3,409 research outputs found

    Three-dimensional memory vectorization for high bandwidth media memory systems

    Get PDF
    Vector processors have good performance, cost and adaptability when targeting multimedia applications. However, for a significant number of media programs, conventional memory configurations fail to deliver enough memory references per cycle to feed the SIMD functional units. This paper addresses the problem of the memory bandwidth. We propose a novel mechanism suitable for 2-dimensional vector architectures and targeted at providing high effective bandwidth for SIMD memory instructions. The basis of this mechanism is the extension of the scope of vectorization at the memory level, so that 3-dimensional memory patterns can be fetched into a second-level register file. By fetching long blocks of data and by reusing 2-dimensional memory streams at this second-level register file, we obtain a significant increase in the effective memory bandwidth. As side benefits, the new 3-dimensional load instructions provide a high robustness to memory latency and a significant reduction of the cache activity, thus reducing power and energy requirements. At the investment of a 50% more area than a regular SIMD register file, we have measured and average speed-up of 13% and the potential for power savings in the L2 cache of a 30%.Peer ReviewedPostprint (published version

    HPC Accelerators with 3D Memory

    Get PDF
    Artículo invitado, publicado en las actas del congreso por IEEE Society Press. Páginas 320 a 328. ISBN: 978-1-5090-3593-9.DOI 10.1109/CSE-EUC-DCABES-2016.203After a decade evolving in the High Performance Computing arena, GPU-equipped supercomputers have con- quered the top500 and green500 lists, providing us unprecedented levels of computational power and memory bandwidth. This year, major vendors have introduced new accelerators based on 3D memory, like Xeon Phi Knights Landing by Intel and Pascal architecture by Nvidia. This paper reviews hardware features of those new HPC accelerators and unveils potential performance for scientific applications, with an emphasis on Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) used by commercial products according to roadmaps already announced.Universidad de Málaga. Campus de Excelencia Internacional Andalucia Tec

    Trace-level reuse

    Get PDF
    Trace-level reuse is based on the observation that some traces (dynamic sequences of instructions) are frequently repeated during the execution of a program, and in many cases, the instructions that make up such traces have the same source operand values. The execution of such traces will obviously produce the same outcome and thus, their execution can be skipped if the processor records the outcome of previous executions. This paper presents an analysis of the performance potential of trace-level reuse and discusses a preliminary realistic implementation. Like instruction-level reuse, trace-level reuse can improve performance by decreasing resource contention and the latency of some instructions. However, we show that trace-level reuse is more effective than instruction-level reuse because the former can avoid fetching the instructions of reused traces. This has two important benefits: it reduces the fetch bandwidth requirements, and it increases the effective instruction window size since these instructions do not occupy window entries. Moreover, trace-level reuse can compute all at once the result of a chain of dependent instructions, which may allow the processor to avoid the serialization caused by data dependences and thus, to potentially exceed the dataflow limit.Peer ReviewedPostprint (published version
    • …
    corecore