4,853 research outputs found

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Entity-centric knowledge discovery for idiosyncratic domains

    Get PDF
    Technical and scientific knowledge is produced at an ever-accelerating pace, leading to increasing issues when trying to automatically organize or process it, e.g., when searching for relevant prior work. Knowledge can today be produced both in unstructured (plain text) and structured (metadata or linked data) forms. However, unstructured content is still themost dominant formused to represent scientific knowledge. In order to facilitate the extraction and discovery of relevant content, new automated and scalable methods for processing, structuring and organizing scientific knowledge are called for. In this context, a number of applications are emerging, ranging fromNamed Entity Recognition (NER) and Entity Linking tools for scientific papers to specific platforms leveraging information extraction techniques to organize scientific knowledge. In this thesis, we tackle the tasks of Entity Recognition, Disambiguation and Linking in idiosyncratic domains with an emphasis on scientific literature. Furthermore, we study the related task of co-reference resolution with a specific focus on named entities. We start by exploring Named Entity Recognition, a task that aims to identify the boundaries of named entities in textual contents. We propose a newmethod to generate candidate named entities based on n-gram collocation statistics and design several entity recognition features to further classify them. In addition, we show how the use of external knowledge bases (either domain-specific like DBLP or generic like DBPedia) can be leveraged to improve the effectiveness of NER for idiosyncratic domains. Subsequently, we move to Entity Disambiguation, which is typically performed after entity recognition in order to link an entity to a knowledge base. We propose novel semi-supervised methods for word disambiguation leveraging the structure of a community-based ontology of scientific concepts. Our approach exploits the graph structure that connects different terms and their definitions to automatically identify the correct sense that was originally picked by the authors of a scientific publication. We then turn to co-reference resolution, a task aiming at identifying entities that appear using various forms throughout the text. We propose an approach to type entities leveraging an inverted index built on top of a knowledge base, and to subsequently re-assign entities based on the semantic relatedness of the introduced types. Finally, we describe an application which goal is to help researchers discover and manage scientific publications. We focus on the problem of selecting relevant tags to organize collections of research papers in that context. We experimentally demonstrate that the use of a community-authored ontology together with information about the position of the concepts in the documents allows to significantly increase the precision of tag selection over standard methods

    A Comparative Review of Machine Learning for Arabic Named Entity Recognition

    Get PDF
    Arabic Named Entity Recognition (ANER) systems aim to identify and classify Arabic Named entities (NEs) within Arabic text. Other important tasks in Arabic Natural Language Processing (NLP) depends on ANER such as machine translation, question-answering, information extraction, etc. In general, ANER systems can be classified into three main approaches, namely, rule-based, machine-learning or hybrid systems. In this paper, we focus on research progress in machine-learning (ML) ANER and compare between linguistic resource, entity type, domain, method and performance. We also highlight the challenges when processing Arabic NEs through ML systems

    Prompt-NER: Zero-shot Named Entity Recognition in Astronomy Literature via Large Language Models

    Full text link
    This study delves into the application of Large Language Models (LLMs) for Named Entity Recognition (NER) tasks in the field of astronomy literature. To enhance the zero-shot recognition capabilities of LLMs for astronomical named entities, we propose a strategy called Prompt-NER. Prompt-NER includes five prompt elements: Task Descriptions, Entity Definitions, Task Emphasis, Task Examples, and Second Conversation. To assess the effectiveness of the Prompt-NER strategy, we utilize three representative LLMs (Claude-2, GPT-3.5, and LLaMA-2-70b) to identify telescope and celestial object named entities in astronomical literature. Our experiments are conducted based on two distinct datasets. The first dataset comprises 30 original PDF documents, which we split into paragraphs in sequential order, resulting in a second dataset consisting of 30 paragraph collections. Additionally, we incorporate 30 astronomical telegrams to diversify our experiments and assess the performance of LLMs based on Prompt-NER on concise, complete texts. Our experimental results indicate that the Prompt-NER strategy enables LLMs to effectively accomplish NER tasks in the field of astronomy, even without prior astronomical knowledge during training. We carefully analyze the experimental results, including the mechanism of different prompt elements and the influence of different features of long and short texts on their respective experimental results. This research provides experience for zero-shot NER tasks in astronomical literature and suggests future work in this area
    • 

    corecore