate cross-period sensitivity coefficients bvt := bv from a uniform

distribution [b− 0.01, b] for all t ∈ [H] and v ∈ V where we consider b ∈ {0.20, 0.30}. We further

reduce this directed graph to an undirected graph and redefine the cross-product price sensitivities

on the undirected edges using the formula where e := (u, v):

γe :=
1

2

(
η(u→v) + η(v→u)

)
.

In the corresponding undirected graph, the number of nodes is 2202 and the number of edges is

6637. 81% of the edges are complementary type while 19% of the edges are substitutable type.

This difference is since the original inference model in (McAuley, Pandey, and Leskovec, 2015)

has greater confidence (and also better accuracy) in predicting the complements.

Results

We derive the closed-form solutions for four different pricing policies and compare their perfor-

mance against the optimal pricing policy which can be solved as a nonlinear programming problem

via Gurobi (Gurobi Optimization, LLC, 2022).

Naive policy. A naive solution often used in practice is to decide prices based only on the elasticity

of the product itself. In this case, the pricing policy is to solve the reformulated optimization

problem with only the node cost
∑

t∈[H],v∈V ξ
v
t (x

v
t −

avt
2ξvt

)2, which gives

naivevt =
avt
2ξvt

5With an average of the base demand (i.e., the intercept) 5, slope 1, the average actual demand for each product is
nonnegative on the [0, 5] price interval.

76

for each product v and time t. The total revenue under this naive pricing policy is

Revnaive =
H∑
t=1

naivevt · dvt (naive),

where dvt (naive) is the demand for product v at time t when implementing the naive policy.

Lookahead policy. We consider a policy that uses the predicted future price of each product but

still ignores the network effects. Specifically, we use a lookahead policy with k = 2. In the local

problem, the price of the product’s future week is set in a greedy way as avt+1

2ξvt+1
. For any node v ∈ V

and any t ≤ H ,

lookaheadv
t = argmin

x
{ξvt (x−

avt
2ξvt

)2 +
bvt
2
(x− xvt−1)

2 +
bvt+1

2
(x−

avt+1

2ξvt
)2}

=
avt + bvtx

v
t−1 + bvt+1a

v
t+1/(2ξ

v)

2ξvt + bvt + bvt+1

.

The total revenue under this lookahead pricing policy is

Revlookahead =
H∑
t=1

lookaheadv
t · dvt (lookahead),

where dvt (lookahead) is the demand for product v at time t when implementing the lookahead

policy.

Network pricing policy. Another heuristic is to consider the network effects but ignores the tempo-

ral interactions. Specifically, we use the network policy with r = 1. In the local problem, the price

of the focal node’s spatial neighbors is set greedily to be aut
2ξut

for such u’s. For any t ≤ H ,

networkv
t = argmin

x
{ξvt (x−

avt
2ξvt

)2 +
∑

(u,v)∈E

|γ(u,v)t |(a
u
t

2ξut
− sgn(γ

(u,v)
t)x)2}

=
avt +

∑
(u,v)∈E γ

(u,v)
t

aut
ξut

2ξvt + 2
∑

(u,v)∈E |γ
(u,v)
t |

77

for each product v. The total revenue under the network pricing policy is

Revnetwork =
H∑
t=1

networkv
t d

v
t (network),

where dvt (network) is the demand for product v at time t when implementing the network policy.

LPC pricing policy. We apply our LPC algorithm with r = 1 and k = 2 in this multiproduct

pricing setting. Suppose our focal node is v, then the prices of its spatial neighbors are fixed as aut
2ξut

and the price of its future week is set to be avt+1

2ξvt+1
in the local problem. For t ≤ H ,

LPCv
t = argmin

x
ξvt (x−

avt
2ξvt

)2 +
∑

(u,v)∈E

|γ(u,v)t |(a
u
t

2ξut
− sgn(γ

(u,v)
t)x)2 +

bvt
2
(x− xvt−1)

2 +
bvt+1

2
(x−

avt+1

2ξvt+1

)2,

=
avt +

∑
(u,v)∈E γ

(u,v)
t

aut
ξut

+ bvtx
v
t−1 + bvt+1

avt+1

2ξv

2ξvt + 2
∑

(u,v)∈E |γ
(u,v)
t |+ bvt + bvt+1

for any node v. The total revenue under the LPC pricing policy is

RevLPC =
H∑
t=1

LPCv
t d

v
t (LPC),

where dvt (LPC) is the demand for product v at time t when implementing the LPC policy.

Optimal pricing policy. Since the problem is quadratic, we can obtain its global optimal so-

lution via a nonlinear programming formulation solved by Gurobi software. This global optimal

solution gives us the offline global optimal revenue benchmark. Note that a requirement for this

problem to be convex is that kvt −
∑

u∈N1
v\v

|γ(u,v)t | − bvt+bvt+1

2
≥ 0.

We present our results for varying strength of network interactions, denoted by c. c varies

from 0.01 to 0.09 with each 0.01 as increment. Recall that the temporal interaction strength b

is selected from {0.20, 0.30} throughout the experiments. We report the relative performance

ratios of the heuristic policies against the offline global optimal benchmark in Figure 3.3. The

performance ratio is calculated by the actual revenue under each given policy divided by the offline

global optimal revenue. We also calculate the 95% confidence intervals for the performance ratios

78

Figure 3.3: Performance ratios of different pricing policies.

through bootstrapped samples. We simulate 30 samples for each specified network strength c.

We observe for each subgraph, the performance of the Naive and Lookahead pricing policy drops

when the network interaction strength increases while the performance of the Network and LPC

pricing policy is relatively stable 6. We also observe that the performance gap between LPC and

Network policy (similarly the performance gap between Lookahead and Naive policy) increases as

the temporal interaction strength increases from 0.2 to 0.3 since the performance of Network and

Naive policy degrades when the temporal interaction strength increases.

In addition, we also observe LPC is able to closely follow the pricing trajectory of the globally

optimal policy even though it consumes much less information and enjoys a much faster imple-

mentation due to its convenient closed-form solution in the multiproduct pricing setting. LPC

solves our problem in 0.31 seconds on average while the Gurobi solvers takes 85.24 seconds (the

computation time is consistent across different simulated samples and parameter regimes. The de-

tails are presented in Figure A.2 of the Appendix). While the Lookahead policy smoothes out the

base demand curve with smaller jumps in magnitude, the LPC policy balances between Lookahead

and Network policies which can result in higher expected total revenue. We track price trajectories

under different policies for a random set of products and present them in Figure A.3.

Finally, we add another set of experiments to verify the performance of the proposed policies

when there exists a "prediction error" where instead of knowing the exact future intercept (i.e., avt),

6At the network strength 0.02 and temporal strength 0.3, the average performance of LPC is worse than Lookahead
policy. The potential reasons are two-fold: 1. at this particular parameter setup, the confidence interval (indicated
by the errorbar) is significantly larger and we are less certain about comparing relative performances of different
heuristics; 2. due to large temporal strength, we have used the nonconvex optimization solver in Gurobi. Although the
global solution converges, we are less confident about the exactness of the solutions when the violation of convexity
exists.

79

Figure 3.4: Performance ratios with exact/inexact predictions (LPC vs LPC-inexact).

we use its mean in the lookahead step.

LPCinexact pricing policy. To deal with the inexact prediction issue, we consider a policy called

LPCinexact that uses a heuristic price av

2ξvt+1
where av is the expected value of avt . In other words, we

assume the decision-maker is able to estimate the mean of the intercept based on historical data.

The prices of its spatial neighbors are still fixed as aut
2ξut

. For any node v ∈ V and any t ≤ H ,

(LPCinexact)
v
t = argmin

x
ξvt (x−

avt
2ξvt

)2 +
∑

(u,v)∈E

|γ(u,v)t |(a
u
t

2ξut
− sgn(γ

(u,v)
t)x)2

+
bvt
2
(x− xvt−1)

2 +
bvt+1

2
(x− av

2ξvt
)2,

=
avt +

∑
(u,v)∈E γ

(u,v)
t

aut
ξut

+ bvtx
v
t−1 + bvt+1

av

2ξvt

2ξvt + 2
∑

(u,v)∈E |γ
(u,v)
t |+ bvt + bvt+1

.

The total revenue under the LPCinexact pricing policy is

RevLPCinexact =
H∑
t=1

(LPCinexact)
v
t d

v
t (LPCinexact),

where dvt (LPCinexact) is the demand for product v at time twhen implementing the LPCinexact policy.

In Figure 3.4, we observe no practical performance degradation from the inexact predictions.

3.6 Concluding Remarks

In this work, we introduce and study a novel form of decentralized online convex optimization

in a networked system, where the local actions of each agent are coupled by temporal interactions

80

and spatial interactions. We propose a decentralized online algorithm, LPC, which leverages all

available information within a prediction horizon of length k and a communication radius of r

to achieve a competitive ratio of 1 + Õ(ρkT) + Õ(ρrS). Our lower bound result shows that this

competitive ratio is order optimal. Our results imply that the two types of resources, the prediction

horizon and the communication radius, must be improved simultaneously in order to obtain a

competitive ratio that converges to 1. That is, it is not enough to either have a large communication

radius or a long prediction horizon, the combination of both is necessary to approach the hindsight

optimal performance.

81

Chapter 4: Dynamic matchmaking on gaming platforms

4.1 Introduction

The online video gaming industry has consistently been expanding in the recent decade. The

global market is estimated to be worth $268.8 billion U.S. dollars annually in 2025, up from $178

billion U.S. dollars in 2021. Currently, there are an estimated 1 billion online gamers worldwide.

In 2025, online gaming audiences are projected to surpass 1.3 billion 1. Among the entire market

of online video games, one large sector is online competitive games, where players play against

one another (one-on-one or in teams). For competitive games, players often have a rating score that

measures their skill attribute in this game. Players can improve their scores gradually by winning

games and the increase in the rating depends on the other opponent’s rating as well. For example,

winning a game where the opponent has a poor rating does not increase the winning player’s rating

much. Players’ ratings can decrease as well if losing a game. Managing users’ engagement is

crucial to gaming platforms, especially to free-to-play video games since the majority of revenue

(the sales of digital products and advertising) is directly from the daily active users (DAU). In

this work, we consider a general dynamic match-making model to improve players’ engagement,

specifically through balancing players’ average waiting time and matching quality. Moreover, we

focus on understanding a popular matching heuristic in practice - the bubble algorithm, establish

the theoretical guarantees of this heuristic under our model and provide insights for practitioners

on tuning the parameter of this algorithm to achieve better engagement measurement.

Related Work. Our proposed work is related to recent studies on different match-making algo-

rithms to improve players’ engagement with online gaming platforms. Chen et al. (2017) consider

a static model where the objective is to minimize players’ churn risk. They assume all players

1statistics source: https://www.statista.com/topics/1551/online-gaming/

82

https://www.statista.com/topics/1551/online-gaming/

have arrived and then define a complete graph connecting every pair of nodes. The edge weights

are defined as the probabilities of churning for either of the connected players. Huang, Jasin, and

Manchanda (2019) propose a two-stage procedure where they first estimate user engagement state

(high, medium, low) with a hidden Markov model and then propose a heuristic matching algorithm

that leverages the engagement state information of players. Chen, Elmachtoub, and Lei (2021) fo-

cus on a geometric losing streak model where players have a fixed probability to churn after each

consecutive loss in the game. In contrast, our proposal aims to understand the long-run behavior

of the players incorporating both match-making quality as well as waiting times. Our model also

enables us to analytically obtain the performance guarantee of the Bubble algorithm compared to

the offline optimal benchmark.

Our proposed work also contributes to the literature on the general dynamic/online matching

problem where the same trade-off is studied between matching available pairs now versus wait-

ing for (potentially) better matches in the future. Ashlagi et al. (2019) provide an approximation

matching algorithm when customers arrive online and stay for a fixed number of periods before

leaving. Aouad and Saritaç (2020) propose approximation algorithms for dynamic matching over

edge-weighted graphs, where customers arrive and leave the platform following a stochastic pro-

cess. In contrast, we consider the setting where the players arrive stochastically and stay in the

platform until matched and penalize the waiting time by imposing a waiting cost, and the edge

weight (i.e., matching cost) is related to the ratings of matched players, both of which costs are

estimated directly from our collected real-world dataset.

4.2 Model

In this section, we introduce our dynamic matching model for 1-versus-1 online competitive

games. We study a continuous-time model, where players arrive according to a Poisson process

with a rate λ. We consider a fairly long time horizon T and index the players by their arriving

sequence. Denote the time when the i-th player arrives as Ji ∈ (0, T] for i = 1, 2, · · · . Nt denotes

the number of players arrived by time t for t ∈ (0, T]. After arriving, players stay in the system

83

until they get matched to an opponent or a bot. Once matched, the matched pair leaves the system.

The skill attribute of each player is measured by Elo rating. We denote the skill for i-th arriving

player as Xi. We assume {Xi}i≥1 are i.i.d independent. The distribution of Xi is known but we

observe its realization at time Ji. We consider a parametric class of matching cost and waiting

cost functions. The matching cost is a power of the Elo difference for the matched pair, i.e.,

f(Xi, Xj) = |Xi − Xj|kM for some kM > 0 if the i-th player is matched to the j-th player 2.

For any i = 1, . . . , NT , we denote the time waited by i-th player before getting matched as Wi.

The waiting cost is a power of the waiting time: g(Wi) = W kW
i for some kW > 0. Although the

class of power law cost functions defined on x ∈ [0,+∞) are simple, it contains a broad spectrum

of possibilities on how players react to waiting time or matching quality, for example, it covers

linear cost functions when k = 1; convex cost functions when k > 1; concave cost function when

k < 1. Notably, when k → 0, it models the cost function where the penalty is zero when there

is no waiting time or mismatch and a constant cost otherwise; when k → +∞, it models the cost

function where the penalty exists only when the waiting time or mismatch is above a threshold of

1 and 0 otherwise. The relative weight between matching cost and waiting cost is controlled by

another model primitive c ∈ R+.

To define non-anticipate matching policies, we denote {Ft}t≥0 as the canonical filtration gen-

erated by the Poisson arrival process, current waiting times and realized Elo ratings of arrived

players, i.e., Ft = σ(Nt′ ,Wi, Xi : t
′ ≤ t, Ji ≤ t). A matching policy π describes an Ft-adapted

stochastic process {Mπ
t }t≥0 whereMπ

t is a matching made at time t within arrived players (includ-

ing players arriving at time t). We let Mπ := ∪0≤t≤TM
π
t denote all matchings during time [0, T].

The objective is to minimize the average waiting and matching cost per player in the system. Note

that we assume an even number of players such that all players can be matched. The average cost

per player of policy π is given by

Cπ = lim sup
T→∞

1

NT

 ∑
k:Jk≤T

g(Wk) + c ·
∑

i,j:(i,j)∈Mπ

1

2
f(Xi, Xj)

 . (4.1)

2For player i or player j, the matching cost is 1
2f(Xi, Xj), which adds up to the matching cost for this pair.

84

4.3 Bubble algorithm

In this section, we introduce a popular heuristic that is actively used in the gaming industry to

trade off between waiting cost and matching cost and show its theoretical performance guarantee

under our model assumption. A bubble algorithm operates as follows: every player is placed on

the Elo line once arrived; then the algorithm grows a bubble around the player which expands over

time; when two bubbles touch, the two players get matched and leave the system. We denote the

bubble expansion rate as α and the resulting matching as Mα. Larger values of α lead to a shorter

waiting time for players but potentially worse matching quality. We illustrate this trade-off via a

simple example below.

Example 1. Consider four players arrive sequentially at times 1, 2, 3, 4 and their Elo ratings are

the following: X1 = 500, X2 = 700, X3 = 550 and X4 = 750. A large α (e.g. αH = 200 Elo per

time unit) will match players 1 and 2 once player 2 arrives, and then match players 3 and 4; while

a small α (e.g. αL = 50 Elo per time unit) will match player 1 and 3 once player 3 arrives, and

then player 2 and 4. The waiting time under αH is 1 time unit for players 1 and 3, 0 waiting time

for players 2 and 4; the waiting time under αL is 2 time units for players 1 and 2, 0 waiting time

for player 3 and 4. The average matching distance under αH is 200 while the average matching

distance under αL is 50.

In the remainder of this section, we characterize how one selects the optimal expansion rate

α to trade off the matching and waiting costs under different model primitives. Our first lemma

states an important property of the bubble algorithm relating the matching distance to the waiting

times of any matched pair: the distance between two matched players is upper bounded by bubble

expansion rate α multiplied with the sum of waiting times of the two players.

Lemma 4.3.1. Suppose the i-th arriving player is matched with the j-th arriving player by a

Bubble algorithm with rate α. Then,

|Xi −Xj| ≤ α(Wi +Wj)

85

where Xi (resp. Xj) is the Elo rating of player i and player j, and Wi (resp. Wj) is the waiting

time of player i (resp. player j) on the platform.

Proof of Lemma 4.3.1. W.l.o.g, we assume player i arrives earlier than player j. Once player

i arrives, the bubble around him/her starts to expand at the rate of α. Since player i matches with

player j, player j must be the first player that i’s bubble touches. There are two possible cases.

• Case 1: player j arrives within player i’s bubble. Then their matching distance is bounded

by the the bubble radius after waiting for Wi time, i.e., |Xi −Xj| ≤ αWi.

• Case 2: player j arrives outside player i’s bubble. Then player j starts to grow his/her

bubble and two bubbles touch. Their matching distance is bounded by the summation of two

bubbles’ radii, i.e., |Xi −Xj| ≤ αWi + αWj. Q.E.D.

When α is arbitrarily close to 0, the corresponding bubble algorithm matches players as if using

offline greedy policy; when α approaches infinity, the corresponding bubble algorithm matches

players as if using online greedy policy. Although the bubble algorithm is greedy in nature, with an

appropriate expansion rate α, it still performs well in practice. In Section 4.3.1 and Section 4.3.2,

we establish the theoretical performance guarantee for bubble algorithms under our model.

4.3.1 Lower bound on the average cost

We develop a lower bound on the long-term average cost per player. Recall that kM (resp. kM)

is the power of matching cost function f(·, ·) (resp. waiting cost function g(·)), and c is the relative

weight between waiting cost and matching cost.

Theorem 4.3.1. Assume players arrive according to a Poisson process with rate λ and Elo ratings

are independent uniform distribution rescaled between [0, 1]. We further restrict to policies that

have steady-state distributions. The long-run average cost per player under any such policy π, has

the following lower bound in terms of arrival rate and model parameter c:

inf
π
Cπ = Ω(λ

− kW kM
kW+kM c

kW
kW+kM).

86

Proof of Theorem 4.3.1. X (resp. Y) denotes the Elo rating difference (resp. arrival time differ-

ence) of matched pairs under a given policy π in the steady state. Then, we define the following

random variable,

H :=
c

2
· |X|kM + |Y |kW .

The long-run average cost is lower bounded by the expectation of H , i.e.,

Cπ ≥ E[H] =

∫ +∞

0

P(H > b)db.

We represent an arrival by a point on the 2-D plane, where the x-axis denotes the player’s rating x

and the y-axis denotes the arrival time t. The distance between any two arrival (x1, t1), (x2, t2) are

defined as follows:

dist((x1, t1), (x2, t2)) =
c

2
|x1 − x2|kM + |t1 − t2|kW .

The event ofH > b is equivalent to the event that there is no other arrival within a total distance

of b to the current arrival. Then, we have

P(H > b) = P(no another arrival within cost b) ≥ e−λA(b)

where A(b) is the area of {(x, y) : c
2
|x|kM + |y|kW ≤ b}. Recall that λ is the arrival rate of the

Poisson process. The last equality is since the arrival process can be viewed as a Poisson process

with the uniform rate λ on [0, 1] × R+. Moreover, A(b) ⊂ {(x, y) : c
2
|x|kM ≤ b, |y|kW ≤ b}.

Therefore,

A(b) ≤ 4b
1

kW (
2b

c
)

1
kM = 4(

c

2
)
− 1

kM b
1

kW
+ 1

kM .

87

The long-run average cost is lower bounded by the following:

Cπ ≥
∫ +∞

0

e−4λ(c
2
)
− 1

kM b
1

kW
+ 1

kM db

=

∫ +∞

0

e−λ̃bkdb

where λ̃ = 4λ(c
2
)
− 1

kM and k = 1
kW

+ 1
kM

. Moreover,

∫ +∞

0

e−λ̃bkdb =
1

k

∫ +∞

0

e−λ̃xx
1
k
−1dx

=
1

k
(
1

λ̃
)
1
k

∫ +∞

0

e−tt
1
k
−1dt

=
1

k
(
1

λ̃
)
1
kΓ(

1

k
)

= (
1

λ̃
)
1
kΓ(

1

k
+ 1)

where the first equality is by a change of variable x = bk, the second equality is also by a change

of variable t = λ̃x, the third equality is by definition of Gamma functions, and the last inequality

is by property Γ(x+ 1) = xΓ(x).

Cπ ≥ (
1

λ̃
)
1
kΓ(

1

k
+ 1)

= (4λ)
− kW kM

kW+kM (
c

2
)

kW
kW+kM Γ(

kWkM
kW + kM

+ 1)

= Ω(λ
− kW kM

kW+kM c
kW

kW+kM).

4.3.2 Performance bound for Bubble algorithm

We further show that Bubble algorithm with the optimal expansion rate achieves a cost within

a constant factor compared to infπ C
π.

Theorem 4.3.2. Under the same modeling assumptions as in Theorem 4.3.1, with the optimal

bubble expansion rate α∗ = c
− 2

kW+kM λ
kM−kW
kW+kM c̃ where c̃ is a constant depending only on kW and

88

kM , the long-run average cost per player under bubble algorithm has the following upper bound:

CBubble = O(λ
− kMkW

kM+kW c
kW

kW+kW).

To establish Theorem 4.3.2, we use the following lemma to bound the tail distribution of wait-

ing time for any given player.

Lemma 4.3.2. Given a Bubble algorithm with expansion rate α, under the steady state, a player’s

waiting time W has the following probabilistic bound, for a given x ≥ 0,

P(W > x) ≤ exp(−λαx2).

Proof of Lemma 4.3.2. W is upper-bounded by the time it takes for some future player to land

within the current player’s growing bubble. The bubble around a given player starts to expand with

rate α once this player arrives. Given any ϵ > 0, divide the time 0 = t0 < t1 < · · · < tn = x such

that supi |ti+1 − ti| ≤ ϵ. During time (ti, ti+1], the bubble contains at least a length 2λαti interval

on the Elo line.

P(no arrivals in (ti, ti+1]) ≤ P(no arrivals in (ti, ti+1] for a Poiss(2λαti) process)

= exp(−2λαti(ti+1 − ti)).

Since the Poisson process has independent increments,

P(no arrivals in (0, t]) ≤
n−1∏
i=0

exp(−2λαti(ti+1 − ti)) = exp(−2λα

∫ x

0

tdt) = exp(−λαx2).

Proof of Thereom 4.3.2. Using Lemma 4.3.2, we have the following bound on the expectation of

89

the waiting cost, E[g(W)],

E[g(W)] =

∫
R+

g(x)dFW (x) =

∫
R+

∫ x

0

g′(y)dydFW (x)

=

∫ +∞

0

g′(y)

∫ +∞

y

dFW (x)dy =

∫ +∞

0

g′(y)P(W > y)dy

≤
∫ +∞

0

g′(y)e−λαy2dy

= kW

∫ +∞

0

ykW−1e−λαy2dy

= kW

∫ +∞

0

(
t

λα
)
kW−1

2 e−t 1√
λα

dt
1
2

= (
1

λα
)
kW
2 Γ(

kW
2

+ 1)

(4.2)

where the third equality is by Fubini–Tonelli theorem for non-negative functions, the first inequli-

aty is by Lemma 4.3.2, the second last equality is by a change of variable t = λαy2, and the last

equality is by the definition of Gamma functions.

Consider the matching distance in the steady state between two matched players i and j. Then,

by the property of bubble algorithm in Lemma 4.3.1,

|Xi −Xj| ≤ α(Wi +Wj).

We further bound the matching cost by a function of the waiting time.

E[f(Xi, Xj)] = E[|Xi −Xj|kM]

≤ αkM E[(Wi +Wj)
kM]

≤ αkM max{1, 2kM−1}(E[W kM
i] + E[W kM

j])

≤ 2αkM max{1, 2kM−1}(1

λα
)
kM
2 Γ(

kM
2

+ 1)

= 2(
α

λ
)
kM
2 max{1, 2kM−1}Γ(kM

2
+ 1)

where the second inequality is by Jensen’s inequality for kM ≥ 1 and by first principles for 0 <

90

kM < 1; the third inequality is by (4.2).

Given a bubble expansion rate α, let Cα denote the corresponding long-run average cost per

player. Then,

Cα ≤ (
1

λα
)
kW
2 Γ(

kW
2

+ 1) + c(
α

λ
)
kM
2 max{1, 2kM−1}Γ(kM

2
+ 1),

where we observe that the matching cost is increasing with α and the waiting cost is decreasing

with α.

CBubble ≤ inf
α

{
(
1

λα
)
kW
2 Γ(

kW
2

+ 1) + c(
α

λ
)
kM
2 max{1, 2kM−1}Γ(kM

2
+ 1)

}
= c

kW
kW+kW λ

− kMkW
kM+kW (c̃

kM
2 c1 +

c2

c̃
kW
2

)

where c1 := max{1, 2kM−1}Γ(kM
2

+ 1), c2 := Γ(kW
2

+ 1), and c̃ := (c2kW
c1kM

)
2

kW+kM . The optimal

α∗ = c
− 2

kW+kM λ
kM−kW
kM+kW c̃. Q.E.D.

4.4 Numerical studies

In this section, we demonstrate how a company could use the bubble algorithm to increase the

engagement of players. We use data from a start-up gaming company Prismata with relatively a

smaller active user base. On the Prismata platform, the waiting time for matching with another

player is usually not negligible, and balancing between waiting time and matching quality is a key

question for players’ engagement.

Prismata Dataset. We use the Prismata dataset from 2020/01/18 to 2021/03/05. On the Prismata

platform, players hit start_automatch when they enter the platform and look for matches; after

waiting some time, players either get matched to an opponent or bot or leave the platform. We

also have additional information on departures by looking into the cancel_automatch activities.

A player can also leave without hitting the button of cancel_automatch, however, in this case,

the departure is not logged in the dataset. From our historical data, we have information about

91

the arrivals and departures: 1) the time stamp when players enter the platform; 2) the time stamp

when some players get matched; 3) the time stamp when some players hit cancal_automatch. In

summary, there are 230,217 logged arrivals within the period. The departure rate is 11.0% among

all arrivals, and the overall matched rate is 89.0%, including 38.5% are matched with a bot and

50.5% are matched with an actual player.

4.4.1 Estimation of system parameters

In this section, we estimate system parameters: arrival rate, waiting power, matching power,

and relative weighting between waiting cost and matching cost under our model.

Estimation of arrival rate.

We first estimate the average arrivals per minute at different hours of the day. In Table 4.1, we

present the arrival rate from hour 0 to hour 23 in UTC.

We further bucket the arrival process into High and Low arrival rate regimes, specifically UTC

hour 0− 3 and 17− 21 as the High arrival rate regime, and 4− 16 and 22− 23 as the Low arrival

rate regime. The user base is mostly in North America, and hence the observed high arrival regime

is during afternoons and evenings in players’ timezone. The average arrival rate per minute is

summarized in Table 4.2.

Estimation of waiting power

The waiting time and matching distance are often correlated since they are both (implicitly) de-

cided by the current matching policy on the Prismata platform. The endogeneity makes it difficult

to disentangle the effect of waiting time from the matching quality on players’ engagement. How-

ever, one nice characteristic of our dataset helps us separate the effect of waiting time and matching

quality: players only know the quality of their matching (i.e., rating difference between players)

once matched. Therefore, the departed players are not departed due to the current matching quality.

Next, we explain our procedure for estimating the waiting power in the cost function via maxi-

92

total arrivals arrival per minute
hour

0 14851 0.60
1 12072 0.49
2 10388 0.42
3 10512 0.42
4 8928 0.36
5 8681 0.35
6 7869 0.32
7 8079 0.33
8 8232 0.33
9 8655 0.35
10 8856 0.36
11 8571 0.35
12 8843 0.36
13 8833 0.36
14 8568 0.35
15 8775 0.35
16 8970 0.36
17 10255 0.41
18 10486 0.42
19 10304 0.42
20 10376 0.42
21 10230 0.41
22 9289 0.37
23 9594 0.39

Table 4.1: Arrival rates at each UTC hour

mum log-likelihood methods. We model players’ waiting behavior as follows: each player i spends

a maximum amount of time Zi waiting on the platform and leaves the platform if not matched af-

ter time Zi. In the Prismata dataset, we observe a truncated version of Zi, which are the logged

waiting times Wi. Zi is Wi when a player cancels his/her match request and is a right censored

version of Zi when a player is matched with either bots or other players. We denote the players’

(homogeneous) survival function as SW (t). SW (t) := P(Zi ≥ t) defines the survival probabil-

ity that a player is still on the platform after waiting for t minutes for any t ≥ 0. h(t) denotes

the corresponding hazard function, i.e., h(t) = −S′(t)
S(t)

. In the following, we derive the maximum

log-likelihood procedure to estimate the waiting power.

93

total arrivals number of hours arrivals per minute
arrival rate regime

Low 130743 15 0.35
High 99474 9 0.45

Table 4.2: High/Low arrival rates regimes

Maximum log-likelihood Procedure. We consider the following regression model for the hazard

rate function:

h(t) = βW t
kW−1 (4.3)

where βW , kW > 0. Then, by integrating the hazard rate function, we have

S(t) = exp−
∫ t
0 h(τ)dτ = exp

−βW
tkW
kW . (4.4)

Recall Wi denotes the waiting time for the i-th player and we further define the dependent variable

as Yi := I{player i is matched}. For a given βW , kW , the log-likelihood ℓ(βW , kW) follows:

ℓ(β, k) = log

(
n∏

i=1

P(Yi = yi,Wi = wi)

)
=

n∑
i=1

(
log(P(Yi = yi|Wi = wi)) + log(P(Wi = wi))

)
(4.5)

The distribution of Wi is considered to be determined under the current matching policy at

Prismata, which is not a function of βW and kW . Under this setup, the MLE estimator for βW and

kW is equivalent to the solution to the following minimization problem:

min
βW ,kW

[∑
i:yi=1

βW
wkW

i

kW
−
∑
i:yi=0

log (1− exp (−βW
wkW

i

kW
))

]
. (4.6)

For numerical stability, we perform a change of variable

γW :=
βW
kW

. (4.7)

94

waiting time (in mins)

count 106026
mean 1.84
std 2.79
min 0.00
25% 0.08
50% 0.62
75% 2.14
max 15.00

(a) matched players

waiting time (in mins)

count 23192
mean 3.78
std 4.95
min 0.02
25% 0.28
50% 1.52
75% 5.47
max 22.00

(b) departed players

Table 4.3: Waiting time statistics

Then, we rewrite the minimization problem as follows:

min
γW ,kW

[∑
i:yi=1

γWw
kW
i −

∑
i:yi=0

log (1− exp(−γWwkW
i))

]
. (4.8)

Estimation results. When matching with bots, the waiting time is within seconds, which is not

comparable when matching with other players or departing the platform. Moreover, we don’t

observe whether the player joins the game after matching with bots, which causes the waiting time

to be less meaningful when representing users’ engagement. Hence in the following section and

throughout, we only consider the arrivals that are either matched with another player or leaving the

platform 3. We remove the extreme observations which have waiting times beyond 95% quantile

in the logged data, and present the statistics of the remained observations in Table 4.3: the waiting

time for matched players has a both smaller mean and standard deviation compared to the players

who depart the platform. Next, we use the aforementioned MLE procedure to estimate the waiting

power. We report the estimation results in Table 4.4. The waiting power is estimated as 0.207 with

high statistical significance.

3Some players hit start_automatch again after waiting a couple of seconds and eventually leave. In this case, we
count this as one departure and add two waiting times as the player’s waiting time.

95

Dep. Variable: matched Log-Likelihood: -59141.
Method: Maximum Likelihood AIC: 1.183e+05
No. Observations: 129218 BIC: 1.183e+05
Df Residuals: 129217

coef std err z P> |z| [0.025 0.975]

kW 0.207 0.004 55.314 0.000 0.200 0.215
γW 0.209 0.001 151.753 0.000 0.206 0.212

Table 4.4: Fitting results for waiting power

Estimation of matching power

We use a similar method to estimate kM in the matching cost. The main difference is that there

are no observations where the players cancel_automatch due to the large matching distance. This

is because of the limitation of our dataset: we only observe matching distance when two players

are matched by the platform. In other words, there are no logs of players leaving the system due to

a large matching distance.

Due to this data limitation, we use a surrogate dependent variable by looking into the next

round interaction (i.e., the next log of start_automatch) with the platform. If a player does not

enter the platform again within a prefixed time window, we define the player as churned 4. We

assume the following players’ behavior: each player i is willing to accept a maximum amount

of absolute matching distance Mi and churns if the matching distance is above the threshold.

In the Prismata dataset, we observe a censored version of Mi, which are the logged matching

distance Di := |Xi − Xm(i)| where m(i) denotes the opponent for player i under the current

matching policy at Prismata. We denote the players’ (homogeneous) survival function as SM(x).

SM(d) := P(Mi ≥ d) defines the survival probability that a player is not churned after being

matched for an Elo distance of d for any d ≥ 0. hM(d) denotes the corresponding hazard function,

i.e., hM(d) = −S′
M (d)

SM (d)
. In the following, we derive the maximum log-likelihood procedure to

estimate the waiting power.

4The current threshold is two hours. We also vary the cutoff time window to verify our analysis is not sensitive to
this threshold.

96

absolute rating difference

count 85841.00
mean 143.66
std 98.13
min 0.00
25% 62.20
50% 128.78
75% 211.36
max 392.97

(a) no-churn players

absolute rating difference

count 14897.00
mean 150.36
std 102.04
min 0.04
25% 64.60
50% 134.82
75% 223.97
max 392.38

(b) churned players

Table 4.5: Current matching distance statistics

Maximum log-likelihood Procedure. We assume that the hazard rate function

hM(d) = βMd
kM−1. (4.9)

yi = 0 if not churned and 1 if churned. di is the observed matching distance for player i. Then, the

MLE estimator for γM , kM is the solution of the following minimization problem:

min
γM ,kM

[∑
i:yi=0

γMd
kM
i −

∑
i:yi=1

log (1− exp(−γMdkMi))

]
.

Estimation results. In the Prismata dataset, for players who are matched at the current game,

the churn rate is 15.06%; for players who are not matched at the current game, the churn rate is

48.82%. The two populations (i.e., players who are matched at the current game and those who are

not) are different regarding the churn risk. Moreover, players who are not matched don’t observe

the matching distance. As a result, we will not be able to analyze the effect of matching distance

on those players. In this section, we will focus on the churn risk for the players who have matched

in the current game.

We remove the extreme observations in the logged data, i.e. if the matching distance is greater

than the 95% quantile of the matching distance for all matched players. We present the statistics of

the current matching distance in Table 4.5. For players who do not churn after playing the current

97

game, their current matching distance has a both smaller mean and standard deviation compared

to those who churn.

We use the same MLE procedure after normalizing the absolute matching distance by the sam-

ple standard deviation. Note that the dependent variable is now whether the player churns after the

current game. We report the estimation results in Table 4.6.

Dep. Variable: churn Log-Likelihood: -42199.
Model: MyOLS AIC: 8.440e+04
Method: Maximum Likelihood BIC: 8.440e+04
No. Observations: 100738
Df Residuals: 100737

coef std err z P> |z| [0.025 0.975]

kM 0.0372 0.008 4.743 0.000 0.022 0.053
γM 0.1599 0.001 121.802 0.000 0.157 0.162

Table 4.6: Fitting results for matching power

The fitting result shows that if our objective is to minimize the risk of churning once matched,

the corresponding power for matching distance is 0.0372 with 95% statistical significance. One

potential problem with the fitting result above is that the matching distance and waiting time are

correlated, and players may churn based on the long waiting time of the previous game. However,

we observe empirically that the correlation between waiting time and churn is weak and waiting

time affects mostly whether the player is matched at the current game. We fit the waiting power

using churn as the dependent variable for both the matched population and the departed population

and present the results in Table 4.7 and Table 4.8. There is no statistical significance on whether

waiting time affects the churn behavior for the departed population and although there is some

statistical evidence that the waiting time can further affect the churn behavior for the matched

population, the waiting power is negligible compared to the magnitude when fitting against the

waiting time.

98

Dep. Variable: churn Log-Likelihood: -16068.
Model: MyOLS AIC: 3.214e+04
Method: Maximum Likelihood BIC: 3.214e+04
No. Observations: 23192
Df Residuals: 23191

coef std err z P> |z| [0.025 0.975]

kW -0.0050 0.005 -1.057 0.291 -0.014 0.004
γW 0.7174 0.007 106.572 0.000 0.704 0.731

Table 4.7: MLE fitting results on the effect of waiting time for departed population

Dep. Variable: churn Log-Likelihood: -44928.
Model: MyOLS AIC: 8.986e+04
Method: Maximum Likelihood BIC: 8.986e+04
No. Observations: 106026
Df Residuals: 106026
Df Model: 0

coef std err z P> |z| [0.025 0.975]

kW 0.0057 0.002 2.926 0.003 0.002 0.009
γW 1.9008 0.008 244.042 0.000 1.886 1.916

Table 4.8: MLE fitting results on the effect of waiting time for matched population

Relative weight between waiting and matching cost

The relative weight between waiting and matching costs depends on the platform’s objective

of balancing current matched players and the future no-churn players once matched. To maximize

the matched players, the objective is to match the survival probability:

max
t,d≥0

exp (−γW tkW), (4.10)

which is equivalent to

min
t,d≥0

tkW . (4.11)

99

Figure 4.1: Performance of different bubble algorithms

Similarly, to maximize the no-churn probability for the matched players, the optimization problem

can be expressed as the following:

max
t,d≥0

exp (−γW tkW) · exp (−γMdkM), (4.12)

which is equivalent to minimize

max
t,d≥0

tkW +
γM
γW

dkM . (4.13)

The relative weight between waiting and matching costs depends on how the platform balances the

matching of the current players versus the future churn behaviors. Nevertheless, we show that the

platform can achieve lower waiting costs and matching costs simultaneously via a clever choice of

the bubble expansion rate.

4.4.2 Select bubble expansion rate.

We consider the following bubble expansion rates, α ∈ [10, 15, 20, 25, 30, 35, 40, 50], which

is measured as Elo per minute. We simulate the matching from the existing dataset as follows:

for a given player, we find the next arrival such that the two player’s bubbles will touch and then

remove these two players from the dataset. The corresponding waiting times and matching distance

are recorded to further calculate the waiting/matching cost of the new matching. We observe the

increase in waiting cost and the decrease in matching cost as the bubble expansion rate increases.

100

α waiting cost reduction matching cost reduction

10 -7.50% 1.22%
15 -1.46% 0.83%
20 2.73% 0.56%
25 6.03% 0.35%
30 8.53% 0.18%
35 10.68% 0.06%
40 12.38% -0.04%
50 15.49% -0.12%

Table 4.9: Relative cost reduction compared to the benchmark

We plot the original matching average waiting/matching cost as the benchmark. From Figure 4.1,

we observe that α ∈ {20, 25, 30, 35} Elo/min achieves a good balance between matching cost and

waiting cost, which reduces both costs compared to the benchmark costs in the original dataset.

In Table 4.9, we present the relative cost reduction (the larger, the better) under different Bubble

expansion rates. When α = 20, the Bubble algorithm has a relative reduction of 2.73% in the

waiting cost and 0.56% in the matching cost; when α = 25, the Bubble algorithm has a relative

reduction of 6.03% in the waiting cost and 0.35% in the matching cost; when α = 30, the Bubble

algorithm has a relative reduction of 8.53% in the waiting cost and 0.18% in the matching cost.

The platform may choose any of the three above rates based on their relative weight on reducing

waiting costs versus matching costs.

If the platform has the flexibility to vary the bubble expansion rate based on the arrival rate, it

can further improve the waiting and matching cost. Based on the theoretical results, the expansion

rate should increase when the arrival rate is lower. We select the different high/low bubble expan-

sion rate pairs and plot their relative improvements over the original matching policy in Figure 4.2.

The orange line plots the relative percentage reduction in waiting costs and matching costs for a

single bubble expansion rate; the blue circle plots the reduction in both costs for a pair of bubble

expansion rates (high expansion rate when the arrival rate is low and low expansion rate when the

arrival rate is high); the green triangle plots the reduction in both costs for a pair of bubble expan-

sion rates (low expansion rate when the arrival rate is low and high expansion rate when the arrival

101

2 0 2 4 6 8 10
relative waiting cost reduction (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
la

tiv
e

m
at

ch
in

g
co

st
 re

du
ct

io
n

(%
)

high alpha when arrival rate is low
single alpha
low alpha when arrival rate is low

Figure 4.2: Relative cost reduction with different expansion rates

rate is high). We observe that the blue circles achieve a higher matching cost reduction at the same

waiting cost reduction level compared to the single expansion rate policy while the green triangles

achieve a lower matching cost reduction at the same waiting cost reduction level compared to the

single expansion rate policy, which empirically verifies our theoretical insights on increasing the

expansion rate when the arrival rate is lower.

4.5 Conclusion

In this work, we introduce and study a general dynamic match-making model to improve play-

ers’ overall engagement. For companies with a relatively thinner market, there is a key trade-

off between waiting time and matching quality. We show that under a weighted combination of

power-law waiting/matching costs, the Bubble algorithm achieves a constant factor competitive

ratio compared to the offline optimal benchmark. In the empirical part of this work, we show how

companies can estimate the powers from players’ activity logs data and further tune the Bubble

expansion rate based on players’ arrival rates.

102

References

Agarwal, Naman, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh (2019). “Online con-
trol with adversarial disturbances”. In: International Conference on Machine Learning. PMLR,
pp. 111–119.

Akbari, Mohammad, Bahman Gharesifard, and Tamas Linder (2017). “Distributed online convex
optimization on time-varying directed graphs”. In: IEEE Transactions on Control of Network
Systems 4.3.

Akbarpour, Mohammad, Suraj Malladi, and Amin Saberi (2018). “Diffusion, seeding, and the
value of network information”. In: Proceedings of the 2018 ACM Conference on Economics
and Computation, pp. 641–641.

Anderson, Ross, Itai Ashlagi, David Gamarnik, and Yash Kanoria (2017). “Efficient dynamic
barter exchange”. In: Operations Research 65.6, pp. 1446–1459.

Antoniadis, Antonios, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon (2020).
“Online metric algorithms with untrusted predictions”. In: International Conference on Ma-
chine Learning. PMLR, pp. 345–355.

Aouad, Ali and Ömer Saritaç (2020). “Dynamic stochastic matching under limited time”. In: Pro-
ceedings of the 21st ACM Conference on Economics and Computation, pp. 789–790.

Argue, CJ, Anupam Gupta, and Guru Guruganesh (2020). “Dimension-Free Bounds for Chasing
Convex Functions”. In: Conference on Learning Theory. PMLR, pp. 219–241.

Argue, CJ, Anupam Gupta, Guru Guruganesh, and Ziye Tang (2020). “Chasing convex bodies with
linear competitive ratio”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, pp. 1519–1524.

Ashlagi, Itai, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and Chris Sholley
(2019). “Edge weighted online windowed matching”. In: ACM EC 2019 - Proceedings of the
2019 ACM Conference on Economics and Computation. ISBN: 9781450367929.

Badiei, Masoud, Na Li, and Adam Wierman (2015). “Online convex optimization with ramp con-
straints”. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp. 6730–
6736.

Bandyopadhyay, Antar and David Gamarnik (2008). “Counting without sampling: Asymptotics
of the log-partition function for certain statistical physics models”. In: Random Structures &
Algorithms 33.4, pp. 452–479.

103

Banerjee, Suman, Mamata Jenamani, and Dilip Kumar Pratihar (2020). “A survey on influence
maximization in a social network”. In: Knowledge and Information Systems. arXiv: 1808.
05502.

Bent, Russell and Pascal Van Hentenryck (Jan. 2004). “Online Stochastic and Robust Optimiza-
tion”. In: pp. 286–300. ISBN: 978-3-540-24087-7.

Bertsekas, Dimitri (2012). Dynamic programming and optimal control: Volume I. Vol. 1. Athena
scientific.

Bertsekas, Dimitri and John Tsitsiklis (1989a). Parallel and Distributed Computation: Numeral
Methods. Prentice-Hall Inc.

Bertsekas, Dimitri P (1995). Dynamic programming and optimal control. Vol. 1. Athena scientific
Belmont, MA.

Bertsekas, Dimitri P. (2011). Dynamic Programming and Optimal Vol 2. Vol. II.

Bertsekas, Dimitri P. and John N. Tsitsiklis (1989b). Parallel and Distributed Computation Nu-
merical Methods Optimization and Neural Computation.

Besbes, Omar, Yonatan Gur, and Assaf Zeevi (2016). “Optimization in online content recom-
mendation services: Beyond click-through rates”. In: Manufacturing and Service Operations
Management.

Besbes, Omar and Ilan Lobel (2015). “Intertemporal price discrimination: Structure and computa-
tion of optimal policies”. In: Management Science 61.1, pp. 92–110.

Biggs, Max, Wei Sun, and Markus Ettl (2021). “Model distillation for revenue optimization: In-
terpretable personalized pricing”. In: International Conference on Machine Learning. PMLR,
pp. 946–956.

Boyd, Stephen, Neal Parikh, and Eric Chu (2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers. Now Publishers Inc.

Candogan, Ozan, Kostas Bimpikis, and Asuman Ozdaglar (2012). “Optimal pricing in networks
with externalities”. In: Operations Research 60.4, pp. 883–905.

Cao, Xuanyu and Tamer Basar (2021). “Decentralized Online Convex Optimization with Feedback
Delays”. In: IEEE Transactions on Automatic Control.

Cao, Xuanyu and Tamer Başar (2021). “Decentralized online convex optimization based on signs
of relative states”. In: Automatica 129.

104

https://arxiv.org/abs/1808.05502
https://arxiv.org/abs/1808.05502

Cao, Xuanyu, Junshan Zhang, and H. Vincent Poor (2021). “Online Stochastic Optimization With
Time-Varying Distributions”. In: IEEE Transactions on Automatic Control 66.4, pp. 1840–
1847.

Caro, Felipe and Jérémie Gallien (2012). “Clearance pricing optimization for a fast-fashion re-
tailer”. In: Operations Research 60.6, pp. 1404–1422.

Chen, Ming and Zhi Long Chen (2015). “Recent developments in dynamic pricing research: Mul-
tiple products, competition, and limited demand information”. In: Production and Operations
Management 24 (5).

Chen, Mingliu, Adam Elmachtoub, and Xiao Lei (2021). “Matchmaking Strategies for Maximizing
Player Engagement in Video Games”. In: SSRN Electronic Journal.

Chen, Niangjun, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman (2016). “Us-
ing predictions in online optimization: Looking forward with an eye on the past”. In: ACM
SIGMETRICS Performance Evaluation Review 44.1, pp. 193–206.

Chen, Niangjun, Gautam Goel, and Adam Wierman (2018). “Smoothed Online Convex Optimiza-
tion in High Dimensions via Online Balanced Descent”. In: Proceedings of Conference On
Learning Theory (COLT), pp. 1574–1594.

Chen, Yang Quan and Zhongmin Wang (2005). “Formation control: A review and a new consider-
ation”. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS.

Chen, Yiwei and Vivek F Farias (2018). “Robust dynamic pricing with strategic customers”. In:
Mathematics of Operations Research 43.4, pp. 1119–1142.

Chen, Zhengxing, Navid Aghdaie, Su Xue, Kazi A. Zaman, Magy Seif El-Nasr, John Kolen, and
Yizhou Sun (2017). “EOMM: An engagement optimized matchmaking framework”. In: 26th
International World Wide Web Conference, WWW 2017. ISBN: 9781450349130. arXiv: 1702.
06820.

Chen, Zongchen, Kuikui Liu, and Eric Vigoda (2020). “Rapid Mixing of Glauber Dynamics up to
Uniqueness via Contraction”. In: arXiv: 2004.09083.

Collina, Natalie, Nicole Immorlica, Kevin Leyton-Brown, Brendan Lucier, and Neil Newman
(2020). “Dynamic Weighted Matching with Heterogeneous Arrival and Departure Rates”. In:
International Conference on Web and Internet Economics. Springer, pp. 17–30.

Devari, Aashwinikumar, Alexander G. Nikolaev, and Qing He (2017). “Crowdsourcing the last
mile delivery of online orders by exploiting the social networks of retail store customers”. In:
Transportation Research Part E: Logistics and Transportation Review.

105

https://arxiv.org/abs/1702.06820
https://arxiv.org/abs/1702.06820
https://arxiv.org/abs/2004.09083

Ding, Jian, Allan Sly, and Nike Sun (2015). “Proof of the satisfiability conjecture for large k”. In:
Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pp. 59–68.

Dobrushin, Roland L (1970). “Prescribing a system of random variables by conditional distribu-
tions”. In: Theory of Probability & Its Applications 15.3, pp. 458–486.

Fajgelbaum, Pablo, Amit Khandelwal, Wookun Kim, Cristiano Mantovani, and Edouard Schaal
(2020). Optimal lockdown in a commuting network. Tech. rep. National Bureau of Economic
Research.

Fatehi, Soraya and Michael R. Wagner (2021). “Crowdsourcing Last-Mile Deliveries”. In: Manu-
facturing & Service Operations Management.

Fiacco, Anthony V and Yo Ishizuka (1990). “Sensitivity and stability analysis for nonlinear pro-
gramming”. In: Annals of Operations Research 27.1, pp. 215–235.

Forsgren, Anders, Philip E Gill, and Margaret H Wright (2002). “Interior methods for nonlinear
optimization”. In: SIAM review 44.4, pp. 525–597.

Friedman, Joel (2008). A proof of Alon’s second eigenvalue conjecture and related problems.
American Mathematical Soc.

Gallego, Guillermo and Huseyin Topaloglu (2019). “Revenue management and pricing analytics”.
In: International Series in Operations Research and Management Science 279.

Gamarnik, David (2014). “Correlation Decay Method for Decision, Optimization, and Inference
in Large-Scale Networks”. In: Theory Driven by Influential Applications. Chap. Chapter 6,
pp. 108–121. eprint: https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.
0119.

Gamarnik, David and David A. Goldberg (2010). “Randomized greedy algorithms for independent
sets and matchings in regular graphs: Exact results and finite girth corrections”. In: Combina-
torics Probability and Computing 19.1, pp. 61–85.

Gamarnik, David, David A. Goldberg, and Theophane Weber (2014). “Correlation decay in ran-
dom decision networks”. In: Mathematics of Operations Research 39.2, pp. 229–261.

Gamarnik, David and Dmitriy Katz (2009). “Sequential cavity method for computing free energy
and surface pressure”. In: Journal of Statistical Physics 137.2, p. 205.

Garcia, Carlos E, David M Prett, and Manfred Morari (1989). “Model predictive control: Theory
and practice—A survey”. In: Automatica 25.3, pp. 335–348.

106

https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0119
https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0119

Goel, Gautam, Yiheng Lin, Haoyuan Sun, and Adam Wierman (2019). “Beyond Online Balanced
Descent: An Optimal Algorithm for Smoothed Online Optimization”. In: Neural Information
Processing Systems (NeurIPS).

Goel, Gautam and Adam Wierman (2019). “An Online Algorithm for Smoothed Regression and
LQR Control”. In: International Conference on Artificial Intelligence and Statistics (AISTATS).

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.

Hazan, Elad (2021). Introduction to Online Convex Optimization. arXiv: 1909.05207 [cs.LG].

Hochba, Dorit S (1997). “Approximation algorithms for NP-hard problems”. In: ACM Sigact News
28.2, pp. 40–52.

Hosseini, Saghar, Airlie Chapman, and Mehran Mesbahi (2016). “Online Distributed Convex Op-
timization on Dynamic Networks”. In: IEEE Transactions on Automatic Control 61.11.

Huang, Yan, Stefanus Jasin, and Puneet Manchanda (2019). ““Level Up”: Leveraging skill and
engagement to maximize player game-play in online video games”. In: Information Systems
Research.

Joseph, Vinay and Gustavo de Veciana (2012). “Jointly optimizing multi-user rate adaptation for
video transport over wireless systems: Mean-fairness-variability tradeoffs”. In: Proceedings of
the IEEE INFOCOM, pp. 567–575.

Kempe, David, Jon Kleinberg, and Éva Tardos (2015). “Maximizing the spread of influence through
a social network”. In: Theory of Computing 11.

Kerimov, Azer (2014). “A disagreement-percolation type uniqueness condition for Gibbs states in
models with long-range interactions”. In: Journal of Statistical Mechanics: Theory and Exper-
iment.

Kim, S. and G. B. Giannakis (2017). “An Online Convex Optimization Approach to Real-Time
Energy Pricing for Demand Response”. In: IEEE Transactions on Smart Grid 8.6, pp. 2784–
2793.

Leduc, Matt V, Matthew O Jackson, and Ramesh Johari (2017). “Pricing and referrals in diffusion
on networks”. In: Games and Economic Behavior 104, pp. 568–594.

Li, Xiuxian, Xinlei Yi, and Lihua Xie (2021a). “Distributed Online Convex Optimization with an
Aggregative Variable”. In: IEEE Transactions on Control of Network Systems.

Li, Xiuxian, Xinlei Yi, and Lihua Xie (2021b). “Distributed Online Optimization for Multi-Agent
Networks with Coupled Inequality Constraints”. In: IEEE Transactions on Automatic Control
66.8.

107

https://arxiv.org/abs/1909.05207

Li, Yingying, Guannan Qu, and Na Li (2020). “Online optimization with predictions and switching
costs: Fast algorithms and the fundamental limit”. In: IEEE Transactions on Automatic Control.

Lin, Minghong, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew (2012). “Online algo-
rithms for geographical load balancing”. In: Proceedings of the International Green Computing
Conference (IGCC), pp. 1–10.

Lin, Yiheng, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman (2022). Decentralized
Online Convex Optimization in Networked Systems.

Lin, Yiheng, Gautam Goel, and Adam Wierman (2020). “Online optimization with predictions and
non-convex losses”. In: Proceedings of the ACM on Measurement and Analysis of Computing
Systems 4.1, pp. 1–32.

Lin, Yiheng, Yang Hu, Haoyuan Sun, Guanya Shi, Guannan Qu, and Adam Wierman (2021).
“Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems”.
In: arXiv preprint arXiv:2106.10497.

Lin, Yiheng, Guannan Qu, Longbo Huang, and Adam Wierman (2020). “Distributed Reinforce-
ment Learning in Multi-Agent Networked Systems”. In: arXiv preprint arXiv:2006.06555.

Manshadi, Vahideh, Sidhant Misra, and Scott Rodilitz (2020). “Diffusion in random networks:
Impact of degree distribution”. In: Operations Research 68.6, pp. 1722–1741.

Marschak, J. (1955). “Elements for a Theory of Teams”. In: Management Science 1 (2).

Marschak, Jacob and Roy Radner (1972). Economic Theory of Teams. Cowles Foundation for
Research in Economics at Yale University.

McAuley, Julian, Rahul Pandey, and Jure Leskovec (2015). “Inferring networks of substitutable
and complementary products”. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ISBN: 9781450336642. arXiv: 1506.08839.

Molzahn, Daniel K, Florian Dörfler, Henrik Sandberg, Steven H Low, Sambuddha Chakrabarti,
Ross Baldick, and Javad Lavaei (2017). “A survey of distributed optimization and control al-
gorithms for electric power systems”. In: IEEE Transactions on Smart Grid 8.6, pp. 2941–
2962.

Montanari, Andrea (2019). “Optimization of the Sherrington-Kirkpatrick hamiltonian”. In: 2019
IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, pp. 1417–
1433.

Morari, Manfred and Jay H Lee (1999). “Model predictive control: past, present and future”. In:
Computers & Chemical Engineering 23.4-5, pp. 667–682.

108

https://arxiv.org/abs/1506.08839

Nedić, Angelia, Alex Olshevsky, and Michael G Rabbat (2018). “Network topology and communication-
computation tradeoffs in decentralized optimization”. In: Proceedings of the IEEE 106.5, pp. 953–
976.

Oh, Kwang Kyo, Myoung Chul Park, and Hyo Sung Ahn (2015). “A survey of multi-agent forma-
tion control”. In: Automatica 53.

Qu, Guannan, Yiheng Lin, Adam Wierman, and Na Li (2020). “Scalable Multi-Agent Reinforce-
ment Learning for Networked Systems with Average Reward”. In: arXiv: 2006.06626.

Roughgarden, Tim (2020). “Resource Augmentation”. In: CoRR abs/2007.13234. arXiv: 2007.
13234.

Schlosser, Rainer (2016). “Stochastic dynamic multi-product pricing with dynamic advertising and
adoption effects”. In: Journal of Revenue and Pricing Management 15.2, pp. 153–169.

Sellke, Mark (2020). “Chasing convex bodies optimally”. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 1509–1518.

Shi, Guanya, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman (2020). “Online Op-
timization with Memory and Competitive Control”. In: Advances in Neural Information Pro-
cessing Systems 33, pp. 20636–20647.

Shi, Ming, Xiaojun Lin, and Lei Jiao (2019). “On the Value of Look-Ahead in Competitive Online
Convex Optimization”. In: Proceedings of the ACM on Measurement and Analysis of Comput-
ing Systems 3.2, p. 22.

Shi, Wei, Qing Ling, Gang Wu, and Wotao Yin (2015). “Extra: An exact first-order algorithm for
decentralized consensus optimization”. In: SIAM Journal on Optimization 25.2, pp. 944–966.

Shi, Yuanyuan, Guannan Qu, Steven Low, Anima Anandkumar, and Adam Wierman (2021). “Sta-
bility Constrained Reinforcement Learning for Real-Time Voltage Control”. In: arXiv preprint
arXiv:2109.14854.

Shin, Sungho, Mihai Anitescu, and Victor M. Zavala (2021). “Exponential Decay of Sensitivity in
Graph-Structured Nonlinear Programs”. In: arXiv preprint arXiv:2101.03067.

Shin, Sungho and Victor M Zavala (2021). “Controllability and observability imply exponential
decay of sensitivity in dynamic optimization”. In: IFAC-PapersOnLine 54.6, pp. 179–184.

Shin, Sungho, Victor M. Zavala, and Mihai Anitescu (2020). “Decentralized Schemes With Over-
lap for Solving Graph-Structured Optimization Problems”. In: IEEE Transactions on Control
of Network Systems 7.3, 1225–1236.

109

https://arxiv.org/abs/2006.06626
https://arxiv.org/abs/2007.13234
https://arxiv.org/abs/2007.13234

Sivan, Balasubramanian (2013). “Prior robust optimization”. PhD thesis. The University of Wisconsin-
Madison.

Song, Inseong and Pradeep K Chintagunta (2006). “Measuring cross-category price effects with
aggregate store data”. In: Management Science 52.10, pp. 1594–1609.

Stanica, Pantelimon (2001). “Good lower and upper bounds on binomial coefficients”. In: Journal
of Inequalities in Pure and Applied Mathematics 2.3, p. 30.

Suomela, Jukka (2013). “Survey of local algorithms”. In: ACM Computing Surveys (CSUR) 45.2,
pp. 1–40.

Talluri, Kalyan and Garrett Van Ryzin (2006). “The Theory and Practice of Revenue Management,
Springer”. In: International Series in Operations Research and Management 68.

Tatikonda, Sekhar C. and Michael I. Jordan (2002). “Loopy Belief Propagation and Gibbs Mea-
sures”. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence.
UAI’02. Alberta, Canada: Morgan Kaufmann Publishers Inc., 493–500. ISBN: 1558608974.

Tong, Guangmo, Weili Wu, Shaojie Tang, and Ding Zhu Du (2017). “Adaptive Influence Maxi-
mization in Dynamic Social Networks”. In: IEEE/ACM Transactions on Networking. arXiv:
1506.06294.

Tretter, Christiane (2008). “Spectral theory of block operator matrices and applications”. In: Spec-
tral Theory of Block Operator Matrices and Applications.

Tsitsiklis, John and Benjamin Van Roy (1996). “Analysis of temporal-diffference learning with
function approximation”. In: Advances in neural information processing systems 9.

Tsitsiklis, John N. and Benjamin Van Roy (2002). “On average versus discounted reward temporal-
difference learning”. In: Machine Learning 49 (2-3).

Ullah, Farman and Sungchang Lee (2016). “Social content recommendation based on spatial-
temporal aware diffusion modeling in social networks”. In: Symmetry.

Vadhan, Salil P et al. (2012). Pseudorandomness. Vol. 7. Now Delft.

Wainwright, Martin J and Michael Irwin Jordan (2008). Graphical models, exponential families,
and variational inference. Now Publishers Inc.

Weber, Theophane (Sept. 2010). “Correlation Decay and Decentralized Optimization in Graphical
Models”. In.

Weitz, Dror (2006). “Counting independent sets up to the tree threshold”. In: Proceedings of the
Annual ACM Symposium on Theory of Computing. ISBN: 1595931341.

110

https://arxiv.org/abs/1506.06294

Xin, Ran, Shi Pu, Angelia Nedić, and Usman A Khan (2020). “A general framework for decen-
tralized optimization with first-order methods”. In: Proceedings of the IEEE 108.11, pp. 1869–
1889.

Yi, Xinlei, Xiuxian Li, Lihua Xie, and Karl H. Johansson (2020). “Distributed Online Convex
Optimization with Time-Varying Coupled Inequality Constraints”. In: IEEE Transactions on
Signal Processing 68.

Yin, Hongzhi, Bin Cui, Ling Chen, Zhiting Hu, and Xiaofang Zhou (2015). “Dynamic user mod-
eling in social media systems”. In: ACM Transactions on Information Systems.

Yu, Chenkai, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman (2020). “The Power
of Predictions in Online Control”. In: Advances in Neural Information Processing Systems 33.

Yuan, Deming, Alexandre Proutiere, and Guodong Shi (2021). “Distributed Online Optimization
with Long-Term Constraints”. In: IEEE Transactions on Automatic Control.

111

Appendix A: Details in Chapter 3

A.1 Notation Summary and Definitions in Chapter 3

The notation we use throughout the chapter is summarized in the following two tables.

Table A.1: Notation related to the graph/network structures.

Notation Meaning

G = (V , E) The network of agents connected by undirected edges;

dist(u, v) The graph distance (i.e. the length of the shortest path) between two vertices u and v in G;

N r
v The r-hop neighborhood of vertex/agent v in G, i.e., N r

v := {u ∈ V | dist(u, v) ≤ r};

∂N r
v The boundary of the r-hop neighborhood of vertex/agent v, i.e., ∂N r

v = N r
v \N r−1

v ;

h(r) The size of the largest r-hop boundary in G, i.e., h(r) := supv |∂N r
v |;

∆ The maximum degree of any vertex v in G;

E(S) The set of all edges that have both endpoints in S, where S ⊆ V;

S+ The extension of S by 1-hop, i.e., S+ = S ∪ {u | ∃v ∈ S s.t. (u, v) ∈ E};

N
(k,r)
(t,v) {τ ∈ Z | t ≤ τ < t+ k} ×N r

v , which is a set of (time, vertex) pairs;

∂N
(k,r)
(t,v) N

(k,r)
(t,v) \N (k−1,r−1)

(t,v) , which is a set of (time, vertex) pairs;

112

Table A.2: Notation related to the optimization problems.

Notation Meaning

∥·∥ The (Euclidean) 2-norm for vectors and the induced 2-norm for matrices;

H The whole horizon length of Networked OCO problem;

[H] The sequence of integers 1, 2, . . . , H;

Sm For any positive integer m, Sm denotes the set of all symmetric real m×m matrices;

yt1:t2 The sequence yt1 , yt1+1, . . . , yt2 , for t2 ≥ t1;

xvt The individual action of agent v at time step t. It is a vector in Rn;

xSt The joint action of all agents in set S ⊆ V at time t, i.e., xSt = {xvt }v∈S;

xt The joint action of all agents in V at time t, i.e., xt = {xvt }v∈V . It is a shorthand of xVt ;

x∗t The offline optimal joint action of all agents at time t;

x∗τ |t The clairvoyant joint decision of all agents at time τ given that the joint decision is xt at time t;

f v
t (x

v
t) The node cost function for agent v ∈ V at time step t;

cvt (x
v
t , x

v
t−1) The temporal interaction cost function for agent v ∈ V at time step t;

set (x
v
t , x

u
t) The spatial interaction cost for edge e = (v, u) ∈ E at time step t;

µ The strong convexity constant of node costs f v
t ;

ℓf , ℓT , ℓS The smoothness constant of node costs, temporal interaction costs, and spatial interaction costs;

Dv
t The feasible set of xvt for agent v at time t. It is a convex subset of Rn;

θvt The minimizer of node cost function for v at time t subject to Dv
t , i.e., θvt = argminy∈Dv

t
f v
t (y);

fS
t (x

S+

t) The total node costs and spatial interaction costs over a subset S ⊆ V at time t, i.e.,

fS
t (x

S
t) :=

∑
v∈S f

v
t (x

v
t) +

∑
(v,u)∈E(S) s

(v,u)
t (xvt , x

u
t);

cSt (x
S
t) The total temporal interaction costs over a subset S ⊆ V at time t, i.e., cSt (x

S
t) :=

∑
v∈S c

v
t (x

v
t , x

v
t−1);

ft(xt) The total node costs and spatial interaction costs over a V at time t. A shorthand of fV
t (x

V
t);

ct(xt) The total temporal interaction costs over V at time t. A shorthand of cVt (x
V
t);

ψ
(k,r)
(t,v) (·, ·) The optimal individual decisions in N (k,r)

(t,v) when the decision boundaries formed by {t− 1} ×N r
v

and ∂N (k,r)
(t,v) are fixed as parameters;

ψ̃p
t (·, ·) The optimal global trajectory xt, xt+1, . . . , xt+p−2 when xt−1 and xt+p−1 are fixed as parameters;

ψ̃t(·) The optimal global trajectory xt, xt+1, . . . , xT when xt−1 is fixed as the parameter;

In addition to the notation in the tables above, we make use of the concepts of strong convexity

and smoothness throughout this paper.

Definition A.1.1. For a fixed dimension m ∈ Z+, let D ⊂ Rm be a convex set, and suppose

113

function ĥ : D → R is a differentiable function. Then, ĥ is called ℓ-smooth for some constant

ℓ ∈ R≥0 if

ĥ(y) ≤ ĥ(x) + ⟨∇ĥ(x), y − x⟩+ ℓ

2
∥y − x∥22 ,∀x, y ∈ Rm,

and is called µ-strongly convex for some constant µ ∈ R≥0 if

ĥ(y) ≥ ĥ(x) + ⟨∇ĥ(x), y − x⟩+ µ

2
∥y − x∥22 ,∀x, y ∈ Rm.

Here ⟨·, ·⟩ denotes the dot product of vectors.

A.2 Perturbation Bounds

This section provides the full proofs of the perturbation bounds stated in Section 3.3.2.

A.2.1 Proof of Theorem 3.3.1

We begin with a technical lemma. Recall that for any positive integer m, Sm denotes the set of

all symmetric m×m real matrices.

Lemma A.2.1. For a graph G ′ = (V ′, E ′), suppose A is a positive definite matrix in S
∑

i∈V′ pi

formed by |V ′| × |V ′| blocks, where the (i, j)-th block has dimension pi × pj , i.e., Ai,j ∈ Rpi×pj .

Assume that A is q-banded for an even positive integer q; i.e.,

Ai,j = 0,∀dG′(i, j) > q/2.

Let a0 denote the smallest eigenvalue value of A, and b0 denote the largest eigenvalue value of A.

Assume that b0 ≥ a0 > 0. Suppose D = diag(D1, . . . , D|V ′|), where Di ∈ Spi is positive semi-

definite. Let M = ((A+D)−1)SR,SC
, where SR, SC ⊆ {1, . . . , |V ′|}. Then we have ∥M∥ ≤ Cγd̂,

where

C =
2

a0
, γ =

(√
cond(A)− 1√
cond(A) + 1

)2/q

, d̂ = min
i∈SR,j∈Sc

dG′(i, j).

Here cond(A) = b0/a0 denotes the condition number of matrix A.

114

We can show Lemma A.2.1 using the same method as Lemma B.1 in Lin et al., 2021. We only

need to note that even when the size of blocks are not identical, the m th power of a q-banded

matrix is a qm-banded matrix for any positive integer m.

With the help of Lemma A.2.1, we can proceed to show a local perturbation bound on a general

G ′ in Theorem A.2.1, where G ′ can be different from the network G of agents in Section 3.2. Com-

pared with Theorem 3.1 in Lin et al., 2021, Theorem A.2.1 is more general because it considers

a general network of decision variables while Theorem 3.1 in Lin et al., 2021 only consider the

special case of a line graph. Although Theorem A.2.1 does not consider the temporal dimension

which features in the local perturbation bound defined in Definition 3.3.1, we will use it to show

Theorem 3.3.1 later by redefining the variables from two perspectives.

Theorem A.2.1. For a network G ′ = (V ′, E ′) with undirected edges, suppose that each node v ∈ V ′

is associated with a decision vector1 x̂v ∈ Rpv and a cost function f̂v : Rpv → R≥0, and each edge

e = (u, v) ∈ E ′ is associated with an edge cost ĉe : Rpv × Rpu × Rq → R≥0. Assume that f̂v is

µ-strongly convex for all v ∈ V ′ and ĉe is ℓ-smooth for all e ∈ E ′. For some subset S ⊂ V ′, define

E0 := {(u, v) ∈ E ′ | u, v ∈ V ′ \ S},

E1 := {(u, v) ∈ E ′ | u ∈ V ′ \ S, v ∈ S}.

For the disturbance vectors2 w ∈ R(|E0|+|E1|)×q indexed by e ∈ E0 ∪E1 and y ∈ R
∑

v∈S pv indexed

by v ∈ S, let ψ(w, y) denote the optimal solution of the optimization problem

ψ(w, y) := argmin
x∈R|V′\S|×d

∑
v∈V ′\S

f̂v(x̂v) +
∑

(u,v)∈E0

ĉ(u,v)(x̂u, x̂v, w(u,v)) +
∑

(u,v)∈E1

ĉ(u,v)(x̂u, yv, w(u,v)).

1We add a hat over the decision vector x̂v to distinguish it with the local action xv
t and global action xt defined in

Section 3.2. We assume x̂v is a pv dimensional real vector.
2We do not consider the disturbance vectors in the exponentially decaying local perturbation bounds defined in

Definition 3.3.1, but adding w into the edge costs makes Theorem A.2.1 more general. For each edge e, we is a
q-dimensional real vector.

115

Then, we have that for any vertex u0 ∈ V ′ \ S, the following inequality holds:

∥ψ(w, y)u0 − ψ(w′, y′)u0∥ ≤ C

(∑
e∈E0∪E1

λdG′ (h,e)−1 ∥we − w′
e∥+

∑
v∈S

λdG′ (h,v)−1 ∥yv − y′v∥

)
,∀w, y, w′, y′,

where C := (2ℓ)/µ and λ := 1 − 2 ·
(√

1 + (∆′ℓ/µ) + 1
)−1

. Here, ∆′ denote the maxi-

mum degree of any vertex v ∈ V ′ in graph G ′. For e = (u, v) ∈ E ′, we define dG′(u0, e) :=

min{dG′(u0, u), dG′(u0, v)}.

Proof of Theorem A.2.1. Let e = [π⊤, ϵ⊤]⊤ be a vector where ϵ = {ϵv}v∈S for ϵv ∈ Rpv and

π = {πe}e∈E0∪E1 , for πe ∈ Rq. Let θ be an arbitrary real number. Define function ĥ : R
∑

v∈V′\S pv×

R(|E0|+|E1|)×q × R
∑

v∈S pv → R≥0 as

ĥ(x̂, w, y) =
∑

v∈V ′\S

f̂v(x̂v) +
∑

(u,v)∈E0

ĉ(u,v)(x̂u, x̂v, w(u,v)) +
∑

(u,v)∈E1

ĉ(u,v)(x̂u, yv, w(u,v)).

To simplify the notation, we use ζ to denote the tuple of system parameters, i.e.,

ζ := (w, y).

From our construction, we know that ĥ is µ-strongly convex in x, so we use the decomposition

ĥ = ĥa + ĥb, where

ĥa(x̂, ζ) =
∑

v∈V ′\S

µ

2
∥x̂v∥2 +

∑
(u,v)∈E0

ĉ(u,v)(x̂u, x̂v, w(u,v)) +
∑

(u,v)∈E1

ĉ(u,v)(x̂u, yv, w(u,v)),

ĥb(x̂, ζ) =
∑

v∈V ′\S

(
f̂v(x̂v)−

µ

2
∥x̂v∥2

)
.

Since ψ(ζ + θe) is the minimizer of convex function ĥ(·, ζ + θe), we see that

∇x̂ĥ(ψ(ζ + θe), ζ + θe) = 0.

116

Taking the derivative with respect to θ gives that

∇2
x̂ĥ(ψ(ζ + θe), ζ + θe)

d

dθ
ψ(ζ + θe) = −

∑
v∈S

∇yv∇x̂ĥ(ψ(ζ + θe), ζ + θe)ϵv

−
∑

e∈E1∪E2

∇we∇x̂ĥ(ψ(ζ + θe), ζ + θe)πe.

To simplify the notation, we define

M := ∇2
x̂ĥ(ψ(ζ + θe), ζ + θe),which is a |V ′ \ S| × |V ′ \ S| block matrix,

R(v) := −∇yv∇x̂ĥ(ψ(ζ + θe), ζ + θe),∀v ∈ S,which are |V ′ \ S| × 1 block matrix,

K(e) := −∇we∇x̂ĥ(ψ(ζ + θe), ζ + θe),∀e ∈ E0 ∪ E1,which are |V ′ \ S| × 1 block matrices,

where in M , the block size is pu × pv,∀(u, v) ∈ (V ′ \ S)2; in R(v), the block size is pu × pv,∀u ∈

V ′ \ S; in K(e), the block size is pu × q,∀u ∈ V ′ \ S. Hence we can write

d

dθ
ψ(ζ + θe) =M−1

(∑
v∈S

R(v)ϵv +
∑

e∈E1∪E2

K(e)πe

)
.

Recall that {R(v)}v∈S are |V ′ \ S| × 1 block matrices with block size pu × pv, ∀u ∈ V ′ \ S;

{K(e)}e∈E0∪E1 are |V ′ \ S| × 1 block matrices with block size pu × q,∀u ∈ V ′ \ S. Let N(v)

denote the set of neighbors of vertex v on G ′. For R(v), v ∈ S, the (u, 1)-th block can be non-zero

only if u ∈ (V ′ \ S) ∩ N(v). For K(e), e ∈ E0 ∪ E1, the (u, 1)-th block can be non-zero only if

u ∈ e and u ∈ V ′ \ S. Hence we see that

d

dθ
ψ(ζ + θe)u0 =

∑
v∈S

(M−1)u0,(V ′\S)∩N(v)R
(v)
(V ′\S)∩N(v),1ϵv +

∑
e∈E0∪E1

(M−1)u0,{u∈e|u∈V ′\S}K
(τ)
{u∈e|u∈V ′\S},1πe.

Since the switching costs cτ (·, ·, ·), τ = 1, . . . , p are ℓ-strongly smooth, we know that the norms of

R
(v)
(V ′\S)∩N(v),1, and K(τ)

{u∈e|u∈V ′\S},1

117

are all upper bounded by ℓ. Taking norms on both sides gives that

∥∥∥∥ ddθψ(ζ + θe)u0

∥∥∥∥ ≤
∑
v∈S

ℓ
∥∥(M−1)u0,(V ′\S)∩N(v)

∥∥ ∥ϵv∥+ ∑
e∈E0∪E1

ℓ
∥∥(M−1)u0,{u∈e|u∈V ′\S}

∥∥ ∥πe∥ .
(A.1)

Note that M can be decomposed as M =Ma +Mb, where

Ma := ∇2
x̂ĥa(ψ(ζ + θe), ζ + θe),

Mb := ∇2
x̂ĥb(ψ(ζ + θe), ζ + θe).

Since Ma is block tri-diagonal and satisfies (µ + ∆′ℓ)I ⪰ Ma ⪰ µI , and Mb is block diagonal

and satisfies Mb ⪰ 0, we obtain the following using Lemma A.2.1:

∥∥(M−1)u0,(V ′\S)∩N(v)

∥∥ ≤ 2

µ
λdG′ (u0,v)−1, and

∥∥(M−1)u0,{u∈e|u∈V ′\S}
∥∥ ≤ 2

µ
λdG′ (u0,e)−1,

where λ := (
√
cond(Ma)− 1)/(

√
cond(Ma) + 1) = 1− 2 ·

(√
1 + (2ℓ/µ) + 1

)−1

.

Substituting this into (A.1), we see that

∥∥∥∥ ddθψ(ζ + θe)u0

∥∥∥∥ ≤ C

(∑
v∈S

λdG′ (u0,v)−1 ∥ϵv∥+
∑

e∈E0∪E1

λdG′ (u0,e)−1 ∥πe∥

)
,

where C = (2ℓ)/µ.

Finally, by integration we can complete the proof

∥ψ(ζ)u0 − ψ(ζ + e)u0∥ =

∥∥∥∥∫ 1

0

d

dθ
ψ(ζ + θe)u0dθ

∥∥∥∥
≤
∫ 1

0

∥∥∥∥ ddθψ(ζ + θe)u0

∥∥∥∥ dθ
≤ C

(∑
v∈S

λdG′ (u0,v)−1 ∥ϵv∥+
∑

e∈E0∪E1

λdG′ (u0,e)−1 ∥πe∥

)
.

118

Q.E.D.

Now we return to the proof of Theorem 3.3.1. For simplicity, we temporarily assume the indi-

vidual decision points are unconstrained, i.e., Dv
t = Rn. We discuss how to relax this assumption

in Appendix A.2.3.

We first consider the case when
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
only differ at one entry yut−1

or zuτ . If the difference is at zuτ , by viewing each subset {τ} ×N r
v for τ ∈ {t− 1, t, . . . , t + k} in

the original problem as a vertex in the new graph G ′ and applying Theorem A.2.1, we obtain that

∥∥xv0t0 − (xv0t0)
′∥∥ ≤ C0

1 · (ρ0T)|t0−τ | ∥zuτ − (zuτ)
′∥ , (A.2)

where C0
1 = (2ℓT)/µ and ρ0T = 1 − 2 ·

(√
1 + (2ℓT/µ) + 1

)−1

. On the other hand, by viewing

each subset {τ | t − 1 ≤ τ < t + k} × {u} for u ∈ N r
v in the original problem as a vertex in the

new graph G ′ and applying Theorem A.2.1, we obtain that

∥∥xv0t0 − (xv0t0)
′∥∥ ≤ C1

1 · (ρ0S)dist(u,v0) ∥zuτ − (zuτ)
′∥ , (A.3)

where C1
1 = (2∆ℓS)/µ and ρ0S = 1− 2 ·

(√
1 + (2∆ℓS/µ)

)−1

. Combining (A.2) and (A.3) gives

that

∥∥xv0t0 − (xv0t0)
′∥∥ ≤ min{C0

1 · (ρ0T)|t0−τ |, C1
1 · (ρ0S)dist(u,v0)} · ∥zuτ − (zuτ)

′∥

≤
√
C0

1 · C1
1 · (ρ0T)|t0−τ |/2 · (ρ0S)dist(u,v0)/2 · ∥zuτ − (zuτ)

′∥

≤ C1 · ρ|t0−τ |
T ρ

dist(v0,u)
S ∥zuτ − (zuτ)

′∥ (A.4)

when
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
only differ at one entry zuτ for (τ, u) ∈ ∂N

(k,r)
(t,v) .

We can use the same method to show that when
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
only differ

119

at one entry yut−1 for u ∈ N r
v , we have

∥∥xv0t0 − (xv0t0)
′∥∥ ≤ C2ρ

t0−(t−1)
T ρ

dist(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥ . (A.5)

In the general case where
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
differ not only at one entry, we

can perturb the entries of parameters one at a time and apply the triangle inequality. Then, the

conclusion of Theorem 3.3.1 follows from (A.4) and (A.5).

A.2.2 Proof of Theorem 3.3.2

The proof follows a four-step structure outlined in Section 3.4.1.

Step 1. Establish first order equations

Given any system parameter ζ = (x
(Nr

v)
t−1 , {zuτ |(τ, u) ∈ ∂N

(k,r)
(t,v) }), we can define function ĥ as

follows:

ĥ(x̂[k−1], ζ) =
k−1∑
i=1

∑
u∈Nr−1

v

fu
t−1+i(x̂

u
i) +

k−1∑
i=1

∑
(u,u′)∈E(Nr

v)

s
(u,u′)
t−1+i(x̂

u
i , x̂

u′

i) +
k∑

i=1

∑
u∈Nr

v

cut−1+i(x̂
u
i , x̂

u
i−1).

x̂0 coincides with xt−1 on every node in N r
v . x̂k coincides with zt−1+k on every node in N r

v . For

1 ≤ i ≤ k − 1, x̂ui coincides with zut−1+i on the boundary, i.e., u ∈ ∂N r
v .

Let perturbation vector e = [eT0 , e
T
1 , · · · , eTk−1, e

T
k]

T where e0, ek ∈ R|Nr
v |×n and ei = R|∂Nr

v |×n

for 1 ≤ i ≤ k − 1.

Given θ ∈ R, ψ(ζ + θe) is the global minimizer of convex function ĥ(·, ζ + θe), and hence we

have

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe) = 0.

120

Taking the derivative with respect to θ, we establish the following set of equations:

∇2

x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe)
d

dθ
ψ(ζ + θe) = −∇

x̂
(Nr

v)
0

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe)e0

−∇
x̂
(Nr

v)
k

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe)ek

−
k−1∑
τ=1

∇
x̂
(∂Nr

v)
τ

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe)eτ .

(A.6)

We adopt the following short-hand notation:

• M := ∇2

x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is a hierarchical block matrix with the first level

of dimension (k− 1)× (k− 1), the second level of dimension |N r−1
v |× |N r−1

v | and the third

level of dimension n× n.

• R(1) := −∇
x̂
(Nr

v)
0

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ+θe), ζ+θe), which is also a hierarchical block matrix with

the first level of dimension (k− 1)× 1, the second level of dimension |N r−1
v | × |N r

v | and the

third level of dimension n× n.

• R(k−1) := −∇
x̂
(Nr

v)
k

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is also a hierarchical block matrix

with the first level of dimension (k − 1) × 1, the second level of dimension |N r−1
v | × |N r

v |

and the third level of dimension n× n.

• K(τ) := −∇
x̂
(∂Nr

v)
τ

∇
x̂
(Nr−1

v)
1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is also a hierarchical block matrix

with the first level of dimension (k − 1)× 1. the second level of dimension |N r−1
v | × |∂N r

v |

and the third level of dimension n× n.

Using the above, we can rewrite (A.6) as follows:

d

dθ
ψ(ζ + θe) =M−1

(
R(1)e0 +R(k−1)ek +

k−1∑
τ=1

K(τ)yτ

)
.

Due to the structure of temporal interaction cost functions, for R(1)(resp. R(k−1)), only when the

first level index is 1 (resp. k − 1), the lower level block matrix is non-zero; due to the structure

121

of spatial interaction cost functions, for K(τ), only when the first level index is τ , the lower level

block matrix is non-zero. Hence, for 1 ≤ τ ′ ≤ k − 1, we have

(
d

dθ
ψ(ζ + θe))τ ′ =M−1

τ ′,1R
(1)
1 e0 +M−1

τ ′,k−1R
(k−1)
k−1 ek +

k−1∑
τ=1

M−1
τ ′,τK

(τ)
τ yτ , (A.7)

where the subscripts on the right hand side denote the first level index of hierarchical block matrices

M , R(1), R(k−1) and K(τ).

Step 2. Exploit the structure of matrix M

We decompose M to block diagonal matrix D and tri-diagonal block matrix A such that M =

D+A. We denote each diagonal block in D as Di,i for 1 ≤ i ≤ k− 1. Other blocks in D are zero

matrices.

D :=

∗ 0 · · · ∗

0 ∗ 0

... . . .

∗ 0 · · · ∗

∗ 0 · · · ∗

0 ∗ 0

... . . .

∗ 0 · · · ∗
. . .

∗ 0 · · · ∗

0 ∗ 0

... . . .

∗ 0 · · · ∗

122

Each non-zero block in A is a diagonal block matrix, which captures the Hessian of temporal

interaction cost between consecutive time steps. Denote each block as Ai,j for 1 ≤ i, j ≤ k − 1.

A :=

∗ 0 · · · 0

0 ∗ 0

... . . .

0 0 · · · ∗

∗ 0 · · · 0

0 ∗ 0

... . . .

0 0 · · · ∗

∗ 0 · · · 0

0 ∗ 0

... . . .

0 0 · · · ∗

. . .

∗ 0 · · · 0

0 ∗ 0

... . . .

0 0 · · · ∗

∗ 0 · · · 0

0 ∗ 0

... . . .

0 0 · · · ∗

We rewrite the inverse of M as follows:

M−1 = (D + A)−1 = D−1(I + AD−1)−1 = D−1P−1.

Next we show the proof for Lemma 3.4.2.

Proof of Lemma 3.4.2. We claim the eigenvalues of P are in {λ ∈ C||λ − z| ≤ R} for some

R ∈ R>0 and z ∈ C \ {0} such that R < |z|. We first establish Lemma 3.4.2 based on the claim

and then prove the claim.

123

We follow the argument as in the proof of Thm 4 in Shin, Zavala, and Anitescu, 2020. Since

any eigenvalue λ of P satisfies |λ − z| ≤ R, |λ/z − 1| ≤ R/|z| < 1. Thus, the eigenvalues of

I − (1/z)P lie on {λ̃ ∈ C : |λ̃| ≤ R/|z|}, which guarantees ρ(I − (1/z)P) < 1. Therefore,

P−1 =
1

z

(
I − (I − 1

z
P)

)−1

=
1

z

∑
q≥0

(I − 1

z
P)q.

We let z = 1 and R = 2ℓT
µ

and prove the above claim by utilizing Gershgorin circle theorem

for block matrices.

By Theorem 1.13.1 and Remark 1.13.2 of Tretter, 2008, the following holds: Consider A =

(Aij) ∈ Rdn×dn (d, n ≥ 1) where Aij ∈ Rd×d and Aii is symmetric. Suppose σ(·) is the spectrum

of a matrix. Define set

Gi := σ(Aii) ∪

{
∪d

k=1 B

(
λk(Aii),

∑
j ̸=i

∥Aij∥

)}

where B(·, ·) denotes a disk B(c, r) = {λ : ∥λ− c∥ ≤ r} and λk is the k-th smallest eigenvalues

of Aii. Then,

σ(A) ∈ ∪n
i=1Gi.

Next, we use the above fact to find a superset of σ(P). Every diagonal block of P is I .

Moreover, Pi,j = 0 for |i − j| > 1, Pi,i−1 = Ai,i−1D
−1
i−1,i−1, Pi,i+1 = Ai,i+1D

−1
i+1,i+1. Hence

we have

∑
j ̸=i

∥Pi,j∥ ≤ ∥Ai,i−1∥
∥∥D−1

i−1,i−1

∥∥+ ∥Ai,i+1∥
∥∥D−1

i+1,i+1

∥∥
≤ 2ℓT

µ
.

The last inequality is by Assumptions 3.2.1. Therefore, Gi = B(1, 2ℓT
µ
). This implies all eigenval-

ues of P are in B(1, 2ℓT
µ
). Q.E.D.

124

To further simplify the notation in the power series expansion, we define J := AD−1 = P − I .

Given any time indices τ ′ and τ , we have

(M−1)τ ′,τ = (D−1)τ ′,τ ′(P
−1)τ ′,τ

= (D−1)τ ′,τ ′ ×
∑
ℓ≥0

(−J)ℓτ ′,τ ,
(A.8)

where the first equality is since D−1 is a diagonal block matrix, the second equality is due to

Lemma 3.4.2.

Step 3: Property for general exponential-decay matrices

This step simply requires proving Lemma 3.4.3.

Proof of Lemma 3.4.3. Under the assumptions, we see that

∑
q

(
1

λ′
)dM(u,q) ∥(A1A2 · · ·Aℓ)u,q∥ =

∑
q

(
1

λ′
)dM(u,q)

∥∥∥∥∥∥
∑

s1,··· ,sℓ−1

(A1)u,s1(A2)s1,s2 · · · (Aℓ)sℓ−1,q

∥∥∥∥∥∥
≤
∑
q

(
1

λ′
)dM(u,q)

∑
s1,··· ,sℓ−1

(C1λ
dM(u,s1))(C2λ

dM(s1,s2)) · · · (Cℓλ
dM(sℓ−1,q))

≤
∑
q

∑
s1,··· ,sℓ−1

ℓ∏
i=1

Ci(
λ

λ′
)dM(u,s1)+dM(s1,s2)+···+dM(sℓ−1,q)

≤ (ã)ℓ
ℓ∏

i=1

Ci.

(A.9)

Hence, we obtain that ∥∥∥∥∥(
ℓ∏

i=1

Ai)u,q

∥∥∥∥∥ ≤ C ′(λ′)dM (u,q).

Q.E.D.

125

Step 4: Establish correlation decay properties of matrix M

In this step, we use the property developed for general exponential-decay matrices on M and

derive the perturbation bound in the Theorem 3.3.2.

Lemma A.2.2. For ℓ ≥ 1, time index i, j ≥ 1, J ℓ has the following properties:

• (J ℓ)i,j = 0 if ℓ < |i− j| or ℓ− |i− j| is odd.

• (J ℓ)i,j is a summation of terms
∏ℓ

k=1Ajk,ikD
−1
ik,ik

and the number of such terms is bounded

by
(

ℓ
(ℓ−|i−j|)/2

)
.

Note for integers m, k ≥ 1, we define
(

m
k/2

)
= 0 if k is odd.

Proof. Since J is a tri-diagonal banded matrix, J ℓ
i,j = 0 for ℓ < |i − j|. We prove the rest of

properties of J by induction on ℓ. When ℓ = 1,

Ji,i = 0, Ji,i−1 = Ai,i−1D
−1
i−1,i−1, Ji,i+1 = Ai,i+1D

−1
i+1,i+1.

Lemma A.2.2 holds for the base case. Suppose Lemma A.2.2 holds for Jq for q ≤ ℓ−1. Let q = ℓ,

then

J ℓ
i,j =

∑
k

J ℓ−1
i,k Jk,j = J ℓ−1

i,j−1Aj−1,jD
−1
j,j + J ℓ−1

i,j+1Aj+1,jD
−1
j,j .

By induction hypothesis, J ℓ−1
i,j is a summation of terms

∏ℓ−1
k=1Ajk,ikD

−1
ik,ik

. Moreover, the number of

such terms is bounded by
(

ℓ−1
(ℓ−1−|i−j−1|)/2

)
+
(

ℓ−1
(ℓ−1−|i−j+1|)/2

)
. Next we will show

(
ℓ−1

(ℓ−1−|i−j−1|)/2

)
+(

ℓ−1
(ℓ−1−|i−j+1|)/2

)
=
(

ℓ
(ℓ−|i−j|)/2

)
case by case.

Case 1: ℓ− |i− j| is odd.

If ℓ− |i− j| is odd, then ℓ− 1− |i− j − 1| and ℓ− 1− |i− j + 1| are both odd. Under this

case, (
ℓ− 1

(ℓ− 1− |i− j − 1|)/2

)
+

(
ℓ− 1

(ℓ− 1− |i− j + 1|)/2

)
= 0,

126

which is equal to
(

ℓ
(ℓ−|i−j|)/2

)
.

Case 2: ℓ− |i− j| is even and i = j. Under this case, we have

(
ℓ− 1

(ℓ− 1− |i− j − 1|)/2

)
+

(
ℓ− 1

(ℓ− 1− |i− j + 1|)/2

)
=

(
ℓ− 1

ℓ/2− 1

)
+

(
ℓ− 1

ℓ/2− 1

)
.

Since ℓ is even,
(

ℓ−1
ℓ/2−1

)
+
(

ℓ−1
ℓ/2−1

)
=
(

ℓ
ℓ/2

)
=
(

ℓ
(ℓ−|i−j|)/2

)
.

Case 3: ℓ− |i− j| is even and i ̸= j.

If ℓ− |i− j| is even, then ℓ− 1− |i− j − 1| and ℓ− 1− |i− j + 1| are both even. We denote

(ℓ − |i − j|)/2 as k0. By triangle inequality, (ℓ − 1 − |i − j − 1|)/2 and (ℓ − 1 − |i − j + 1|)/2

are in {k0 − 1, k0}. Since i ̸= j,

(
ℓ− 1

(ℓ− 1− |i− j − 1|)/2

)
+

(
ℓ− 1

(ℓ− 1− |i− j + 1|)/2

)
=

(
ℓ− 1

k0 − 1

)
+

(
ℓ− 1

k0

)
,

which sums to
(

ℓ
k0

)
by Pascal’s triangle.

Q.E.D.

Next we present the proof of Lemma 3.4.4.

Proof of Lemma 3.4.4. By Lemma A.2.2, (J ℓ)i,j is a summation of terms
∏ℓ

k=1Ajk,ikD
−1
ik,ik

and

the number of such terms is bounded by
(

ℓ
(ℓ−|i−j|)/2

)
.

Define Bk := Ajk,ikD
−1
ik,ik

. Recall Ajk,ik is a diagonal matrix and Dik,ik is a graph-induced

banded matrix.

∥(Bk)u,q∥ =
∥∥(Ajk,ikD

−1
ik,ik

)u,q
∥∥ =

∥∥(Ajk,ik)u,u(D
−1
ik,ik

)u,q
∥∥ ≤ ℓT

∥∥(D−1
ik,ik

)u,v
∥∥ ≤ 2ℓT

µ
γ

dist(u,v)
S .

where the last inequality is by using Lemma A.2.1 on Dik,ik .

127

Under the condition b <∞, we can use Lemma 3.4.3 to obtain the following bound,

∥∥∥∥∥(
ℓ∏

k=1

Ajk,ikD
−1
ik
)u,v

∥∥∥∥∥ ≤ (b
2ℓT
µ

)ℓ(γ′S)
dist(u,v).

Since the number of such terms is bounded by
(

ℓ
(ℓ−|i−j|)/2

)
, we have

∥∥((J ℓ)i,j)u,q
∥∥ ≤

(
ℓ

(ℓ− |i− j|)/2

)
(b
2ℓT
µ

)ℓ(γ′S)
dist(u,v).

Q.E.D.

Lemma A.2.3. Given 1 ≤ τ ′, τ ≤ k − 1, y ∈ R|∂Nr
v |×n and v0 ∈ N r−1

v , we have

∥∥∥∥∥
(
(M)−1

τ ′,τK
(τ)
τ y

)
v0

∥∥∥∥∥ ≤ C1ρ
|τ ′−τ |
T

∑
u∈∂Nr

v

ρ
dist(v0,u)−1
S ∥yu∥ ,

and for i ∈ {1, k − 1}, e ∈ R|Nr
v |×n,

∥∥∥∥∥
(
(M−1)τ ′,i)R

(i)
i e

)
v0

∥∥∥∥∥ ≤ C2ρ
|τ ′−i|+1
T

∑
u∈Nr

v

ρ
dist(v0,u)
S ∥eu∥ ,

where ρT = 4ãℓT
µ

and ρS = (1+b1+b2)γS.We letC1 = C2 = max{ a2

2ã(1−4ãℓT /µ)
, 2a2∆ℓS/µ
γS(1+b1+b2)(1−4ãℓT /µ)

}.

Proof. Given 1 ≤ τ, τ ′ ≤ k − 1 and v0 ∈ N r−1
v , since M−1 = D−1

∑
ℓ≥0(−J)ℓ, we have

∥∥∥∥∥
(
(M)−1

τ ′,τK
(τ)
τ y

)
v0

∥∥∥∥∥ =

∥∥∥∥∥
(
D−1

τ ′,τ ′

∑
ℓ≥0

(−J)ℓτ ′,τK(τ)
τ y

)
v0

∥∥∥∥∥ . (A.10)

With slight abuse of notation, we use K to denote K(τ)
τ , and Q−1 to denote D−1

τ ′,τ ′ in this proof

128

from now. We can rewrite the right hand side of (A.10) using the new notation as follows:

∥∥∥∥∥
(
Q−1

∑
ℓ≥0

(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥ ≤
∑
ℓ≥0

∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥
=
∑
ℓ≥0

∥∥∥∥∥∥
∑

q∈Nr−1
v

(
Q−1(−J)ℓτ ′,τ

)
v0,q

(Ky)q

∥∥∥∥∥∥
≤
∑
ℓ≥0

∑
q∈Nr−1

v

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τ

)
v0,q

∥∥∥∥∥∥ ∥(Ky)q∥ .
(A.11)

For a given q ∈ N r−1
v and y ∈ R|∂Nr

v |d,

∥(Ky)q∥ =

∥∥∥∥∥∥
∑

u∈∂Nr
v

Kq,uyu

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

u∈∂Nr
v∩N1

q

Kq,uyu

∥∥∥∥∥∥ .
where the last equality is since spacial interaction costs are only among neighboring nodes.

For a given u ∈ ∂N r
v , since the spacial interaction cost for each edge is ℓS smooth,

∥Kq,uyu∥ ≤ ∥Kq,u∥ ∥yu∥ ≤ ℓS ∥yu∥ ,

which gives

∥(Ky)q∥ ≤
∑

u∈∂Nr
v∩N1

q

ℓS ∥yu∥ .

Therefore,

∥∥∥∥∥
(
Q−1

∑
ℓ≥0

(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥ ≤ ℓS
∑
ℓ≥0

∑
q∈Nr−1

v

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τ

)
v0,q

∥∥∥∥∥∥
∑

u∈∂Nr
v∩N1

q

∥yu∥ . (A.12)

By Lemma 3.4.4, (−J)ℓτ ′,τ satisfies the following exponential decay properties: for any u, q ∈

N r−1
v , ∥∥((J ℓ)τ ′,τ)u,q

∥∥ ≤
(

ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã
2ℓT
µ

)ℓ(γ′S)
dist(u,q),

where we choose δ = b1 · γS , γ′S = (1 + b1)γS and ã =
∑

γ≥0(
1

1+b1
)γh(γ).

129

Moreover, Q−1 (which denotes D−1
τ ′,τ ′) is the inverse of a graph-induced banded matrix. Q−1

satisfies: for any u, q ∈ N r−1
v ,

∥∥(Q−1)u,q
∥∥ ≤ 2

µ
γ

dist(u,q)
S <

2

µ
(γ′S)

dist(u,q),

where the first inequality is again by using Lemma A.2.1 on Dτ ′,τ ′ .

Applying Lemma 3.4.3 on Q−1 and
∥∥((J ℓ)τ ′,τ)

∥∥, we have for any u, q ∈ N r−1
v , and ℓ ≥ 1,

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τ

)
u,q

∥∥∥∥∥∥ ≤ a2
2

µ

(
ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã
2ℓT
µ

)ℓ(λ′)dist(u,q),

where λ′ := γ′S+b2 ·γS < 1 and a :=
∑

γ≥0(
1+b1

1+b1+b2
)γh(γ).Note that J0 := I , it is straightforward

to verify that the above inequality holds when ℓ = 0.

With the exponential decay properties of Q−1(−J)ℓτ ′,τ , we have

∥∥∥∥∥
(
Q−1

∑
ℓ≥0

(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥ ≤ ℓSa
2 2

µ

∑
ℓ≥0

(
ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã
2ℓT
µ

)ℓ
∑

q∈Nr−1
v

(λ′)dist(v0,q)
∑

u∈∂Nr
v∪N1

q

∥yu∥

≤ ℓSa
2 2

µ

∑
ℓ≥|τ ′−τ |

(
ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã
2ℓT
µ

)ℓ
∑

u∈∂Nr
v

∆(λ′)dist(v0,u)−1 ∥yu∥

≤ ∆ℓSa
2 2

µ

∑
ℓ≥|τ ′−τ |

(
4ãℓT
µ

)ℓ
∑

u∈∂Nr
v

(λ′)dist(v0,u)−1 ∥yu∥

≤ 2∆ℓSa
2

µ− 4ãℓT
(
4ãℓT
µ

)|τ
′−τ |

∑
u∈∂Nr

v

(λ′)dist(v0,u)−1 ∥yu∥

=
2∆ℓSa

2

λ′(µ− 4ãℓT)
(
4ãℓT
µ

)|τ
′−τ |

∑
u∈∂Nr

v

(λ′)dist(v0,u) ∥yu∥ .

(A.13)

The third inequality uses
(

ℓ
(ℓ−|τ ′−τ |)/2

)
≤ 2ℓ, which can be proved using the following version of

Stirling’s approximation: For all n ≥ 1, e denotes the natural number,

√
2πn(n/e)ne1/(12n+1) < n! <

√
2πn(n/e)ne1/(12n).

130

Similarly, consider
∥∥∥((M−1)τ ′,i)R

(i)
i e)v0

∥∥∥ for i ∈ {1, k − 1}. With slight abuse of notation, in

this proof, we use R to denote R(i)
i and use the notation Q−1 to denote D−1

τ ′,τ ′ . Following the same

steps as before, we have

∥∥∥∥∥
(
(M−1)τ ′,i)R

(i)
i e

)
v0

∥∥∥∥∥ ≤
∑
ℓ≥0

∑
q∈Nr

v

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,i

)
v0,q

∥∥∥∥∥∥ ∥(Re)q∥ . (A.14)

Since temporal interactions occurs for the same node under consecutive time steps, R is a

diagonal block matrix. Hence,

∥(Re)q∥ = ∥Rq,qeq∥ ≤ ℓT ∥eq∥ .

Moreover, using the exponential decay properties of Q−1(−J)ℓτ ′,i, we have for u, q ∈ N r−1
v ,

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,i

)
u,q

∥∥∥∥∥∥ ≤ a2
2

µ

(
ℓ

(ℓ− |τ ′ − i|)/2

)
(ã
2ℓT
µ

)ℓ(λ′)dist(u,q).

Therefore,

∥∥∥((M−1)τ ′,i)R
(i)
i e)v0

∥∥∥ ≤
∑
ℓ≥0

∑
q∈Nr

v

a2
2

µ

(
ℓ

(ℓ− |τ ′ − i|)/2

)
(ã
2ℓT
µ

)ℓ(λ′)dist(v0,q)ℓT ∥eq∥

≤
∑

ℓ≥|τ ′−i|

∑
q∈Nr

v

a2
2

µ

(
ℓ

(ℓ− |τ ′ − i|)/2

)
(ã
2ℓT
µ

)ℓ(λ′)dist(v0,q)ℓT ∥eq∥

≤ 2ℓTa
2

µ

∑
ℓ≥|τ ′−i|

(
4ãℓT
µ

)ℓ
∑
q∈Nr

v

(λ′)
dist(v0,q) ∥eq∥

≤ 2ℓTa
2

µ− 4ãℓT
(
4ãℓT
µ

)|τ
′−i|

∑
q∈Nr

v

(λ′)dist(v0,q) ∥eq∥

=
a2µ

2ã(µ− 4ãℓT)
(
4ãℓT
µ

)|τ
′−i|+1

∑
q∈Nr

v

(λ′)dist(v0,q) ∥eq∥ .

(A.15)

Q.E.D.

131

Given time index 1 ≤ τ ′ ≤ k−1, node v0 ∈ N r−1
v , and perturbation vector e = (e0, e1, · · · , ek),

∥∥∥∥(ddθψ(ζ + θe))τ ′,v0

∥∥∥∥ ≤

∥∥∥∥∥
(
M−1

τ ′,1R
(1)
1 e0

)
v0

∥∥∥∥∥+
∥∥∥∥∥
(
M−1

τ ′,k−1R
(k−1)
k−1 ek

)
v0

∥∥∥∥∥+
k−1∑
τ=1

∥∥∥∥∥
(
M−1

τ ′,τK
(τ)
τ eτ

)
v0

∥∥∥∥∥
≤ a2µ

2ã(µ− 4ãℓT)

[
ρτ

′

T

∑
q∈Nr

v

ρ
dist(v0,q)
S ∥(e0)q∥+ ρk−τ ′

T

∑
q∈Nr

v

ρ
dist(v0,q)
S ∥(ek)q∥

]

+
k−1∑
τ=1

2∆ℓSa
2

λ′(µ− 4ãℓT)
ρ
|τ ′−τ |
T

∑
u∈∂Nr

v

(ρS)
dist(v0,u) ∥(eτ)u∥

where ρT = 4ãℓT
µ

and ρS = λ′ = (1+b1+b2)γS.We letC = max{ a2

2ã(1−4ãℓT /µ)
, 2a2∆ℓS/µ
γS(1+b1+b2)(1−4ãℓT /µ)

}.

Under the condition µ ≥ max{8ãℓT ,∆ℓS(b1 + b2)/4}, ρT < 1 and ρS < 1.

Then,

∥∥∥∥(ddθψ(ζ + θe))τ ′,v0

∥∥∥∥
≤ C

[
ρτ

′

T

∑
q∈Nr

v

ρ
dist(v0,q)
S ∥(e0)q∥+ ρk−τ ′

T

∑
q∈Nr

v

ρ
dist(v0,q)
S ∥(ek)q∥+

k−1∑
τ=1

ρ
|τ ′−τ |
T

∑
u∈∂Nr

v

(ρS)
dist(v0,u) ∥(eτ)u∥

]
.

Finally, let ζ = {yut−1, z
u
τ |(τ, u) ∈ ∂N

(k,r)
(v,t) } and e = {(yut−1)

′ − yut−1, (z
u
τ)

′ − zuτ }. By integration,

∥∥∥ψ(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
(t0,v0)

− (ψ
(k,r)
(t,v)

(
{(yut−1)

′}, {(zuτ)′}
)
(t0,v0)

∥∥∥ ≤
∫ 1

0

∥∥∥∥(ddθψ(ζ + θe))t0,v0

∥∥∥∥ dθ,
which is bounded by

C
∑
u∈Nr

v

ρ
t0−(t−1)
T ρ

dist(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥+ C

∑
(u,τ)∈∂N(k,r)

(t,v)

ρ
|t0−τ |
T ρ

dist(v0,u)
S ∥zuτ − (zuτ)

′∥ .

A.2.3 Adding Constraints to Perturbation Bounds

Recall that in Appendix A.2.1 and A.2.2, we showed Theorem 3.3.1 and Theorem 3.3.2 un-

der the assumption that the individual decisions are unconstrained to simplify the analysis. In

this section, we present a general way to relax this assumption by incorporating logarithm barrier

132

functions, which also applies for Theorem 3.4.1.

Recall that in Assumption 3.2.1, we assume that Dv
t is convex with a non-empty interior, and

can be expressed as

Dv
t := {xvt ∈ Rn | (gvt)i(xvt) ≤ 0, ∀1 ≤ i ≤ mv

t },

where the i th constraint (gvt)i : Rn → R is a convex function in C2. For any time-vertex pair

(τ, v), we can approximate the individual constraints

(gvτ)i(x
v
τ) ≤ 0,∀1 ≤ i ≤ mv

τ ,

by adding the logarithmic barrier function −µ
∑mv

τ
i=1 ln (−(gvτ)i(x

v
τ)) to the original node cost func-

tion f v
τ . Here, parameter µ is a positive real number that controls how “good” the barrier function

approximates the indicator function

IDv
τ
(xvτ) =

0 if (gvτ)i(x

v
τ) ≤ 0,∀1 ≤ i ≤ mv

τ ,

+∞ otherwise.

The approximation improves as parameter µ becomes closer to 0. Thus, the new node cost function

will be

Bv
τ (x

v
τ ;µ) := f v

τ (x
v
τ)− µ

mv
τ∑

i=1

ln (−(gvτ)i(x
v
τ)).

As an extension of the original notation, we use ψ(k,r)
(t,v) ({yut−1}, {zuτ };µ) denote the optimal solution

133

of the following optimization problem

argmin
{xu

τ |(τ,v)∈N
(k−1,r−1)
(t,v)

}

t+k−1∑
τ=t

∑
u∈Nr

v

Bu
τ (x

u
τ ;µ) +

∑
u∈Nr

v

cuτ (x
u
τ , x

u
τ−1) +

∑
(u,q)∈E(Nr

v)

g
(u,q)
t (xut , x

q
t)

s.t. xut−1 = yut−1,∀u ∈ N r

v ,

xuτ = zuτ , ∀(τ, u) ∈ ∂N
(k,r)
(t,v) .

Compared with ψ(k,r)
(t,v) ({yut−1}, {zuτ }) defined in Section 3.3.1, the constraints xuτ ∈ Du

τ are removed

and the node costs fu
τ (x

u
τ) are replaced with Bu

τ (xτ ;µ).

A key observation we need to point out is that the perturbation bounds we have shown in

Appendix A.2.1 and A.2.2 do not depend on the smoothness constant ℓf of node cost functions.

That means the perturbation bound

∥∥∥ψ(k,r)
(t,v)

(
{yut−1}, {zuτ };µ

)
(t0,v0)

− ψ
(k,r)
(t,v)

(
{(yut−1)

′}, {(zuτ)′};µ
)
(t0,v0)

∥∥∥
≤ C1

∑
(u,τ)∈∂N(k,r)

(t,v)

ρ
|t0−τ |
T ρ

dist(v0,u)
S ∥zuτ − (zuτ)

′∥+ C2

∑
u∈Nr

v

ρ
t0−(t−1)
T ρ

dist(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥

holds for arbitrary µ, where C1, C2, ρS, ρT are specified in Theorem 3.3.1 or Theorem 3.3.2 and are

independent of µ. Theorem 3.10 in Forsgren, Gill, and Wright, 2002 guarantees thatψ(k,r)
(t,v) ({yut−1}, {zuτ };µk)

converge to ψ(k,r)
(t,v) ({yut−1}, {zuτ }) for any positive sequence {µk}∞k=1 that tends to zero. Thus the

above perturbation bound also holds for ψ(k,r)
(t,v) ({yut−1}, {zuτ }) which includes the constraints on

individual decisions.

Note that the argument we present in this section also works for Theorem 3.4.1.

A.3 Competitive Bounds

This appendix includes the proofs of the competitive bounds presented in Section 3.3.3.

134

A.3.1 Proof of Theorem 3.4.2

We first derive an upper bound on the distance between xt and x∗t .

Note that for any time step t, we have

∥∥∥xt − ψ̃t (xt−1)t

∥∥∥ ≤ et. (A.16)

Thus we see that

∥xt − x∗t∥ =
∥∥∥xt − ψ̃1(x0)t

∥∥∥
≤
∥∥∥xt − ψ̃t(xt−1)t

∥∥∥+ t−1∑
i=1

∥∥∥ψ̃t−i+1(xt−i)t − ψ̃t−i(xt−i−1)t

∥∥∥
≤
∥∥∥xt − ψ̃t(xt−1)t

∥∥∥+ t−1∑
i=1

CGρ
i
G

∥∥∥xt−i − ψ̃t−i(xt−i−1)t−i

∥∥∥ (A.17a)

≤
t−1∑
i=0

C0ρ
i
G

∥∥∥xt−i − ψ̃t−i(xt−i−1)t−i

∥∥∥ (A.17b)

≤
t∑

i=1

C0ρ
t−i
G ei, (A.17c)

where in (A.17a), we used Theorem 3.4.1 and the fact that ψ̃t−i(xt−i−1)t can be written as

ψ̃t−i(xt−i−1)t = ψ̃t−i+1

(
ψ̃t−i(xt−i−1)t−i

)
t
.

We also used C0 = max{1, CG} in (A.17b) and (A.16) in (A.17c).

By (A.17) and the Cauchy-Schwarz Inequality, we see that

∥xt − x∗t∥
2 ≤ C2

0

(
t∑

i=1

ρt−i
G ei

)2

≤ C2
0

(
t∑

i=1

ρt−i
G

)
·

(
t∑

i=1

ρt−i
G e2i

)
≤ C2

0

1− ρG
·

(
t∑

i=1

ρt−i
G e2i

)
.

135

Summing up over t gives that

H∑
t=1

∥xt − x∗t∥
2 ≤ C2

0

(1− ρG)2
·

H∑
t=1

e2t .

A.3.2 Proof of Lemma 3.4.5

In this section, we show Lemma 3.4.5 holds with following specific constants:

e2t :=
∥∥xt − x∗t|t−1

∥∥2
≤ 4C2

1C
2
0

(
h(r)2ρ2G

(1− ρT)(1− ρ2GρT)
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)∥∥xt−1 − x∗t−1

∥∥2
+

8C2
1

µ

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ) + C3(r)

2 · ρ2(k−1)
T ft+k−1(x

∗
t+k−1)

)
(A.18)

Note that, by the principle of optimality, we have

xvt = ψ
(k,r)
(t,v)

(
{xut−1}, {θuτ }

)
(t,v)

,

(xvt|t−1)
∗ = ψ

(k,r)
(t,v)

(
{xut−1}, {(xuτ |t−1)

∗}
)
(t,v)

.

Recall that we define the quantity C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S to simplify the notation.

Since the exponentially decaying local perturbation bound holds in Definition 3.3.1, we see

that

∥∥xvt − (xvt|t−1)
∗∥∥ ≤ C1ρ

r
S

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥(xuτ |t−1)
∗ − θuτ

∥∥
+ C1ρ

k−1
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥ , (A.19)

136

which implies that

∥∥xvt − (xvt|t−1)
∗∥∥2 ≤ 2C2

1ρ
2r
S

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥(xuτ |t−1)
∗ − θuτ

∥∥2

+ 2C2
1ρ

2(k−1)
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥2

(A.20a)

≤ 2C2
1ρ

2r
S

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

1

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥(xuτ |t−1)
∗ − θuτ

∥∥2
+ 2C2

1ρ
2(k−1)
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥2
(A.20b)

≤ 2C2
1h(r)

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥(xuτ |t−1)
∗ − θuτ

∥∥2
+ 2C2

1C3(r) · ρ2(k−1)
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥2 , (A.20c)

where we used the AM-GM Inequality in (A.20a); we used the Cauchy-Schwarz Inequality in

(A.20b); we used the definitions of functions h(r) and C3(r) in (A.20c).

Summing up (A.20) over all v ∈ V and reorganizing terms gives

∑
v∈V

∥∥xvt − (xvt|t−1)
∗∥∥2

≤ 2C2
1h(r)

1− ρT
· ρ2rS

∑
v∈V

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥(xuτ |t−1)
∗ − θuτ

∥∥2
+ 2C2

1C3(r) · ρ2(k−1)
T

∑
v∈V

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥2
≤ 2C2

1h(r)
2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T

∥∥x∗τ |t−1 − θτ
∥∥2 + 2C2

1C3(r)
2 · ρ2(k−1)

T

∥∥x∗t+k−1|t−1 − θt+k−1

∥∥2 ,
(A.21)

137

where we used the facts that

∑
v∈V

∑
u∈∂Nr

v

∥∥(xuτ |t−1)
∗ − θuτ

∥∥2 ≤ h(r)
∑
v∈V

∥∥(xvτ |t−1)
∗ − θvτ

∥∥2 = h(r) ·
∥∥x∗τ |t−1 − θτ

∥∥2 ,
and

∑
v∈V

∑
u∈∂Nr

v

ρ
dG(u,v)
S

∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥2 ≤ C3(r)
∑
v∈V

∥∥(xvt+k−1|t−1)
∗ − θvt+k−1

∥∥2
= C3(r) ·

∥∥x∗t+k−1|t−1 − θt+k−1

∥∥2 .
We also note that by the principle of optimality, the following equations hold for all τ ≥ t:

x∗τ |t−1 = ψ̃t (xt−1)τ ,

x∗τ = ψ̃t

(
x∗t−1

)
τ
.

Recall that C0 := max{1, CG}. By Theorem 3.4.1, we see that

∥∥x∗τ |t−1 − x∗τ
∥∥ ≤ C0ρ

τ−t+1
G

∥∥xt−1 − x∗t−1

∥∥ , (A.22)

which implies

∥∥x∗τ |t−1 − θτ
∥∥2 ≤ 2

∥∥x∗τ |t−1 − x∗τ
∥∥2 + 2 ∥x∗τ − θτ∥2 (A.23a)

≤ 2C2
0ρ

2(τ−t+1)
G

∥∥xt−1 − x∗t−1

∥∥2 + 2 ∥x∗τ − θτ∥2 , (A.23b)

where we used the triangle inequality and the AM-GM inequality in (A.23a); we used (A.22) in

(A.23b).

138

Substituting (A.23) into (A.21) gives

∑
v∈V

∥∥xvt − (xvt|t−1)
∗∥∥2

≤ 4C2
1C

2
0

(
h(r)2ρ2G

(1− ρT)(1− ρ2GρT)
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)∥∥xt−1 − x∗t−1

∥∥2
+ 4C2

1

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T ∥x∗τ − θτ∥2 + C3(r)

2 · ρ2(k−1)
T

∥∥x∗t+k−1 − θt+k−1

∥∥2)

≤ 4C2
1C

2
0

(
h(r)2ρ2G

(1− ρT)(1− ρ2GρT)
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)∥∥xt−1 − x∗t−1

∥∥2
+

8C2
1

µ

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ) + C3(r)

2 · ρ2(k−1)
T ft+k−1(x

∗
t+k−1)

)
, (A.24)

where we used the fact that the node cost function f v
τ is non-negative and µ-strongly convex for all

τ, v, thus

fτ (x
∗
τ) ≥

∑
v∈V

f v
τ ((x

v
τ)

∗) ≥ µ

2

∑
v∈V

∥(xvτ)∗ − θvτ∥
2 =

µ

2
∥x∗τ − θτ∥2 .

Note that
∑

v∈V

∥∥∥xvt − (xvt|t−1)
∗
∥∥∥2 = ∥∥∥xt − x∗t|t−1

∥∥∥2 = e2t . Thus we have finished the proof of

(A.18).

A.3.3 Proof of Theorem 3.3.3

In this section, we show Theorem 3.3.3 holds with the following specific constants:

1 +

(
1 +

32C2
0C

2
1(ℓf +∆ℓS + 2ℓT) · h(r)2

µ(1− ρG)2(1− ρT)2

)
· ρrS +

(
1 +

32C2
0C

2
1(ℓf +∆ℓS + 2ℓT)C3(r)

2

µ(1− ρG)2

)
ρk−1
T .

(A.25)

under the assumption that

4C2
1C

4
0

(1− ρG)2

(
h(r)2ρ2G

(1− ρT)(1− ρ2GρT)
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)
≤ 1

2
. (A.26)

Recall that C0 is defined in Theorem 3.4.2. Note that Theorem 3.3.1 and Theorem 3.4.1 hold

139

under Assumption 3.2.1. One can check that C0, C1, (1 − ρG)
−1, and (1 − ρT)

−1 are bounded by

polynomials of ℓf/µ, ℓT/µ, and (∆ℓS)/µ.

In the proof, we need to use Lemma F.2 in Lin et al., 2021 to bound LPC’s total cost by a

weighted sum of the offline optimal cost and the sum of squared distances between their trajecto-

ries. For completeness, we present Lemma F.2 in Lin et al., 2021 below:

Lemma A.3.1. For a fixed dimension m ∈ Z+, assume a function h : Rm → R≥0 is convex,

ℓ-smooth and continuously differentiable. For all x, y ∈ Rm, for all η > 0, we have

h(x) ≤ (1 + η)h(y) +
ℓ

2

(
1 +

1

η

)
∥x− y∥2 .

Now we come back to the proof of Theorem 3.3.3. We first bound the sum of squared distances

between LPC’s trajectory and the offline optimal trajectory:

H∑
t=1

∥xt − x∗t∥
2 ≤ C2

0

(1− ρG)2

H∑
t=1

e2t (A.27a)

≤ 4C2
1C

4
0

(1− ρG)2

(
h(r)2ρ2G

(1− ρT)(1− ρ2GρT)
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

) H∑
t=1

∥∥xt−1 − x∗t−1

∥∥2
+

8C2
0C

2
1

µ(1− ρG)2

H∑
t=1

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ) + C3(r)

2 · ρ2(k−1)
T ft+k−1(x

∗
t+k−1)

)
,

(A.27b)

where we used Theorem 3.4.2 in (A.27a); we used Lemma 3.4.5 with the specific constants given

in Appendix A.3.2 in (A.27b).

Recall that in (A.26), we assume r and k are sufficient large so that the coefficient of the first

term in (A.27) satisfies

4C2
1C

4
0

(1− ρG)2

(
h(r)2ρ2G

(1− ρT)(1− ρ2GρT)
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)
≤ 1

2
.

140

Substituting this bound into (A.27) gives that

H∑
t=1

∥xt − x∗t∥
2 ≤ 16C2

0C
2
1

µ(1− ρG)2

(
h(r)2

(1− ρT)2
· ρ2rS + C3(r)

2 · ρ2(k−1)
T

)
·

H∑
t=1

ft(x
∗
t). (A.28)

By Lemma A.3.1, since ft is (ℓf + ∆ℓS)-smooth, convex, and non-negative on Rn, and ct is ℓT -

smooth, convex, and non-negative on Rn × Rn, we know that

ft(xt) ≤ (1 + η)ft(x
∗
t) +

ℓf +∆ℓS
2

(
1 +

1

η

)
∥xt − x∗t∥

2

ct(xt, xt−1) ≤ (1 + η)ct(x
∗
t , x

∗
t−1) +

ℓT
2

(
1 +

1

η

)(
∥xt − x∗t∥

2 +
∥∥xt−1 − x∗t−1

∥∥2) (A.29)

holds for any η > 0. Summing the above inequality over t gives

H∑
t=1

(ft(xt) + ct(xt, xt−1))

≤ (1 + η)
H∑
t=1

(
ft(x

∗
t) + ct(x

∗
t , x

∗
t−1)

)
+

(ℓf +∆ℓS + 2ℓT)

2

(
1 +

1

η

) H∑
t=1

∥xt − x∗t∥
2

≤ (1 + η)cost(OPT) (A.30)

+

(
1 +

1

η

)
16C2

0C
2
1(ℓf +∆ℓS + 2ℓT)

µ(1− ρG)2

(
h(r)2

(1− ρT)2
· ρ2rS + C3(r)

2 · ρ2(k−1)
T

)
· cost(OPT),

(A.31)

where we used (A.28) and
∑H

t=1 ft(x
∗
t) ≤ cost(OPT) in the last inequality. Setting η = ρrS+ρ

k−1
T

in (A.30) finishes the proof of (A.25).

As a remark, we require the local cost function (f v
t , c

v
t , s

e
t) to be non-negative, convex, and

smooth in the whole Euclidean spaces (Rn,Rn × Rn,Rn × Rn) in Assumption 3.2.1 because we

want to apply Lemma A.3.1 in (A.29).

141

A.3.4 Proof of Corollary 3.3.4

We first show ∆2ρS ≤ √
ρS holds under Assumption 3.2.1 and the assumptions that ℓS

µ
≤

1
∆7 ,

ℓT
µ

≤ 1
16

. To see this, note that as we discussed in Section 3.3.2, by setting b1 = 2∆ − 1 and

b2 = 4∆2 − 2∆, Theorem 3.3.3 holds with

ρS =
4∆2(

√
1 + ∆ℓS/µ− 1)√

1 + ∆ℓS/µ+ 1
.

Hence we see that

∆2√ρS = 2∆3

(√
1 + (∆ℓS/µ)− 1√
1 + (∆ℓS/µ) + 1

) 1
2

≤ 2∆3

(√
1 + ∆−6 − 1

2

) 1
2

≤ 1,

which implies that

∆2ρS ≤ √
ρS. (A.32)

Recall that function C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S . Hence we see that

C3(r) ≤
r∑

γ=0

∆γ · ργS ≤
r∑

γ=0

(√
ρS

∆

)γ

≤ ∆

∆−√
ρS
. (A.33)

Substituting (A.32) and (A.33) into the competitive ratio bound in (A.25) shows that the com-

petitive ratio of LPC is upper bound by

1 +

(
1 +

32C2
0C

2
1(ℓf +∆ℓS + 2ℓc)

µ(1− ρG)2(1− ρT)2

)
· ρ

r
2
S +

(
1 +

32C2
0C

2
1(ℓf +∆ℓS + 2ℓc)∆

2

µ(1− ρG)2(∆−√
ρS)2

)
ρk−1
T .

A.4 Proof of Theorem 3.3.5

In this appendix we prove a lower bound on the competitive ratio of any online algorithm. Our

proof focuses on temporal and spatial lower bounds separately first, and then combines them.

142

Step 1: Temporal Lower Bounds

We first show that the competitive ratio of any online algorithm with k steps of future predic-

tions is lower bounded by 1+Ω(λkT). To show this, we consider the special case when there are no

spatial interaction costs (i.e., set ≡ 0 for all t and e). In this case, since all agents are independent

with each other, it suffices to assume there is only one agent in the network G. Thus we will drop

the agent index in the following analysis. To further simplify the problem, we assume dimension

n = 1, ct(xt, xt−1) =
ℓT
2
(xt−xt−1)

2, and the feasible set is Dt ≡ D = [0, 1] for all t. Let R denote

the diameter of D, i.e., R = supx,y∈D |x− y| = 1.

By Theorem 2 in Li, Qu, and Li, 2020 and Case 1 in its proof, we know that for any online

algorithm ALG with k steps of future predictions and LT ∈ (2R,RH), there exists a problem

instance with quadratic functions f1, f2, . . . , fH that have the form ft(xt) =
µ
2
(xt − θt)

2, θt ∈ D

such that

cost(ALG)− cost(OPT) ≥ µ3(1−
√
λT)

2

96(µ+ 1)2
· λkT ·R · LH , (A.34)

where LH ≥
∑H

t=1 |θt − θt−1|. Note that

R · LT ≥
H∑
t=1

|vt − vt−1|2

=
2

ℓT
·

H∑
t=1

(ft(vt) + ct(vt, vt−1))

≥ 2

ℓT
· cost(OPT).

Substituting this into (A.34) gives

cost(ALG) ≥
(
1 +

µ3(1−
√
λT)

2

48(µ+ 1)2ℓT
· λkT

)
· cost(OPT). (A.35)

Note that (A.34) implies cost(ALG) > 0, hence the competitive ratio can be unbounded if

143

cost(OPT) = 0.

Step 2: Spatial Lower Bounds

We next show that the competitive ratio of any online algorithm that can communicate within r-

hop neighborhood according to the scheme defined in Section 3.2.1 is lower bounded by 1+Ω(λrS).

To show this, we will construct a special Networked OCO instance with random cost functions and

show there exists a realization that achieves the lower bound by probabilistic methods.

Theorem A.4.1. Under the assumption that ∆ ≥ 3, the competitive ratio of any decentralized

online algorithm ALG with communication radius r is lower bounded by 1 + Ω(λrS), where Ω(·)

notation hides factors that depend polynomially on 1/µ, ℓT , ℓS, and ∆, and

λS =

(∆ℓS/µ)

3+3(∆ℓS/µ)
if ∆ℓS/µ < 48,

max

(
(∆ℓS/µ)

3+3(∆ℓS/µ)
,
(
1− 4

√
3 · (∆ℓS/µ)−

1
2

)2)
otherwise.

(A.36)

Proof of Theorem A.4.1. In the proof, we assume the online game only lasts one time step before it

ends, i.e., H = 1. Note that when H > 1, the same counterexample can be constructed repeatedly

by letting the temporal interaction costs cvt ≡ 0 for every agent v and time step t. To simplify

the notation, we define ℓ := ℓS/µ and d := [∆/2]. Without the loss of generality, we assume

V = {1, 2, · · · , n} so that each agent has a positive integer index.

We consider the case where the node cost function for each agent i is (xi+wi)
2 and the spatial

interaction cost between two neighboring agents i and j is ℓ(xi − xj)
2. Here, xi ∈ R is the scalar

action of agent i, and parameter wi ∈ R is a local information that corresponds to agent i. The

parameters {wi}ni=1 are sampled i.i.d. from some distribution D, which we will discuss later.

For a general graph G = (V , E) of agents, let L denote its graph Laplacian matrix. Recall that

144

the graph Laplacian matrix L ∈ V × V is a symmetric n× n matrix and it is defined as

Li,j =

deg(i) if i = j,

−1 if i ̸= j and (i, j) ∈ E ,

0 otherwise,

for agents i, j ∈ V . Here deg(·) denotes the degree of an agent in graph G. We know that L is

a symmetric semi-definite positive semi-definite and has bandwidth 1 w.r.t. to G. The centralized

optimization problem can be expressed as

cost(OPT) = min
x∈Rn

(x+ w)⊤(x+ w) + ℓ · x⊤Lx

= min
x∈Rn

∥∥∥(I + ℓ · L)
1
2x+ (I + ℓ · L)−

1
2w
∥∥∥2 + w⊤(I − (I + ℓ · L)−1)w

= w⊤(I − (I + ℓ · L)−1)w,

where the minimum is attained at x∗ = (I + ℓ · L)−1w.

When each agent i only has communication radius r, it can only observe the part of w that is

within N r
i . To simplify the notation, we define the mask operator ϕS : Rn → Rn w.r.t. a set S ⊆ V

as

ϕS(w)i =

wi if i ∈ S,

0 otherwise,

for i ∈ V . The local policy of agent i (denote as πi) is a mapping from wNr
i

to the local decision

xi.

Suppose the distribution D of each local parameters wi is a mean-zero distribution with support

145

on R. For every agent i ∈ V , we see that

Ew |xi(w)− x∗i (w)|
2 = min

πi

Ew

∣∣πi(wNr
i
)− x∗i (w)

∣∣2
≥ Ew

∣∣E[x∗i (w) | wNr
i
]− x∗i (w)

∣∣2 (A.37a)

= Ew

∣∣E[((I + ℓ · L)−1w
)
i
| wNr

i
]−
(
(I + ℓ · L)−1w

)
i

∣∣2
= Ew

∣∣((I + ℓ · L)−1ϕNr
i
(w)
)
i
−
(
(I + ℓ · L)−1w

)
i

∣∣2 (A.37b)

= Ew

∣∣∣((I + ℓ · L)−1ϕNr
−i
(w)
)
i

∣∣∣2 , (A.37c)

where we use the fact that conditional expectations minimize the mean square prediction error in

(A.37a); we use the requirement that the distribution of w is mean-zero in (A.37b).

To bound the variance term in (A.37c), we need the following lemma to lower bound the

magnitude of every entry in the exponential decaying matrix (I + ℓ · L)−1:

Lemma A.4.1. There exists a finite graph G with maximum degree 2d that satisfies the following

conditions: For any two vertices i, j such that dG(i, j) ≥ 3, the following inequality holds:

(
(I + ℓ · L)−1

)
ij
≥ dG(i, j)

d2(2dℓ+ 1)
·
(

dℓ

2dℓ+ 1

)dG(i,j)

.

If we make the additional assumption that ℓ > 16
d

, we have that

(
(I + ℓ · L)−1

)
ij
≥ 1

4
√
π · dG(i, j) ·

√
dℓ · d2(2dℓ+ 1)

·
(
1− 4(dℓ)−

1
2

)dG(i,j)
.

We defer the proof of Lemma A.4.1 to the end of this section. Note that Lemma A.4.1 implies

that there exists a graph G that satisfies ((I + ℓ · L)−1)i,j = Ω(λrS), where Ω(·) notation hides

factors that depend polynomially on 1/µ, ℓT , ℓS, and ∆, and λS is as defined in (A.36). We assume

the agents are located in this graph G for the rest of the proof.

146

Using Lemma A.4.1, we can derive the following lower bound of the variance term in (A.37b):

Ew

∣∣∣((I + ℓ · L)−1ϕNr
−i
(w)
)
i

∣∣∣2 = Ew

∑
j∈Nr

−i

(
(I + ℓ · L)−1

)
ij
wj

2

=
∑
j∈Nr

−i

(
(I + ℓ · L)−1

)2
ij
V ar(wj)

≥
∑

j∈∂Nr+1
i

(
(I + ℓ · L)−1

)2
ij
V ar(wj)

≥ Θ(λrS · V ar(wi)) . (A.38)

Substituting (A.38) into (A.37) and summing over all vertices i, we obtain that

Ew ∥x(w)− x∗(w)∥2 ≥
n∑

i=1

Ew |xi(w)− x∗i (w)|
2 ≥ Θ(n · λrS · V ar(wi)) .

We also see that

Ew[cost(OPT)] = Ew

[
w⊤(I − (I + ℓ · L)−1)w

]
= O(n · V ar(wi)). (A.39)

Note that the global objective function (x+w)⊤(x+w)+ℓ ·x⊤Lx is 1-strongly convex, and x∗(w)

is minimizer of this function. Thus, we have that for any outcome of w,

cost(ALG)− cost(OPT) ≥ 1

2
∥x(w)− x∗(w)∥2 .

Taking expectations on both sides w.r.t. w gives that

Ewcost(ALG)− Ewcost(OPT) ≥
1

2
Ew ∥x(w)− x∗(w)∥2 ≥ Θ(n · λrS · V ar(wi)) . (A.40)

Dividing (A.40) by (A.39), we obtain that

Ewcost(ALG)

Ewcost(OPT)
≥ 1 + Ω (λrS) .

147

Note that Pw [cost(OPT) = 0] = 0. Thus, there must exist an instance ofw such that cost(OPT) >

0 and
cost(ALG)

cost(OPT)
≥ 1 + Ω (λrS) .

Q.E.D.

Before we present the proof of Lemma A.4.1, we first need to introduce two technical lemmas

that will be used in the proof of Lemma A.4.1. The first lemma (Lemma A.4.2) provides a lower

bound for binomial coefficient
(
(2+ϵ)m

m

)
.

Lemma A.4.2. For any positive integer m and ϵ ∈ R≥0 such that ϵm is an integer, the following

inequality holds: (
(2 + ϵ)m

m

)
>

1√
2π
m− 1

2 · (2 + ϵ)(2+ϵ)m+ 1
2

(1 + ϵ)(1+ϵ)m+ 1
2

· e−
1

6m .

Proof of Lemma A.4.2. By Lemma 2.1 in Stanica, 2001, we know for any n ∈ Z+,

n! =
√
2πnn+ 1

2 e−n+r(n),

where r(n) satisfies 1
12n+1

< r(n) < 1
12n

. Thus we see that

√
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n ,∀n ∈ Z+.

Therefore, we can lower bound
(
(2+ϵ)m

m

)
by

(
(2 + ϵ)m

m

)
=

((2 + ϵ)m)!

m! · ((1 + ϵ)m)!

>

√
2π((2 + ϵ)m)(2+ϵ)m+ 1

2 e−(2+ϵ)m+ 1
12(2+ϵ)m+1

√
2πmm+ 1

2 e−m+ 1
12m ·

√
2π((1 + ϵ)m)(1+ϵ)m+ 1

2 e−(1+ϵ)m+ 1
12(1+ϵ)m

=
1√
2π
m− 1

2 · (2 + ϵ)(2+ϵ)m+ 1
2

(1 + ϵ)(1+ϵ)m+ 1
2

· e
1

12(2+ϵ)m+1
− 1

12m
− 1

12(1+ϵ)m

>
1√
2π
m− 1

2 · (2 + ϵ)(2+ϵ)m+ 1
2

(1 + ϵ)(1+ϵ)m+ 1
2

· e−
1

6m .

148

Q.E.D.

The second technical lemma (Lemma A.4.3) will be used to simplify the decay factor in the

proof of Lemma A.4.1.

Lemma A.4.3. For all ϵ ∈ [0,
√
2), the following inequality holds

2 + ϵ

2 · (1 + ϵ)
1+ϵ
2+ϵ

≥ 1− ϵ2

2
.

Proof of Lemma A.4.3. By taking logarithm on both sides, we see the original inequality is equiv-

alent to

ln
(
1 +

ϵ

2

)
− 1 + ϵ

2 + ϵ
ln(1 + ϵ) ≥ ln

(
1− 1

2
ϵ2
)
,

which is further equivalent to

ln
(
1 +

ϵ

2

)
− 1 + ϵ

2 + ϵ
ln(1 + ϵ)− ln

(
1− 1

2
ϵ2
)

≥ 0. (A.41)

Note that the LHS can be lower bounded by

ln
(
1 +

ϵ

2

)
−1 + ϵ

2 + ϵ
ln(1+ϵ)−ln

(
1− 1

2
ϵ2
)

≥ ln
(
1 +

ϵ

2

)
−1 + ϵ

2
ln(1+ϵ)−ln

(
1− 1

2
ϵ2
)

=: g(ϵ).

Function g satisfies that g(0) = 0, and its derivative is

g′(ϵ) =
1

2 + ϵ
− 1

2
− 1

2
ln(1 + ϵ) +

ϵ

1− 1
2
ϵ2

≥ 1

2 + ϵ
− 1

2
− ϵ

2
+ ϵ

=
2− (2 + ϵ)(1− ϵ)

2(2 + ϵ)

=
ϵ+ ϵ2

2(2 + ϵ)
≥ 0.

Thus, g(ϵ) ≥ 0 for all ϵ ∈ [0,
√
2). Hence (A.41) holds for all ϵ ∈ [0,

√
2). Q.E.D.

149

Now we are ready to present the proof of Lemma A.4.1.

Figure A.1: Graph structure of G to obtain the lower bound: N blocks form a ring. Each block
contains d vertices.

Proof of Lemma A.4.1. Consider the graph G constructed as Figure A.1: Let N be a positive in-

teger that is sufficiently large. N blocks form a ring, where each block contains d nodes. Every

pair of blocks are connected by a complete bipartite graph. The graph Laplacian of G can be

decomposed as L = 2dI −M , where M is the adjacency matrix of G. We see that

(I + ℓ · L)−1 = ((2dℓ+ 1)I − ℓ ·M)−1

=
1

2dℓ+ 1

(
I − ℓ

2dℓ+ 1
M

)−1

=
1

2dℓ+ 1

∞∑
t=0

ℓt

(2dℓ+ 1)t
M t

150

Fix two vertices i and j and denote κ := dG(i, j) and assume κ ≥ 3. Without the loss of generality,

we can assume j is on the clockwise direction of i. We see that

(
(I + ℓ · L)−1

)
ij
=

1

2dℓ+ 1

∞∑
t=0

ℓt

(2dℓ+ 1)t
(M t)ij

=
ℓκ

(2dℓ+ 1)κ+1

∞∑
m=0

ℓ2m

(2dℓ+ 1)2m
(Mκ+2m)ij. (A.42)

Note that (Mκ+2m)ij denotes the number of paths from i to j with length κ+2m in graph G. Note

that the shortest paths from i to j have length κ. To pick a path with length (κ + 2m) from i to j,

we can first pick a path on the level of blocks: The number of possible block-level paths is lower

bounded by
(
κ+2m
m

)
because we can choose m in (κ + 2m) steps to go in the counter clockwise

direction. After a block-level path is fixed, we can choose which specific vertices in the blocks we

want to land at, and there are dκ+2m−2 choices. Thus we see that

(Mκ+2m)ij ≥
(
κ+ 2m

m

)
dκ+2m−2.

Substituting this into (A.42) gives

(
(I + ℓ · L)−1

)
ij
≥ ℓκdκ−2

(2dℓ+ 1)κ+1

∞∑
m=0

ℓ2md2m

(2dℓ+ 1)2m

(
κ+ 2m

m

)
. (A.43)

Let m = 0 will give that ((I + ℓ · L)−1)ij ≥ κ
d2(2dℓ+1)

·
(

dℓ
2dℓ+1

)κ, which shows the first claim of

Lemma A.4.1. Now we proceed to show the second claim of Lemma A.4.1.

By Lemma A.4.2, we know that when κ = ϵm, we have that

(
κ+ 2m

m

)
=

(
(2 + ϵ)m

m

)
>

1√
2π
e−

1
6mm− 1

2
(2 + ϵ)(2+ϵ)m

(1 + ϵ)(1+ϵ)m
·
(
2 + ϵ

1 + ϵ

) 1
2

≥ 1

2
√
2π
m− 1

2

(
2 + ϵ

(1 + ϵ)
1+ϵ
2+ϵ

)(2+ϵ)m

.

151

For anym > κ, the inequality we just showed can help us bound a term in the summation of (A.43)

below:

ℓκdκ−2

(2dℓ+ 1)κ+1
· ℓ2md2m

(2dℓ+ 1)2m

(
κ+ 2m

m

)
≥ 1

d2(2dℓ+ 1)
· 1

2κ+2m

(
κ+ 2m

m

)
·
(
1− 1

2dℓ+ 1

)κ+2m

≥ 1

2
√
2π ·

√
κ
ϵ
· d2(2dℓ+ 1)

·

(
2 + ϵ

2 · (1 + ϵ)
1+ϵ
2+ϵ

)(2+ϵ)κ/ϵ

·
(
1− 1

2dℓ+ 1

)(1+ 2
ϵ
)κ

≥ 1

2
√
2π ·

√
κ
ϵ
· d2(2dℓ+ 1)

·

((
1− ϵ2

2

) 1
ϵ

·
(
1− 1

2dℓ+ 1

) 1
ϵ

)(2+ϵ)κ

,

where the last line follows from Lemma A.4.3.

Thus, we obtain that the following inequality holds for arbitrary ϵ ∈ (0, 1):

(
(I + L)−1

)
ij
≥ 1

2
√
2π ·

√
κ
ϵ
· d2(2dℓ+ 1)

·

((
1− ϵ2

2

) 2
ϵ
+1

·
(
1− 1

2dℓ+ 1

) 2
ϵ
+1
)κ

. (A.44)

By setting ϵ such that 1/ϵ =
[
2(dℓ)

1
2

]
in (A.44), we obtain that:

(
(I + ℓ · L)−1

)
ij
≥ 1

2
√
2π ·

√
2κ ·

√
dℓ · d2(2dℓ+ 1)

·

((
1− 1

2dℓ

)4
√
dℓ+1

·
(
1− 1

2dℓ+ 1

)4
√
dℓ+1

)κ

≥ 1

4
√
π · κ ·

√
dℓ · d2(2dℓ+ 1)

·

((
1− 4

√
dℓ+ 1

2dℓ

)
·

(
1− 4

√
dℓ+ 1

2dℓ+ 1

))κ

≥ 1

4
√
π · κ ·

√
dℓ · d2(2dℓ+ 1)

·
(
1− 4√

dℓ

)κ

. (A.45)

Q.E.D.

152

Step 3: Combine Temporal and Spatial Lower Bounds

Combining the results of Steps 1 and 2 together, we know that the competitive ratio of any

decentralized online algorithm is lower bounded by

max{1 + µ3(1−
√
λT)

2

48(µ+ 1)2ℓT
· λkT , 1 + Ω(λrS)} = 1 + Ω(λk) + Ω(λrS).

A.5 Proof of Corollary 3.3.6

In this appendix we prove a resource augmentation bound for LPC. To simplify the notation,

we define the shorthand aT := ℓT/µ and aS := ℓS/µ. aT and aS are positive real numbers. We

first show two lemmas about the relationships between the decay factors ρT and λT , and ρS and

λS .

Lemma A.5.1. Under the assumptions of Theorem 3.3.1, we have ρ4T ≤ λT ≤ ρ2T .

Proof of Lemma A.5.1. Recall that ρT is given by

ρT =

√
1− 2√

1 + 2aT + 1

in Theorem 3.3.1. Thus we see that

ρ4T =

(
1− 2√

1 + 2aT + 1

)2

≤
(
1− 2√

1 + 4aT + 1

)2

= λT .

On the other hand, we have that

λT−ρ2T =

(
1− 2√

1 + 4aT + 1

)2

−1+
2√

1 + 2aT + 1
=

4
√

(1 + 2aT)
(√

1 + 2aT −
√
1 + 4aT

)(√
1 + 2aT + 1

) (√
1 + 4aT + 1

)2 ≤ 0.

Q.E.D.

Lemma A.5.2. Under the assumptions of Theorem 3.3.1, we have ρ32S ≤ λS .

153

Proof of Lemma A.5.2. Recall that ρT is given by

ρS =

√
1− 2√

1 + ∆aS + 1

in Theorem 3.3.1. We consider the following three cases separately.

Case 1: ∆aS ≥ 224. We have ρ32S ≤ λS in this case.

We first show that the following inequality holds for any positive integer n0 and x ∈ [0, 1/(2n0)]:

(1− x)2n0 ≤ 1− n0x. (A.46)

To see this, define function g(x) = (1 − x)2n0 + n0x − 1. Note that g is a convex function with

g(0) = 0 and

g

(
1

2n0

)
=

(
1− 1

2n0

)2n0

− 1

2
≤ e−1 − 1

2
< 0.

Thus, we see that g(x) ≤ 0 holds for all x ∈ [0, 1/(2n0)]. Hence (A.46) holds.

By (A.46), we see that

ρ16S =

(
1− 2√

1 + ∆aS + 1

)8

≤ 1− 8√
1 + ∆aS + 1

≤ 1− 4
√
3√

∆aS

=
√
λS.

Case 2: 1 ≤ ∆aS < 224. We have ρ28S ≤ λS in this case.

To see this, note that ρ2S ≤ 1 − 2√
1+224+1

= 7
8
, and by Theorem 3.3.5, λS ≥ 1

3+3·1 = 1
6
.

Therefore, we see that

ρ28S ≤
(
7

8

)14

≤ 1

6
≤ λS.

Case 3: ∆aS < 1. We have ρ4S ≤ λS in this case.

154

To see this, note that

ρ2S =

√
1 + ∆aS − 1√
1 + ∆aS + 1

≤
√
∆aS
4

.

Thus we see that

ρ4S ≤ ∆aS
16

≤ ∆aS
3 + 3∆aS

= λS.

Q.E.D.

Now we come back to the proof of Corollary 3.3.6. By Theorem 3.3.3 and Theorem 3.3.5, we

know that the optimal competitive ratio is lower bounded by

c(k∗, r∗) ≥ 1 + Cλ

(
λk

∗

T + λr
∗

S

)
and LPC’s competitive ratio is upper bounded by

cLPC(k, r) := 1 + Cρ

(
C3(r)

2 · ρkT + h(r)2 · ρrS
)
,

where Cλ and Cρ are some positive constants. To achieve cLPC(k, r) ≤ c(k∗, r∗), it suffices to

guarantee that

Cρ · C3(r)
2 · ρkT ≤ Cλλ

k∗

T and Cρ · h(r)2 · ρrS ≤ Cλλ
r∗

S .

Note that C3(r) can be upper bounded by some constant and h(r)2 ≤ poly(r) · ρ−
r
2

S under our

assumptions. Applying Lemma A.5.1 and Lemma A.5.2 finishes the proof.

155

A.6 Details in the multiproduct pricing application

A.6.1 Proof of Lemma 3.5.1

The revenue maximization problem Equation (3.7) is equivalent to the following:

min −
H∑
t=1

∑
v∈V

xvt d
v
t =

H∑
t=1

∑
v∈V

[
xvt (−avt + kvt x

v
t −

∑
u∈N1

v\{v}

η
(u→v)
t xut − bvtx

v
t−1)

]

s.t. 0 ≤ xvt ≤ pvt

(A.47)

Recall the definition of node, spatial, and temporal costs:

f v
t (x

v
t) := ξvt

(
xvt −

avt
2ξvt

)2

,

s
(u,v)
t (xut , x

v
t) := |γ(u,v)t |

(
xut − sgn

(
γ
(u,v)
t

)
· xvt
)2
,

cvt (x
v
t , x

v
t−1) :=

bvt
2

(
xvt − xvt−1

)2
.

Note that f v
t (x

v
t) is ξvt (x

v
t)

2 − avtx
v
t plus a constant (avt)

2/(4ξvt), and the interaction functions can

be rewritten as

s
(u,v)
t (xut , x

v
t) = |γ(u,v)t |

(
(xut)

2+(xvt)
2

)
+2γ

(u,v)
t xvtx

u
t , cvt (x

v
t , x

v
t−1) =

bvt
2

(
(xvt)

2+(xvt−1)
2

)
−btxvt−1x

v
t .

Summing, we see that

H∑
t=1

∑
v∈V

(f v
t (x

v
t) + cvt (x

v
t , x

v
t−1)) +

H∑
t=1

∑
e∈E

set (x
u
t , x

v
t) = (Objective in (A.47)) +

H∑
t=1

∑
v∈V

(avt)
2/(4ξvt) .

(A.48)

Hence the optimal solution of (A.47) is the same as the following problem:

156

min
H∑
t=1

∑
v∈V

f v
t (x

v
t) + cvt (x

v
t , x

v
t−1) +

H∑
t=1

∑
e∈E

set (x
u
t , x

v
t)

s.t. 0 ≤ xvt ≤ pvt

(A.49)

A.6.2 Lemma A.6.1 and its proof

Lemma A.6.1. Suppose the competitive ratio of our general cost minimization problem isCR(k, r),

which is a function of prediction horizon k and communication radius r. Suppose sup(u,v)∈E,t∈[H] a
u
t /a

v
t ≤

b̃, supv∈V,t∈[H]
avt
pvt

≤ c̃, then the competitive ratio for the corresponding revenue maximization prob-

lem, defined as rev(ALG)/rev(OPT), is at least 1− η
2
(CR(k, r)−1), where ∆ denotes the degree

of the product network and η := max{2(ℓf +∆b̃γ)/µ, c̃/µ}.

We define C :=
∑

t,v(a
v
t)

2/(4ξvt). Suppose

CR(k, r) · cost(OPT) ≥ cost(ALG),

then

CR(k, r) · (−rev(OPT) + C) ≥ (−rev(ALG) + C).

Rearranging the terms yields

(CR(k, r)− 1) · C ≥ CR(k, r)rev(OPT)− rev(ALG). (A.50)

To find a lower bound on rev(OPT), we choose a pricing strategy such that xvt =
avt
ηµ

≥ 0

where η = max{2(ℓf + ∆b̃γ)/µ, c̃/µ}. We first check that the demand is always nonnegative

157

under this strategy:

avt − kvt
avt
ηµ

−
∑

u∈N1
v\{v}

η
(u→v)
t

aut
ηµ

+ bvt
avt−1

ηµ
≥ avt − kvt

avt
ηµ

−
∑

u∈N1
v\{v}

η
(u→v)
t

aut
ηµ

≥ avt − kvt
avt
ηµ

−
∑

u∈N1
v\{v}

b̃γ
avt
ηµ

≥ avt (1−
ℓf +∆b̃γ

ηµ
)

≥ avt
2
.

Moreover,

xvt ≤ avt /c̃ ≤ pvt .

Hence this is a feasible price strategy.

We lower bound the optimal revenue:

rev(OPT) ≥
H∑
t=1

∑
v∈V

avt
ηµ

(avt − kvt
avt
ηµ

−
∑

u∈N1
v\{v}

η
(u→v)
t

aut
ηµ

+ bvt
avt−1

ηµ
)

≥
H∑
t=1

∑
v∈V

avt
ηµ

avt
2

≥ 2

η
C.

We further divide Equation (A.50) by rev(OPT) to obtain

(CR(k, r)− 1)
C

rev(OPT)
≥ CR(k, r)− rev(ALG)/rev(OPT).

Since CR(k, r) ≥ 1 for the cost minimization problem,

rev(ALG)/rev(OPT) ≥ 1− (CR(k, r)− 1)
C

rev(OPT)
.

158

This allows us to complete the proof as follows

rev(ALG)/rev(OPT) ≥ 1− η

2
(CR(k, r)− 1).

A.6.3 Additional plots

In Figure A.2, we present the computation time using different pricing policies across 30 sim-

ulated samples. Since the heuristics are closed-form solutions, they enjoy a much smaller compu-

tation time.

Figure A.2: Clock time elapsed for using different pricing policies.

In Figure A.3, we track price trajectories under different policies for randomly sampled prod-

ucts from our entire product set. We select a random instance and output the corresponding trajec-

tories for 6 weeks. B00D2C6IFO product has a degree 7, B008H86SNA product has a degree 5

and B003KG9Z9S product has a degree 6. In this figure, the temporal interaction strength is 0.2

and the network interaction strength is 0.03. The right panel is the corresponding trajectory of the

intercept avt ’s which can be viewed as the base demand of the product v.

159

Figure A.3: Weekly pricing trajectories and base demands

160

	Acknowledgments
	Introduction
	Dynamic decision-making on networks under stochastic uncertainty
	Dynamic decision-making on networks under adversarial uncertainty
	Dynamic match-making on online competitive gaming platforms

	Near-optimality of local algorithms on networks under stochastic uncertainty
	Introduction
	Contribution
	Related work
	Notation and terminology

	Model
	Main Results and Algorithms
	Main theorem
	Local Algorithm

	Proof Outline of Theorem 2.3.1
	Bounding the Locality Loss
	Bounding the Sampling Loss
	Bounding the total loss

	Computation Efficiency
	Numerical Experiments
	Concluding Remarks
	Proof details in Section 2.4
	Proof of Lemma 2.4.1.
	Proof of Lemma 2.4.2
	Proof of Proposition 2.4.2.

	Bound on the computational requirement.
	Interactions must be small to have correlation decay
	Description of the Experiment Setup

	Decentralized Online Convex Optimization in Networked Systems
	Introduction
	Problem Setting
	Information Availability Model

	Algorithm and Main Results
	Localized Predictive Control (LPC)
	Perturbation Analysis
	From Perturbations to Competitive Bounds
	A Lower Bound

	Proof Outline
	Refined Analysis of Perturbation Bounds
	From Perturbation to Competitive Ratio
	Roadmap to Generalize the Proof to Inexact Predictions

	Application: Multiproduct Pricing
	Competitive Bound
	Numerical study

	Concluding Remarks

	Dynamic matchmaking on gaming platforms
	Introduction
	Model
	Bubble algorithm
	Lower bound on the average cost
	Performance bound for Bubble algorithm

	Numerical studies
	Estimation of system parameters
	Select bubble expansion rate.

	Conclusion

	References
	Details in Chapter 3
	Notation Summary and Definitions in Chapter 3
	Perturbation Bounds
	Proof of Theorem 3.3.1
	Proof of Theorem 3.3.2
	Adding Constraints to Perturbation Bounds

	Competitive Bounds
	Proof of Theorem 3.4.2
	Proof of Lemma 3.4.5
	Proof of Theorem 3.3.3
	Proof of Corollary 3.3.4

	Proof of Theorem 3.3.5
	Proof of Corollary 3.3.6
	Details in the multiproduct pricing application
	Proof of Lemma 3.5.1
	Lemma A.6.1 and its proof
	Additional plots

