171 research outputs found

    Processing Distribution and Architecture Tradeoff for Large Intelligent Surface Implementation

    Full text link
    The Large Intelligent Surface (LIS) concept has emerged recently as a new paradigm for wireless communication, remote sensing and positioning. It consists of a continuous radiating surface placed relatively close to the users, which is able to communicate with users by independent transmission and reception (replacing base stations). Despite of its potential, there are a lot of challenges from an implementation point of view, with the interconnection data-rate and computational complexity being the most relevant. Distributed processing techniques and hierarchical architectures are expected to play a vital role addressing this while ensuring scalability. In this paper we perform algorithm-architecture codesign and analyze the hardware requirements and architecture trade-offs for a discrete LIS to perform uplink detection. By doing this, we expect to give concrete case studies and guidelines for efficient implementation of LIS systems.Comment: Presented at IEEE ICC 202

    Orthogonal Time Frequency Space for Integrated Sensing and Communication: A Survey

    Full text link
    Sixth-generation (6G) wireless communication systems, as stated in the European 6G flagship project Hexa-X, are anticipated to feature the integration of intelligence, communication, sensing, positioning, and computation. An important aspect of this integration is integrated sensing and communication (ISAC), in which the same waveform is used for both systems both sensing and communication, to address the challenge of spectrum scarcity. Recently, the orthogonal time frequency space (OTFS) waveform has been proposed to address OFDM's limitations due to the high Doppler spread in some future wireless communication systems. In this paper, we review existing OTFS waveforms for ISAC systems and provide some insights into future research. Firstly, we introduce the basic principles and a system model of OTFS and provide a foundational understanding of this innovative technology's core concepts and architecture. Subsequently, we present an overview of OTFS-based ISAC system frameworks. We provide a comprehensive review of recent research developments and the current state of the art in the field of OTFS-assisted ISAC systems to gain a thorough understanding of the current landscape and advancements. Furthermore, we perform a thorough comparison between OTFS-enabled ISAC operations and traditional OFDM, highlighting the distinctive advantages of OTFS, especially in high Doppler spread scenarios. Subsequently, we address the primary challenges facing OTFS-based ISAC systems, identifying potential limitations and drawbacks. Then, finally, we suggest future research directions, aiming to inspire further innovation in the 6G wireless communication landscape

    Systems with Massive Number of Antennas: Distributed Approaches

    Get PDF
    As 5G is entering maturity, the research interest has shifted towards 6G, and specially the new use cases that the future telecommunication infrastructure needs to support. These new use cases encompass much higher requirements, specifically: higher communication data-rates, larger number of users, higher accuracy in localization, possibility to wirelessly charge devices, among others.The radio access network (RAN) has already gone through an evolution on the path towards 5G. One of the main changes was a large increment of the number of antennas in the base-station. Some of them may even reach 100 elements, in what is commonly referred as Massive MIMO. New proposals for 6G RAN point in the direction of continuing this path of increasing the number of antennas, and locate them throughout a certain area of service. Different technologies have been proposed in this direction, such as: cell-free Massive MIMO, distributed MIMO, and large intelligent surface (LIS). In this thesis we focus on LIS, whose conducted theoretical studies promise the fulfillment of the aforementioned requirements.While the theoretical capabilities of LIS have been conveniently analyzed, little has been done in terms of implementing this type of systems. When the number of antennas grow to hundreds or thousands, there are numerous challenges that need to be solved for a successful implementation. The most critical challenges are the interconnection data-rate and the computational complexity.In the present thesis we introduce the implementation challenges, and show that centralized processing architectures are no longer adequate for this type of systems. We also present different distributed processing architectures and show the benefits of this type of schemes. This work aims at giving a system-design guideline that helps the system designer to make the right decisions when designing these type of systems. For that, we provide algorithms, performance analysis and comparisons, including first order evaluation of the interconnection data-rate, processing latency, memory and energy consumption. These numbers are based on models and available data in the literature. Exact values depend on the selected technology, and will be accurately determined after building and testing these type of systems.The thesis concentrates mostly on the topic of communication, with additional exploration of other areas, such as localization. In case of localization, we benefit from the high spatial resolution of a very-large array that provides very rich channel state information (CSI). A CSI-based fingerprinting via neural network technique is selected for this case with promising results. As the communication and localization services are based on the acquisition of CSI, we foresee a common system architecture capable of supporting both cases. Further work in this direction is recommended, with the possibility of including other applications such as sensing.The obtained results indicate that the implementation of these very-large array systems is feasible, but the challenges are numerous. The proposed solutions provide encouraging results that need to be verified with hardware implementations and real measurements

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Intelligent Sensing and Learning for Advanced MIMO Communication Systems

    Get PDF

    Resource Allocation in Multi-user MIMO Networks: Interference Management and Cooperative Communications

    Get PDF
    Nowadays, wireless communications are becoming so tightly integrated in our daily lives, especially with the global spread of laptops, tablets and smartphones. This has paved the way to dramatically increasing wireless network dimensions in terms of subscribers and amount of flowing data. Therefore, the two important fundamental requirements for the future 5G wireless networks are abilities to support high data traffic and exceedingly low latency. A likely candidate to fulfill these requirements is multicell multi-user multi-input multiple-output (MU-MIMO); also termed as coordinated multi-point (CoMP) transmission and reception. To achieve the highest possible performance in MU-MIMO networks, a properly designed resource allocation algorithm is needed. Moreover, with the rapidly growing data traffic, interference has become a major limitation in wireless networks. Interference alignment (IA) has been shown to significantly manage the interference and improve the network performance. However, how practically use IA to mitigate interference in a downlink MU-MIMO network still remains an open problem. In this dissertation, we improve the performance of MU-MIMO networks in terms of spectral efficiency, by designing and developing new beamforming algorithms that can efficiently mitigate the interference and allocate the resources. Then we mathematically analyze the performance improvement of MUMIMO networks employing proposed techniques. Fundamental relationships between network parameters and the network performance is revealed, which provide guidance on the wireless networks design. Finally, system level simulations are conducted to investigate the performance of the proposed strategies

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications
    • …
    corecore