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Abstract

Nowadays, wireless communications are becoming so tightly integrated in our daily

lives, especially with the global spread of laptops, tablets and smartphones. This has

paved the way to dramatically increasing wireless network dimensions in terms of

subscribers and amount of flowing data. Therefore, the two important fundamental re-

quirements for the future 5G wireless networks are abilities to support high data traffic

and exceedingly low latency. A likely candidate to fulfill these requirements is multi-

cell multi-user multi-input multiple-output (MU-MIMO); also termed as coordinated

multi-point (CoMP) transmission and reception. To achieve the highest possible per-

formance in MU-MIMO networks, a properly designed resource allocation algorithm

is needed. Moreover, with the rapidly growing data traffic, interference has become

a major limitation in wireless networks. Interference alignment (IA) has been shown

to significantly manage the interference and improve the network performance. How-

ever, how practically use IA to mitigate interference in a downlink MU-MIMO net-

work still remains an open problem. In this dissertation, we improve the performance

of MU-MIMO networks in terms of spectral efficiency, by designing and developing

new beamforming algorithms that can efficiently mitigate the interference and allocate

the resources. Then we mathematically analyze the performance improvement of MU-

MIMO networks employing proposed techniques. Fundamental relationships between

network parameters and the network performance is revealed, which provide guidance

on the wireless networks design. Finally, system level simulations are conducted to

investigate the performance of the proposed strategies.

iii



Acknowledgements

I would like to express my deepest appreciation to my advisors: Professors Erik Perrins

and Lingjia Liu, for their support and encouragement on daily basis from the start until

date. Under their guidance I learnt a lot and overcame many difficulties. They also

have taught me another aspect of life “goodness can never be defied and good human

beings can never be denied”. For all these, I’m deeply indebted to them throughout

my life.

I would also like to extend my deepest gratitude to the member of my dissertation

advisory and exam committee: Professors Victor Frost, Shannon Blunt, and Jian Li

for generously giving their time to offer me valuable comments toward improving my

work.

The completion of this dissertation would not have been possible without the support,

sacrifices and nurturing of my loving husband, Javad, and my wonderful son, Adrian.

I also feel a deep sense of gratitude for my parents and my grandmother for the selfless

love, care, and sacrifice they did to shape my life.

Last but not the least, I would like to extend my sincere thanks to all of those with

whom I have had the pleasure to work during my Ph.D. journey for their friendship

and the warmth they extended to me during my time at KU.

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Impact and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Multi-cell Multi-user Networks: Interference Mitigation 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 System Model and Assumption . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Constructing Transmit And Receive Beam-forming . . . . . . . . . . . . . 13

2.2.3 Synthesized Channel Model And Feedback Framework . . . . . . . . . . . 15

2.3 A Novel Algorithm For Combating Both Inter-cell and Intra-cell Interferences . . . 17

2.3.1 Transceiver Design With Perfect CSI . . . . . . . . . . . . . . . . . . . . 17

2.3.1.1 IA technique and combating inter-cell interference . . . . . . . . 17

2.3.1.2 Leakage-based iterative CB scheme and intra-cell interference

mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Transceiver Design With Limited Feedback . . . . . . . . . . . . . . . . . 21

2.3.2.1 Limited feedback IA Scheme and combating inter-cell interference 21

v



2.3.2.2 Leakage-based iterative CB with feedback error and the intra-

cell interference mitigation . . . . . . . . . . . . . . . . . . . . 27

2.4 Simulation Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Coordinated Multi-Point Transmission and Reception: Resource Allocation 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Proportional-Fair Resource Allocation . . . . . . . . . . . . . . . . . . . . 43

3.3 A Novel Algorithm For Coordinated Resource Allocation . . . . . . . . . . . . . . 44

3.3.1 Some Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 System Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Simulation Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Cached Cloud-RAN: Content-Based User Association and MIMO Operation 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 System Model and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Problem Formulation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Simulation Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Cell-free Massive MIMO networks: Resource Allocation 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 A Novel Algorithm for Downlink Resource Allocation . . . . . . . . . . . . . . . 98

vi



5.4 Simulation Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions 105

A Appendix 125

A.0.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.0.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.0.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.0.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.0.5 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.0.6 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.0.7 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.0.8 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.0.9 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.0.10 fi(Qi,Q−i) is a convex function of Qi for fixed Q−i for any i ∈L . . . . . . 141

vii



List of Figures

2.1 G-cell multi-user MIMO downlink system. . . . . . . . . . . . . . . . . . . . . . 12

2.2 Spectral-efficiency vs. SNR (Nt = 4, Nr = 2, and β = 8) . . . . . . . . . . . . . . 34

2.3 Spectral-efficiency vs. SNR (Nt = Nr = 8, and β = 4) . . . . . . . . . . . . . . . . 34

2.4 Spectral-efficiency vs. S (Nt = Nr = 8 and β = 4) . . . . . . . . . . . . . . . . . . 36

3.1 The Network proportional-fair metric versus Number of iterations. . . . . . . . . . 56

3.2 (a) The network proportional-fair metric (PFM) versus number of iterations in a

2 cooperating BS CoMP LTE-Advanced system, with Nt = 4 and Nr = 2, w =

[0.01 0.99], and p1,max = p2,max = 12 Watt, (b) and (c) Optimal power allocation

at BS 1 and BS 2 versus spatial directions (SD) associated with the singular values

of their channel transfer matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 (a) The network proportional-fair metric (PFM) versus number of iterations in a 2

cooperating BS CoMP LTE-Advanced system, with Nt =Nr = 8, w= [0.999 0.001],

and p1,max = p2,max = 8 Watt, (b) and (c) Optimal power allocation at BS 1 and BS

2 versus spatial directions (SD) associated with the singular values of their channel

transfer matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Cumulative distribution function (CDF) of achievable rate. . . . . . . . . . . . . . 59

3.5 Cumulative distribution function (CDF) of SINR. . . . . . . . . . . . . . . . . . . 60

4.1 System architecture of a cache-enabled cloud radio access network. . . . . . . . . 68

4.2 A realization of the Cloud-RAN network. . . . . . . . . . . . . . . . . . . . . . . 87

viii



4.3 Average sum-rate versus SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Average sum-rate versus number of UEs. . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Average number of iterations vs number of UEs . . . . . . . . . . . . . . . . . . . 89

4.6 Average cpu time versus number of UEs . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Normalized weighted objective function versus λ for different cache sizes. . . . . . 90

4.8 Normalized network cost versus SINR for different algorithms. . . . . . . . . . . . 90

5.1 System architecture of a cell-free massive MIMO network. . . . . . . . . . . . . . 94

5.2 Average total power consumption versus total number of transmit antennas in a

cell-free massive MIMO network. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Downlink average rate per UE versus total number of UEs in both cell-free and

co-located massive MIMO networks. . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



List of Tables

2.1 System parameters used in simulation. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 System parameters used in simulation. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Cell-average spectral-efficiency of different schemes . . . . . . . . . . . . . . . . 59

4.1 Nomenclatures and Notations Used . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



Chapter 1

Introduction

1.1 Motivation

Nowadays, wireless communications are becoming so tightly integrated in our daily lives, es-

pecially with the global spread of laptops, tablets and smartphones. This has paved the way to

dramatically increasing wireless network dimensions in terms of subscribers and amount of flow-

ing data. Precisely, the number of mobile-connected devices per capita is expected to reach 1.5 by

2021 and global mobile data traffic is forecast to increase sevenfold between 2016 and 2021. In

other words, global mobile data traffic will grow at a compound annual growth rate (CAGR) of 47

percent from 2016 to 2021, reaching 49.0 exabytes per month by 2021 [1]. The volume, velocity,

and variety of data from both mobile users and communication networks follow an exponential in-

crease pattern. Consequently, big data will further be entrenched in the upcoming fifth-generation

(5G) wireless networks.

The two important fundamental requirements for the future 5G wireless networks are abili-

ties to support high data traffic and exceedingly low latency [2]. Likely candidates to fulfill these

requirements are multi-cell multi-user multi-input multiple-output (MIMO); also termed as coordi-

nated multi-point (CoMP) transmission and reception; massive MIMO, cell-free massive MIMO,

and Cloud Radio Access Networks (Cloud-RAN). These technologies are introduced as promis-
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ing technologies in the 3GPP LTE-advanced standard, to manage interference, improve the overall

system performance, and enhance system reliability.

A multi-cell multi-user MIMO system allows each base station (BS) to communicate with

several co-channel mobile stations (MSs) simultaneously and thereby significantly increases the

system throughput. MIMO systems with a large array antenna at the BSs are known as Massive

MIMO. In massive MIMO network each BS is equipped with a large array antenna to improve the

spectral and energy efficiency of wireless systems with simple signal processing. Massive MIMO

allows a BS to simultaneously serve many number of user along with time-frequency resources to

improve the overall system performance. In general, depending on the antenna arrays setup at the

BSs, massive MIMO can be categorized into the following two architectures: distributed massive

MIMO and co-located massive MIMO. While the latter locates the service antennas in a compact

area, the former spreads antennas all over a large area. The network architecture of Cloud-RAN

spreads several low-cost low-power BSs all over a small area as an alternative to a high-power BS.

In order to have an efficient resource allocation and interference management among multiple BSs,

digital backhaul links connect all these low-power BSs to a central computing unit (cloud).

Since the wireless medium is inherently shared, allocating resource efficiently and mitigating

the interference are essential in the multi-user cellular environment. Interference has become a

major limitation in wireless networks especially with the rapidly growing data traffic. To avoid

interference, orthogonalization methods (both in time and frequency) are introduced which are

practical, however, these methods drastically degrade the spectral efficiency. Numerous techniques

allow the increase of the multiplexing gain or the sum rate in multi-user single cell and multi-user

multi-cell networks in order to improve spectral efficiency. In a multi-user single cell network all

the interference is intra-cell which is due to the transmission by a single base station of multi-

ple streams intended to multiple users. This kind of interference can be taken care of by simple

means of zero forcing (ZF) or by the more complex, but optimal, dirty paper coding (DPC) [3].

While in a multi-user multi-cell network, the situation is more complex as the interference at each

receiver come from other cells. In these networks, inter-cell interference is a major drawback
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and dealing with interference management and joint processing between nodes to suppress inter-

cell interference is crucial. Moreover, in order to achieve the highest possible performance of

the aforementioned candidate technologies, a properly designed resource allocation algorithm is

needed. By designing a resource allocation algorithm, which maximize the network throughput,

these technologies are able to manage the exponential growth of wireless network dimensions in

terms of both subscribers and amount of flowing data.

To address the above listed problems, the first target of this dissertation is to improve the per-

formance of wireless networks, in terms of spectral efficiency, by developing new algorithms and

protocols that can efficiently mitigate the interference and allocate the resources. In particular, we

will focus on designing new beamforming algorithms in downlink multi-cell multi-user MIMO net-

works. Furthermore, we mathematically analyze the performance improvement of massive MIMO

networks employing proposed technique. Fundamental relationships between network parame-

ters and the network performance will be revealed, which will provide guidance on the wireless

networks design. Finally, the results of theoretical study will be demonstrated using simulation

platform such as MATLAB.

1.2 Proposed Research

In this dissertation, our aim is to improve both the cell-edge and the cell-average user spectral-

efficiency in a multi-cell multi-user MIMO network by developing a new protocol to suppress the

co-channel interference issue. Therefore, in Chapter 2, a novel interference alignment transceiver

beam-forming design along with a low complexity iterative coordinated beam-forming scheme

is introduced. While the latter combats the intra-cell interference, the former is utilized to mit-

igate the inter-cell interference. The proposed schemes consider the codebook-based feedback,

which is adopted in the LTE/LTE-advanced systems. Optimal downlink user-specific and cell-

specific beam-forming matrices are characterized to maximize the lower bound of expected signal-

to-leakage-plus noise ratio and to minimize the residual inter-cell interference, respectively. More-
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over, closed-form expressions for these beamforming matrices under limited channel state infor-

mation feedback and in the presence of the quantization error are identified. Simulations are

conducted to investigate the performance of the proposed strategy. The results indicate that our

scheme can significantly improve the average spectral-efficiency of the underlying network when

compared with existing ones where the quantization error is neglected. Furthermore, for a fixed

payload size of the codebook, unlike zero-forcing beam-forming in which the sum throughput is

bounded as the signal-to-noise ratio (SNR) increases, in our scheme, the performance gap between

rank 2 feedback and perfect feedback remains approximately constant as SNR increases.

In Chapter 3, a resource allocation problem is studied for downlink CoMP coordinated beam-

forming systems, where each BS serves its own MSs. MIMO transmit precoding and resource

allocation are linked to the underlying proportional-fair scheduling to ensure a good trade-off be-

tween cell-average and cell-edge user spectral-efficiency. Due to the coupled interference among

mobile stations, the resulting proportional-fair resource allocation optimization problem becomes

nonconvex. To solve for optimal operating point for MIMO CoMP network, a parallel successive

convex approximation-based algorithm is introduced. The introduced scheme enables all BSs to

update their optimization variables in parallel by solving a sequence of strongly convex subprob-

lems. Closed-form expressions of the locally optimal solution in both the high and low signal-to-

noise regimes are characterized. The performance of the introduced scheme is also investigated

through simulations. Numerical results show the efficiency of the introduced algorithm.

In order to support ever-growing end-users’ needs, in Chapter 4, a Cloud-RAN has been con-

sidered. To reduce the backhaul traffic and aid coordinated multi-point (CoMP) transmission, the

BS-level caching technique is utilized, where popular contents are pre-fetched at each BS. Then

the MIMO operation and user association policy are linked to the underlying cache placement

strategy to ensure a good trade-off between load balancing and backhaul traffic taking into ac-

count the underlying wireless channel and the finite cache capacity at BSs. Due to the coupled

interference among mobile stations, the binary nature of the underlying cache placement and user

association matrices, the resulting mixed-timescale mixed integer optimization problem is non-

4



convex and NP-hard. To solve this problem, we decompose the joint optimization problem into a

long-term content placement sub-problem and a short-term content delivery sub-problem. A novel

iterative algorithm is introduced by leveraging the alternating direction method of multipliers to-

gether with a parallel successive convex approximation-based algorithm. The introduced scheme

enables all BSs to update their optimization variables in parallel by solving a sequence of convex

subproblems. Simulation evaluation demonstrates the efficiency of our strategy.

Finally, Chapter 5 studies a resource allocation problem for downlink cell-free massive MIMO

network. Transmit precoding and power allocation are linked to the underlying max-min schedul-

ing to ensure uniform and excellent service throughout the coverage area. Due to the coupled in-

terference among UEs, the resulting max-min resource allocation optimization problem becomes

nonconvex. We demonstrate the uplink-downlink duality and propose an iterative algorithm which

solves the primal downlink problem efficiently. By utilizing the max-min beamformer and tak-

ing the channel estimation error into account, we further derive the capacity lower bound of the

underlying cell-free massive MIMO network. The performance of the introduced scheme is also

investigated through simulations. Numerical results show the efficiency of the introduced algo-

rithm.

1.3 Research Impact and Contributions

By developing new protocols to mitigate the co-channel interference and efficiently allocate the

resources, we improve both the cell-edge and the cell-average user spectral-efficiency for the ever

growing multi-cell multi-user networks. By completing these research tasks, the proposed research

will be of value for the design and analysis of the current and emerging wireless networks commu-

nications.

• The novelty of this research lies in the ability to develop new beamforming design algorithms

which take full advantage of intelligent interference mitigation techniques to meet the 5G

technology requirements. We expect that this research would provide great benefits to the
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next generation networks by providing the better spectral efficiency.

• The proposed limited feedback-based IA scheme along with the low complexity iterative

leakage-based coordinated beam-forming strategy can be considered as a promising inter-

ference management technique to achieve the minimum overall residual co-channel inter-

ference in a downlink multi-cell multi-user MIMO network. The introduced algorithm ef-

ficiently reduces the effect of inter-cell interference from BSs in other cells, and eliminates

the intra-cell interference due to the spatial streams dedicated to other users in the same cell.

• The introduced proportional-fair resource allocation is able to simultaneously improve both

cell-edge and cell-average user spectral efficiency by combining MIMO transmit precoder

and power allocation.

• The proposed mixed-timescale content delivery (precoding and user association) and con-

tent placement algorithm in cached cloud radio access networks improves the system perfor-

mance by considering a long-term content placement and a short-term content delivery. The

cache placement reduces the backhaul consumption and provides more CoMP opportunities

while the content delivery guarantees to provide a better average throughput to each user.

• The introduced max-min resource allocation in cell-free massive MIMO networks provides

a uniform service throughout the coverage area by linking the transmit precoding and power

allocation to the underlying max-min scheduling. This algorithm enhances user experience

and improve the overall system performance.

• Furthermore, fundamental relationships between network performance and network param-

eters is revealed, which facilitates new system design. Interestingly, there is possibility of

applying many of this research results in various wireless networks such as C-RAN and

CoMP.

• System level simulation using MATLAB platform is carried out to verify the analysis in

realistic network scenarios.
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1.4 Notation

Throughout this dissertation, normal letters are used for scalars. Boldface capital and lower case

letters denote matrices and vectors, respectively. The transposition, the Hermitian transposition,

and the determinant of a complex matrix A are denoted by AT , AH and |A|, respectively. An N×K

matrix, with ones on its main diagonal and zeros on its off-diagonal entries, is denoted by IN×K ,

while the identity matrix of size N is simply denoted by IN . An N×K all-zeros matrix is denoted

by 0N×K . The sets of complex and real numbers are denoted by C and R, respectively. A circularly

symmetric complex Gaussian random variable (r.v.) is represented by Z = X + jY ∼ C N (0,σ2),

where X and Y are independent and identically distributed (i.i.d.) normal r.v.’s from N (0, σ2

2 ).

E[·] represents the expectation operator. The trace of a square matrix A = [ai j]n×n is defined as

Tr(A) = ∑
n
i=1 aii. The vec(·) operator aligns all the elements of a matrix into a column vector by

stacking the column vectors of the matrix, i.e., for A ∈ CM×N then vec(A) ∈ CMN×1. Moreover,

the Kronecker and Hadamard product between two matrices A and B are symbolized by A⊗B and

A�B, respectively. ‖a‖2 and ‖A‖F denote the two-norm of the vector a and the Frobenius norm

of the matrix A, respectively. The orthogonality, inner product and angle are symbolized by ⊥⊥,

< ·, ·>, and ∠, respectively. The operator [x]+, for x ∈R, is equivalent to the operation max(0,x).
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Chapter 2

Multi-cell Multi-user Networks:

Interference Mitigation

2.1 Introduction

A multi-cell multi-user multiple-input multiple-output (MU-MIMO) system allows each base sta-

tion (BS) to communicate with several co-channel mobile stations (MSs) simultaneously and

thereby significantly increases the system throughput. For a multi-cell MU-MIMO system, it is

essential to mitigate co-channel interference (CCI) in multi-user cellular environments in which

each receiver may suffer from intra-cell and inter-cell interferences [4, 5].

Much work has been done to investigate the methodologies that combat these two types of

interference in cellular networks [6–12]. To mitigate inter-cell interference, recently, the attention

of researchers has been drawn to a relatively new technique, namely interference alignment (IA)

[13, 14]. The IA technique refers to the construction of signals such that the resulting interference

signal lies in a subspace that is orthogonal to the one spanned by the signal of interest at each

receiver [15]. Therefore, IA can be adopted to enhance the cell-edge user throughput in a cellular

network. A lot of attention has been given to IA techniques [10,11,16] which show how to mitigate

inter-cell interference in cellular uplink and downlink networks. However, these schemes usually
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assume global perfect channel state information (CSI) available at the transmitter which is usually

unrealistic: Global perfect CSI requires significant feedback/control overhead. On the other hand,

unlike point-to-point MIMO systems where the imperfect CSI causes only a signal-to-noise ratio

(SNR) offset in the capacity vs. SNR curve, the accuracy of the CSI in the IA systems affects

the slope of the curve, i.e., the degree of freedom (DoF) [17]. Given the difficulty of achieving

near perfect CSI at the transmitters in reality, there has been much work aimed at relaxing this

assumption. An analysis on the effect of imperfect CSI on the mutual information of the underlying

IA scheme is provided in [18]. IA with analog feedback is considered in [19] and the performance

degradation is investigated. In [20], a method that reduces the quantization error with respect

to the classical scheme is introduced. This method involves a computationally heavy iterative

algorithm which must be run for each codeword and for each channel realization. There are several

existing works introducing IA with limited feedback to cellular networks. In [21–24], the authors

considered a multi-cell MIMO interfering uplink network where the BS is serving as the receiver.

Ideal receiver CSI is assumed at the BS so that IA is used to generate transmit beam-forming

vectors. The generated transmit beam-forming vectors are then fed back to MSs (transmitters)

using codebook-based feedback.

In this research proposal and in order to complete tasks one and two, we consider a downlink

multi-cell MIMO network and aim to design the beam-forming matrices based on both the global

CSI and the limited feedback. To be specific, assuming each user has the ideal receiver CSI, while

in the latter one receiver feeds back the limited CSI to the BS, in the former one receiver utilizes

the global CSI. Moreover, in the limited feedback case, upon reception of the limited CSI feedback

from MSs, the BS utilizes IA-based precoding to minimize the residual inter-cell interference. The

proposed scheme takes into account the effects of finite-rate codebook based feedback adopted in

the LTE-Advanced system.

Among many CCI suppression schemes that mitigate the intra-cell interference, linear precod-

ing gains popularity on account of its simplicity of implementation and good performance. To

design the optimal linear precoding scheme, it is often desirable to maximize the output signal-

9



to-interference-plus-noise ratio (SINR) for each user. However, this problem is known to be chal-

lenging due to its coupled nature and unavailability of closed-form solutions. A more tractable but

suboptimal design is to enforce a zero-CCI requirement for each user, such as the zero-forcing (ZF)

beam-forming [7,8]. However, the sum-rate of ZF beam-forming under codebook-based feedback

usually suffers significantly from the feedback error [25]. In [9], the authors introduced the concept

of signal-to-leakage-and-noise ratio (SLNR) as the optimization metric for a linear precoder de-

sign. This metric transforms a coupled optimization problem into a completely decoupled one, for

which a closed-form solution is available. To further improve the system capacity, a coordinated

beam-forming (CB) algorithm is proposed in [6] that jointly optimized the transmit and receive

beam-forming through iteration. In [12], a low complexity leakage-based CB scheme under the

LTE-Advanced feedback framework is introduced and shown a better performance than ZF-based

CB under the same feedback overhead. However, these work did not consider the existence of

quantization errors.

This research proposal differs from previously mentioned studies particularly in its aim to

improve both the cell-edge and the cell-average user spectral-efficiency by introducing a novel

protocol to mitigate the co-channel interference issue. Furthermore, this work also takes into

account the effects of finite-rate codebook based feedback adopted in the frequency division duplex

(FDD) LTE-Advanced system. Main contributions of this research proposal can be summarized as

follows.

• A limited feedback-based IA scheme along with a novel low complexity iterative leakage-

based coordinated beam-forming strategy is introduced as a promising interference manage-

ment technique to achieve the minimum overall residual co-channel interference in a down-

link multi-cell multi-user LTE-Advanced network. The introduced algorithm efficiently re-

duces the effect of inter-cell interference from BSs in other cells, and eliminates the intra-cell

interference due to the spatial streams dedicated to other users in the same cell.

• A limited feedback strategy based on random vector quantization feedback is introduced.

The introduced scheme is capable of minimizing the overall residual CCI for each cell under
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the given codebook. In addition, it can be implemented with flexible antenna configurations.

• Optimal closed-form expressions for the transmit and receive beam-forming matrices are

characterized under quantization errors due to the finite-rate codebook-based feedback. The

optimized transceiver design can be used to effectively mitigate the CCI under given code-

books.

• Evaluation is conducted to show that the introduced scheme significantly outperforms exist-

ing interference management strategies in terms of sum-rate in realistic cellular environments

making it a promising candidate for LTE-Advanced networks.

2.2 System Setup

2.2.1 System Model and Assumption

As illustrated in Fig. 2.1, a G-cell interfering broadcast channel is considered, where the i-th BS

is equipped with Nt transmit antennas and serves Ii users in cell i. A cooperating set is formed by

aggregating neighboring BSs that transmission strategies for the BSs within this set are coordinated

to effectively mitigate the interference at the MSs. Let us define ik to be the kth user in the ith

cell and Nr be the number of receive antennas at receiver ik. Throughout this research proposal

we consider an arbitrary but fixed power allocation among all users. Although for simplicity of

exposition, we consider the case where every transmitter-receiver pair is equipped with the same

numbers of antennas, the results can be readily generalized to a network with different numbers of

antennas as long as the IA remains feasible [26]. Let us also define I to be the set of all receivers,

i.e.,

I = {ik|i ∈ G , {1, . . . ,G},k ∈ {1,2, . . . , Ii}}. (2.1)

It is assumed that each co-scheduled user operating in the MU-MIMO mode only receives one

11



Figure 2.1. G-cell multi-user MIMO downlink system.

spatial stream (rank 1 transmission) as specified by the Rel-10 LTE-Advanced standard [27, Chap-

ter 11]. The channel matrix from the jth BS to the kth user in cell i is denoted by Hik, j ∈ CNr×Nt

where j ∈ G and ik ∈ I . A spatially uncorrelated flat Rayleigh fading channel is assumed. The

elements of Hik, j are modeled as i.i.d. complex Gaussian variables with zero-mean and unit-

variance. It is important to note that the results obtained in this chapter can be generalized to any

statistical channel models. Moreover, we assume that the channels are constant over a few time

slots with respect to channel estimation and CSI feedback procedures. Frequency-division duplex-

ing mode is assumed in this system. We also assume perfect time and frequency synchronization

when expressing received baseband signals. Each BS, say i ∈ G , plans to communicate a sym-

bol vector si = [si1, . . . ,siIi
]T ∈ CIi×1 to its associated receivers, where sik is the transmit symbol

from the i-th BS to the ik receiver with unit power of E{|sik |2}= 1. Note that the achievable DoF

in each cell can be perceived as the number of signal space dimensions free of interference and

Ii represents the pursued DoF in the i-th cell, which is the number of symbols that the i-th BS

wishes to transmit. Prior to transmitting, the i-th BS, i ∈ G , linearly precodes its symbol vector

xi =∑
Ii
k=1
√

ρikfiksik where ρik stands for the transmit power for user ik; fik denotes the beam-former
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that BS i uses to transmit the signal sik to receiver ik; and Fi = [fi1, . . . , fiIi
] ∈ CNt×Ii indicates the

transmit precoder at BS i with unit-norm columns. Hence, the transmit power at BS i is com-

puted as pi = E{‖xi‖2} = ∑
Ii
k=1 ρikE{‖fik‖2} = ∑

Ii
k=1 ρik . Accordingly, the received signal vector

yik ∈ CNr×1 at receiver ik ∈I can be written as:

yik =
√

ρikHik,ifiksik︸ ︷︷ ︸
desired signal

+
Ii

∑
m=1,m 6=k

√
ρimHik,ifimsim︸ ︷︷ ︸

intra-cell interference

+
G

∑
j=1, j 6=i

I j

∑
`=1

√
ρ j`Hik, jf j`s j`︸ ︷︷ ︸

inter-cell interference

+nik , (2.2)

where nik ∈CNr×1 represents the additive white Gaussian noise (AWGN) at receiver ik with E{niknH
ik }=

σ2
ikINr . We assume that the signals for different users are independent from each other. In this

chapter, we treat interference as noise and consider linear receive beam-forming strategy so that

the estimated signal is given by ŝik = uH
ik yik . Indeed, each receiver ik ∈ I , linearly processes the

received signal to obtain uH
ik yik where uik ∈ CNr×1 denotes the unit-norm post processing filter at

receiver ik, i.e., ‖uik‖2 = 1. Thus, after receive beam-forming the received signal at receiver ik,

∀ik ∈I , can be expressed as

ŝik = uH
ik Hik,iFiP

1
2
i si +

G

∑
j=1, j 6=i

uH
ik Hik, jF jP

1
2
j s j +uH

ik nik , (2.3)

where Pi is an Ii× Ii matrix with main diagonal (ρi1,ρi2, . . . ,ρiIi
) and zeros on its off-diagonal.

2.2.2 Constructing Transmit And Receive Beam-forming

Inspired by our previous work [16], we use two cascaded beam-forming matrices to construct our

precoder at each BS. The precoding matrix at each BS, is denoted by Fi for BS i, is composed

of the product of a cell-specific beam-forming matrix, represented by Ti = [ti1, . . . , tiS ] ∈ CNt×S,

and a user-specific beam-forming matrix, denoted by Vi = [vi1, . . . ,viIi
] ∈ CS×Ii , where S is the

number of virtual streams which is also equal to the number of co-scheduled users in each cell.

Furthermore, S is upper bounded by min(Nt ,Nr). Ti is used to mitigate the inter-cell interference

while Vi will be utilized to mitigate the intra-cell interference. It is worth mentioning that the
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SLNRik =
Tr
(
vH

ik TH
i HH

ik,iHik,iTivik
)

σ2
ik

ρik
+Tr

(
vH

ik TH
i
{

∑
Ii
m=1,m6=k HH

im,iHim,i +∑
G
j=1, j 6=i ∑

I j
`=1 HH

j`,iH j`,i
}

Tivik
) . (2.5)

cell-specific beam-forming matrix Ti is independent of channel gains. Moreover, we use two

cascaded receive beam-forming matrices to construct our post-precoder at each receiver. The post-

precoding vector uik ∈CNr×1 at receiver ik is composed of Qiwik , where Qi ∈CNr×(Nr−S) and wik ∈

C(Nr−S)×1. Similarly, the receive beam-forming matrix Qi will mitigate the inter-cell interference.

It is the role of the receive beam-forming vector wik to alleviate the intra-cell interference. It is

worth mentioning that, when a cascaded precoder is utilized, since both Ti and Qi are cell-specific

and fixed during the transmission, the additional complexity introduced at both transmitters and

receivers is rather small. Note that, when designing the cell-specific IA-based precoding matrices

Ti and Qi, the condition S ≤ min(Nt ,Nr) should be satisfied. It is important to note that Nt and

Nr in modern cellular networks can be quite large. For example, Rel-10 LTE-Advanced networks

support Nt = Nr = 8 while 64 antenna elements are being considered at both base stations and

mobile stations for 5G networks [28].

Remark 1. Since the user specific transmit beam-forming Vi and receive beam-forming wik are

utilized only to mitigate the intra-cell interference, Vi and wik do not change the inter-cell inter-

ference level at each user.

The received signal at user k in cell i can be rewritten as

ŝik = wH
ik Heff

ik,iViP
1
2
i si +

G

∑
j=1, j 6=i

wH
ik QH

i Hik, jT jV jP
1
2
j s j + n̂ik , ∀ik ∈I , (2.4)

where Heff
ik,i ∈ C(Nr−S)×S is the effective channel matrix defined as Heff

ik,i , QH
i Hik,iTi, and n̂ik ,

uH
ik nik . Recall that the SLNR is defined as the ratio of the received signal power at the desired user

to the leakage power plus the noise power, the SLNR for serving user ik can be written as (2.5).

In what follows, we assume that each receiver ik ∈I knows its channels Hik, j perfectly based
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on pilot signals transmitted by each of G cells. In Section 2.3.1, error-free dedicated broadcast

links are assumed from each receiver to the other transmitters in the network. Hence, each trans-

mitter knows the perfect CSI. In Section 2.3.2 we generalize results to a more realistic case where

each transmitter does not have the perfect CSI, rather, each transmitter must rely on the quantized

feedback from the receivers to obtain the CSI. To be specific, during the channel feedback phase,

receiver ik feeds back its CSI using B bits based codebook quantization.

2.2.3 Synthesized Channel Model And Feedback Framework

In FDD LTE/LTE-Advanced systems, each MS measures the downlink MIMO channel through

the reference signals/pilots, and then feeds back the CSI to the BS using codebook-based channel

feedback [29]. The CSI feedback in LTE/LTE-Advanced systems usually contains two informa-

tion: the channel direction information (CDI) and the channel quality indicator (CQI). The CDI is

related to the eigen-directions of the underlying MIMO channel which contains both rank indicator

(RI) and precoding matrix indicator (PMI). Effectively, RI and PMI jointly tells eigen-directions

of the underlying MIMO channel. The CQI is related to the strength of the corresponding spatial

directions. Effectively, CQI tells the singular values of the underlying channel. Codebook-based

quantization is adopted in LTE/LTE-Advanced systems for the feedback of CDI to minimize the

feedback overhead. For example, in Rel-10 LTE-Advanced systems, 4-bit PMI and 3-bit RI are

used for feeding back the 8×8 MIMO channel [4].

In limited feedback systems such as LTE/LTE-Advanced systems, each user feeds back its

CQI and CDI to the BS. CQI feedback is relatively straightforward where user ik feeds back

the quantized version of the singular values using scalar or vector quantization methods. CDI

feedback is generally more involved relying on codebook-based feedback. After obtaining each

of the eigen-direction of the MIMO channel, say h̃(`)
ik, j = h(`)

ik, j/‖h
(`)
ik, j‖ for the `th eigen-direction,

∀`∈ {1, . . . ,Nt}, user ik quantizes it to ĥ(`)
ik, j using a random vector quantization codebook C which

is known at both the BS and the MS. In general, there will be multiple CDIs of the underlying

MIMO channel, the exact number of the CDIs to be fed back will impact the system performance
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and the feedback overhead. The indices of the quantized CDIs will be sent to the BS through a

feedback link. Accordingly, the BS obtains ĥ(`)
ik, js and then uses these information for downlink

MIMO precoding. A quantization codebook C consist of 2β Nt-dimensional unit norm vectors is

given by C = {c1,c2, . . . ,c2β }, where 2β is the codebook size, β is the number of feedback bits

per user, and cm ∈ CNt×1 is a unit norm codeword, i.e., ‖cm‖2 = 1.

Each user chooses the CDI in the codebook that is closet to its eigen-direction where closeness

is usually measured in terms of the angle between the eigen-direction and the codeword in the

codebook or equivalently the inner product. Hence, user k in the i-th cell computes quantization

index q(`)ik, j according to

q(`)ik, j = argmax
m=1,...,2β

|〈h̃(`)
ik, j,cm〉|= argmin

m=1,...,2β

sin2(∠(h̃(`)
ik, j,cm)), (2.6)

and feeds the index back to the BS. Upon reception of the index q(`)ik, j, the BS can recover the CDI

by searching in the corresponding entry in the codebook. In this way, the feedback overhead is

significantly reduced with the penalty of quantization error in the finite rate feedback systems.

As in [25], the relationship between the full CDI, h̃(`)
ik, j, and the quantized CDI, ĥ(`)

ik, j, can be

expressed by

h̃(`)
ik, j =

√
1− z(`)ik, jĥ

(`)
ik, j +

√
z(`)ik, jr

(`)
ik, j, (2.7)

where z(`)ik, j = 1−|h̃(`)H

ik, j ĥ(`)
ik, j|

2 is distributed according to the quantization error distribution and is

independent of r(`)ik, j ∈ CNt×1 which represents a unit norm vector isotropically distributed in the

null space of ĥ(`)
ik, j. It is shown in [30] that E{r(`)ik, j}= 0, E{r(`)ik, jr

(`)H

ik, j }= 1/(Nt−1)(INt− ĥ(`)
ik, jĥ

(`)H

ik ),

and E{z(`)ik, j} = δ (Nt − 1)/Nt where δ , 2−β/(Nt−1). It is worth noting that feedback overhead of

the system depends on 1) the number of CDIs to be fed back to each BS, and 2) the number of BSs

in the cooperating set.
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2.3 A Novel Algorithm For Combating Both Inter-cell and Intra-

cell Interferences

This section describes how our introduced techniques cancel out the inter-cell and intra-cell inter-

ferences for the downlink multi-cell MU-MIMO network.

2.3.1 Transceiver Design With Perfect CSI

2.3.1.1 IA technique and combating inter-cell interference

IA serves as means for obtaining as many interference free dimensions for communication as pos-

sible, and in practice stands for designing the transmit and receive strategies for each transmitter-

receiver pair of a wireless network. Under the assumption of perfect CSI at the BSs, one can

achieve maximum multiplexing gain, or the maximum DoF by utilizing the IA techniques. We

begin by reviewing the concept of IA by adapting the main results of [14] to our setup. This

framework aims for the maximum inter-cell interference alignment, which stands for the maxi-

mum inter-cell interference suppression possible, when the signal space of each BS is required to

span d =min{S,Nr−S} spatial dimensions worth of communication. The suggested insight for IA

effectiveness is that the interference leakage from all other cells will be zero and such an algorithm

will obtain the optimal interference cancellation. This implies that the receive beamforing matrix

Qi is chosen in the null space of ∑
G
j=1, j 6=i Hik, jT j such that QH

i ∑
G
j=1, j 6=i Hik, jT j = 0. Hence, the

inter-cell interference signals will be nulled out using linear processing of the received signal at

each receiver, when the useful signal space spans d dimensions, so that IA is perfectly attained.

Recalling (2.4), the perfect IA requires

QH
i

G

∑
j=1, j 6=i

Hik, jT j = 0, (2.8)

Rank
(
QH

i Hik,iTi
)
= d. (2.9)
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The first equation guarantees that all the interfering signals in cell i lie in the subspace orthog-

onal to Qi, while the second one ensures that the signal subspace has a full rank dimension and is

linearly independent of the interference subspace. We assume that all the elements of the channel

matrices are randomly and independently generated from continuous distributions. So if Qi and T j

can be found to satisfy condition (2.8), condition (9) will also be satisfied with probability 1 [31].

Suppose that each BS independently generates ti` according to the isotropic distribution over

the Nt-dimensional unit sphere. Specifically, ti` ∈ CNt×1 is an orthonormal basis for i ∈ G and

` ∈ {1, ...,S} . If the reference beam-forming matrix is generated in a pseudo-random fashion,

BSs do not need to broadcast them to users. Then, user ik obtains T j, j ∈ G . In order to cancel

the inter-cell interference, we need to design the receive matrix Qi such that Qi is in the null

space of ∑
G
j=1, j 6=i Hik, jT j. Now this raises the question of how we can find the null space of the

above interference channel. In this regards, the k-th user in the i-th cell estimates the inter-cell

interference ∑
G
j=1, j 6=i Hik, jT j using pilots or a preamble. It then generates a null matrix Qi such

that (2.8) is satisfied. It is worth mentioning that since the ∑
G
j=1, j 6=i Hik, jT j is of dimension Nr×S,

the dimension of the null space will be Nr− S, thus a matrix Qi always exists, in which columns

of this matrix are the orthonormal basis of the null signal spaces. Consequently, T j causes no

interference to receiver ik by completely removing the inter-cell interference term.

Determining the feasibility of a linear IA solution is a key step. The following theorem provides

such a condition.

Theorem 1. Consider the G-cell network where the i-th BS is equipped with N(i)
t transmit anten-

nas, serves Ii users, and the k-th user in this cell is equipped with N(ik)
r receive antennas. The IA

is feasible if
G
∑

i=1
N(i)

t > GS where S is the number of co-schedule users. In the special case where

N(i)
t = Nt and N(ik)

r = Nr, IA is feasible if Nt > S.

Proof. See Appendix A.0.1.

Applying the optimal cell-specific matrices Ti and Qi, the inter-cell interference at cell i can be
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eliminated completely. Accordingly, the received symbol at the ik user in (2.4) can be expressed as

ŝik =
√

ρikwH
ik Heff

ik,iviksik +
Ii

∑
m=1,m 6=k

√
ρimwH

ik Heff
ik,ivimsim + n̂ik , (2.10)

where the first term represents the desired signal at the ik user and the second term is the intra-cell

interference. In the following, we will discuss how to cancel out the intra-cell interference by

designing the user-specific beam-forming matrix Vi and receive beam-forming vectors wik .

2.3.1.2 Leakage-based iterative CB scheme and intra-cell interference mitigation

The SLNR expression for serving the ik user, given in Eq. (2.5), can be written as

SLNRik =
Tr(vH

ik HeffH

ik,i Heff
ik,ivik)

Tr(vH
ik

(
σ2

ik
ρik

IS + H̄H
ik,iH̄ik,i

)
vik)

, (2.11)

where H̄ik,i , [HeffH

i1,i , . . . ,H
effH

ik−1,i,H
effH

ik+1,i, . . . ,H
effH

iIi ,i
]H , ik ∈I , represents the corresponding concate-

nated leakage channel. Using the concept of leakage, we can formulate an optimization problem

which mitigates the total intra-cell interfering power that user ik generates in cell i. The optimiza-

tion problem can be formulated as

vopt
ik = arg max

vik∈C
S×1

SLNRik , ∀ik ∈I (2.12)

subject to ‖vik‖2 = 1. It was shown in [9] that the solution is given by

vopt
ik = νmax


(

σ2
ik

ρik
IS + H̄H

ik,iH̄ik,i

)−1

HeffH

ik,i Heff
ik,i

 (2.13)
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Algorithm 1: Introduced Algorithm with Perfect CSI
(S.1) : Each BS independently generates the columns of Ti, i∈ G according to the isotropic
distribution over the Nt-dimensional unit sphere.
(S.2) : Design the receive matrix Qi in such a way that it lies in the null space of
∑

G
j=1, j 6=i Hik, jT j.

(S.3) : Compute the optimal transmit beam-forming vector vopt
ik based on Eq. (2.13).

(S.4) : Update the receive beam-forming vector wik based on Eq. (2.14).
(S.5) : If Vi satisfy a termination criterion: STOP.

where νmax(A) is the eigenvector corresponding to the largest eigenvalue of the matrix A. The

optimal minimum mean square error (MMSE) receive beam-forming vector becomes

wopt
ik = J−1

ik Heff
ik,iv

opt
ik (2.14)

where Jik = ∑
Ii
`=1 ρi`H

eff
ik,iv

opt
i` voptH

i` HeffH

ik,i +σ2
ikINr−S is the covariance matrix of the received signal

at receiver ik. Algorithm 1 summarized the introduced scheme in the present of perfect CSI for a

multi-cell MU-MIMO network.

The sum rate can be expressed as

Rsum =
G

∑
i=1

Ii

∑
k=1

log2

1+
ρik |w

optH
ik Heff

ik,iv
opt
ik |

2

σ2
ik + Îik

 (2.15)

where Îik is the total multi-user interference given by Îik = ∑
Ii
m=1,m6=k ρim|w

optH
ik Heff

ik,iv
opt
im |

2.

It is important to note that the above introduced method requires perfect and global CSI, an

assumption that is clearly unrealistic: obtaining full CSI for all links would inevitably introduce a

large amount of control/feedback overhead. In the following, we consider a more realistic scenario

where the CSI is fed back using limited feedback overhead. Since, it is impossible to achieve zero

interference with limited CSI feedback, a performance loss is inevitable. To address this issue we

introduce a novel transceiver design scheme which complies with the limited feedback mechanism

introduced in LTE-Advanced systems.
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2.3.2 Transceiver Design With Limited Feedback

2.3.2.1 Limited feedback IA Scheme and combating inter-cell interference

As mentioned in the previous section, IA can only be achieved with perfect CSI at the BSs. In the

case of limited feedback, only a quantized version of channel matrices, namely Ĥik, j, are available

at the BSs, where each user uses B bits to quantize Hik, j to Ĥik, j. We can then perform naive

IA where Ĥik, j are treated as the true channels while performing IA. To distinguish these beam-

forming matrices from those selected with perfect CSI at the BSs, we denote these cell-specific

beam-forming matrices as T̂ j and Q̂i so that each of these matrices are chosen in such a way that

Q̂H
i ∑

G
j=1, j 6=i Ĥik, jT̂ j = 0. Clearly, Q̂H

i ∑
G
j=1, j 6=i Hik, jT̂ j 6= 0 leading to residual interference. That

is, due to the limited CSI feedback, the IA transceiver cannot achieve perfect alignment. Thus,

there will be some residual interference which may lead to a sum-rate loss.

Denoted the total interference leakage at the ik user due to all undesired BSs as Lik , we have

Lik(Q̂i, T̂ j) = Tr
{

Q̂H
i Rik Q̂i

}
(2.16)

where Rik = ∑
G
j=1, j 6=i Hik, jT̂ jT̂H

j HH
ik, j is the interference covariance matrix at the ik user.

Given T̂ j, Q̂i can be optimized to minimize Lik(Q̂i, T̂ j) for an improved system performance.

Towards this end, let Hik, j = UHik , j
ΛHik , j

VH
Hik , j

be a singular value decomposition (SVD) of the

Nr×Nt channel matrix Hik, j, with UHik , j
and VHik , j

, [v(1)ik, j, . . . ,v
(Nt)
ik, j ] being two unitary matrices

with dimension Nr×Nr and Nt ×Nt , respectively, and ΛHik , j
being an Nr×Nt matrix with main

diagonal (λ (1)
Hik , j

, . . . ,λ
(d̃)
Hik , j

) and zeros on its off-diagonal, where d̃ , min(Nt ,Nr). Since UHik , j
is

unitary, without loss of generality, we can assume that the receive beam-forming matrix at user ik

is in the form of Q̂i = UHik , j
Wi. Then, the residual interference at user ik can be expressed as

Lik(Wi, T̂ j) = Tr
{

WH
i R̃ikWi

}
, (2.17)

where R̃ik = ∑
G
j=1, j 6=i ΛHik , j

VH
Hik , j

T̂ jT̂H
j VHik , j

Λ
H
Hik , j

.
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It is clear that the j-th BS only needs to know the quantized version of CDI, V̂Hik , j
, and CQI,

Λ̂Hik , j
, to obtain the transmit and receive beam-formers. To this end, user ik feedbacks the quantized

version of singular values using scalar or vector quantization method while employs a codebook-

based feedback to feed back the CDI to the BSs. In this regard, after obtaining each of the eigen-

direction of the MIMO channel, say ṽ(`)ik, j, user ik quantizes it to v̂(`)ik, j using a random vector quan-

tization codebook C , as discussed in Section II-C. In the following, we show that the subspace of

the perfect channel matrix can be decomposed as the weighted sum of two spaces.

Lemma 1. The quantization Λ̂Hik , j
V̂H

Hik , j
of the perfect channel ΛHik , j

VH
Hik , j

follows the following

decomposition:

Λ̃Hik , j
ṼH

Hik , j
, AHik , j

V̂Hik , j
+BHik , j

RHik , j
(2.18)

where Λ̃Hik , j
ṼH

Hik , j
∈ CNr×Nt is an orthonormal basis for the subspace spanned by the columns

of ΛHik , j
VH

Hik , j
; AHik , j

, ˆHik , j
(INt −ZHik , j

)1/2; BHik , j
, ˆHik , j

Z1/2
Hik , j

; ZHik , j
is a Nt ×Nt matrix with

main diagonal (z(1)ik, j, . . . ,z
(Nt)
ik, j ) and represents the quantization error and satisfies Tr

{
ZH

Hik , j
ZHik , j

}
,

d2(Hik,j,Ĥik,j); and RHik , j
= [r(1)ik, j, . . . ,r

(Nt)
ik, j ]

H ∈CNt×Nt is an orthonormal basis for an isotropically

distributed (complex) Nt-dimensional plane in the null space of Λ̂Hik , j
V̂H

Hik , j
. The quantities AHik , j

,

BHik , j
and V̂Hik , j

are distributed independent of each other, as are the pair RHik , j
and ZHik , j

. The

random matrices AHik , j
, BHik , j

, and RHik , j
have the following properties: E{AH

Hik , j
AHik , j

}= (Nt −

(Nt−1)δ )INt , E{BH
Hik , j

BHik , j
}= (Nt−1)δ INt and E{RH

Hik , j
RHik , j

}= Nt
Nt−1INt − 1

Nt−1V̂H
Hik , j

V̂Hik , j
.

Proof. The result is immediate upon generalizing of the decomposition in [25] by using the fact

that ṽ(`)ik, j = v(`)ik, j/||v
(`)
ik, j|| and ṽ(`)ik, j =

√
1− z(`)ik, jv̂

(`)
ik, j +

√
z(`)ik, jr

(`)
ik, j, ` ∈ {1, . . . ,Nt}.

Based on Lemma 1, we can solve for inter-cell IA along with two concepts: 1) the minimization

of the signal power leakage towards unintended users; 2) the maximization of the signal power

within the desired signal sub-space in each cell. Recalling Eq. (2.5) and assuming ‖vik‖2 = 1, the

SLNR for serving the k-th user in the i-th cell can be expressed as
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SLNRik =

Tr
(

T̂H
i HH

ik,iHik,iT̂i

)
Tr
(

T̂H
i (

σ2
ik

ρik S IS +∑
G
j=1, j 6=i ∑

I j
m=1 HH

jm,iH jm,i)T̂i

) , (2.19)

Using SLNR as the metric, the cell-specific precoding matrix T̂i can be designed based on the

following

max
T̂i

S

∑
k=1

SLNRik , (2.20)

subject to ∑
Ii
k=1 ρik = pi (the power constraint). Due to the limited feedback framework, it is

reasonable to consider the beam-forming design via maximizing an expected SLNR averaging

over all possible channel realizations. Hence, the problem of interest can be formulated as

T̂opt
i = arg max

T̂i∈CNt×S

S

∑
k=1

EH{SLNRik}. (2.21)

It is not only difficult to derive a closed-form expression of E{SLNRik}, but also hard to obtain a

low-complexity algorithm to obtain the beam-forming matrices. To tackle this problem, instead of

maximizing the expected value of SLNR, we maximize the lower bound of E{SLNRik}.

Theorem 2. The optimal precoders which are able to maximize the lower bound of the objective

function in (2.21) can be obtained by extracting the leading S columns of the generalized eigen-

matrix of the pair (∑S
k=1EH

{
HH

ik,iHik,i

}
,(

σ2
ik

ρik SIS +∑
G
j=1, j 6=i ∑

I j
m=1EH

{
HH

jm,iH jm,i

}
)), namely Ji,

as

T̂opt
i = µJi[IS;0], (2.22)

where µ is a scaling factor so that ∑
Ii
k=1 ρik = pi.

Proof. See Appendix A.0.4.

Given the optimal cell-specific precoding matrices, minimization of the total interference leak-
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E{R̃ik}=



(
1

Nt−1 ∑
Nt
m=1 eT

mT̂ jT̂H
j em

(
INt − v̂(m)

ik , j
v̂(m)H

ik , j

))
�G+

(
V̂H

Hik , j
T̂ jT̂H

j V̂Hik , j

)
�E , Nr = Nt

(
Ls
( 1

Nt−1 ∑
Nt
m=1 eT

mT̂ jT̂H
j em

(
INt − v̂(m)

ik , j
v̂(m)H

ik , j

))
LT

s

)
�G+

(
Ls

(
V̂H

Hik , j
T̂ jT̂H

j V̂Hik , j

)
LT

s

)
�E , Nr < Nt


(

1
Nt−1 ∑

Nt
m=1 eT

mT̂ jT̂H
j em

(
INt − v̂(m)

ik , j
v̂(m)H

ik , j

))
�G+

(
V̂H

Hik , j
T̂ jT̂H

j V̂Hik , j

)
�E 0

0 0

 , Nr > Nt

(2.25)

age at each receiver can be formulated as follows

min
Wi

Lik(Wi, T̂
opt
j ). (2.23)

Considering the impact of quantization errors on the precoder design, we can use E{Lik(Wi, T̂ j)}

as the new objective function to optimize Wi. Mathematically, the beam-forming design problem

can be formulated as

Wopt
i = arg min

Wi∈CNr×(Nr−S)
E{Lik(Wi, T̂

opt
j )}, (2.24)

where E{Lik(Wi, T̂ j)} = Tr
{

WH
i R̂ikWi

}
and R̂ik = E{R̃ik}. R̂ik can be calculated using the fol-

lowing theorem.

Theorem 3. Let G and E be matrices of dimensions d̃× d̃ with λ̂
(`)
Hik , j

λ̂
(m)
Hik , j

(
1− Nt−1

8N2
t (1+Nt)

)2
and

λ̂
(`)
Hik , j

λ̂
(m)
Hik , j

(
1− 1

2δ
Nt−1

Nt
− 1

8δ 2 Nt−1
Nt+1 −

1
16δ 3 Nt−1

Nt+2

)2
in the `m-th position, respectively. Then for a

given T̂ j, E{R̃ik} can be expressed as (2.25), at the top of the next page, where Ls is defined as

Ls , [INr×Nr 0] ∈ CNr×Nt .

Proof. See Appendix ??.

The optimization problem (2.24) is solved by deriving the structure of the optimal Wi with an

optimal given T̂ j. In other words, the ik user chooses its interference suppression filter Wi to min-

imize the leakage interference due to all undesired BSs. The Nr− S dimensional received signal

subspace that contains the least interference, is the space spanned by the eigenvectors correspond-

ing to the Nr− S smallest eigenvalues of the interference covariance matrix R̂ik . Thus, the `-th
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column of Wi is given by

Wopt
i (:, `) = ν`(R̂ik), (2.26)

where ν`(X) is the eigenvector corresponding to the `-th smallest eigenvalue of X. Invoking Wopt
i ,

E{Lik(Wi, T̂ j)} can be reformulated as

E{Lik(Wi, T̂ j)}= ρNr−S(R̂ik), (2.27)

ρm(X) is the sum of m smallest eigenvalues of X.

Remark 2. It is worth mentioning that residual interference does not always lead to a loss in sum-

rate. Therefore, there is no need to force it to be zero, especially in the power limited regime. To

design the optimal MIMO precoding scheme, it is often desirable to maximize the received SINR for

each user. However, it is an extremely challenging job to do so which requires joint operation from

almost all aspects of MIMO communication including user-grouping, user-scheduling, resource

allocation, and MIMO precoding across all coordinating BSs. In this chapter, we adopted a more

tractable but suboptimal design to reduce the residual interference. Using this design criterion, we

are able to analytically characterize the optimal cell-specific MIMO precoding strategies to mit-

igate inter-cell interference. Furthermore, the design of cell-specific MIMO precoding decreases

the complexity of multi-cell coordination for mitigating inter-cell interference.

The inter-cell interference can be minimized by using the optimal cell-specific transmit pre-

coding matrix T̂ j (which can be obtained via Theorem 2) and the optimal cell-specific receive

beam-forming matrix Wi according to Eq. (2.26). Once we obtain the optimum cell-specific pre-

coding and postprocessing matrices T̂i and Q̂i, the inter-cell interference in cell i will be minimized.

However, these matrices do not guarantee the suppression of intra-cell interference intended for the

other users in the same cell i. Applying the optimal receive beam-forming matrix Qi to the received
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signal, the received symbol at the ik user in (2.4) can be reformulated as

ŝik =
√

ρikwH
ik Heff

ik,iviksik +
Ii

∑
m=1,m 6=k

√
ρimwH

ik Heff
ik,ivimsim + ñik , (2.28)

where the first term represents the desired signal at userik , the second term is the intra-cell inter-

ference, and the last term is ñik = n̂ik + ρNr−S(R̂ik). Let Heff
ik,i = UHeff

ik ,i
ΛHeff

ik ,i
VH

Heff
ik ,i

be the SVD of

the (Nr−S)×S effective channel matrix Heff
ik,i, with UHeff

ik ,i
and VHeff

ik ,i
, [e(1)ik,i, . . . ,e

(S)
ik,i ], two unitary

matrices with dimension (Nr−S)× (Nr−S) and S×S, respectively, and ΛHeff
ik ,i

be an (Nr−S)×S

matrix with main diagonal (λ (1)
Heff

ik ,i
, . . . ,λ

(d)
Heff

ik ,i
) and zeros on its off-diagonal. Since UHeff

ik ,i
is unitary,

without loss of generality, we can assume that the optimal receive beam-forming vector at the ik

user has the form of wik = UHeff
ik ,i

gik . The received signals can then be expressed as

ŝik = gH
ik ΛHeff

ik ,i
VH

Heff
ik ,i

Ii

∑
m=1

√
ρimvimsim + ñik , (2.29)

which contains the intra-cell interference caused by the multi-user nature of each cell as well as

the inter-cell interference.

In the following, we will discuss how to mitigate the intra-cell interference by designing the

user-specific beam-forming matrices Vi and user-specific receive beamforming vectors gik . To do

so, the effective channel matrix should be fed back to the corresponding BS as discussed in Section

II-C.

Remark 3. It is worth mentioning that given the receive beam-forming vector at each receiver, the

i-th BS only needs to know the quantized version of ΛHeff
ik ,i

and VHeff
ik ,i

of the k-th user to obtain the

transmit beamformer due to the fact that

hik , gH
ik ΛHeff

ik ,i
VH

Heff
ik ,i

=
d

∑
`=1

(g(`)ik )∗λ
(`)

Heff
ik ,i
(e(`)ik,i )

H . (2.30)
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2.3.2.2 Leakage-based iterative CB with feedback error and the intra-cell interference mit-

igation

This subsection focuses on optimizing the user-specific beam-forming matrix design based on

the synthesized channel model presented in (2.7). As we discussed earlier, due to the finite-rate

feedback mechanism in our system, the problem of interest can be formulated as

vopt
ik = arg max

vik∈C
S×1

E{SLNRik}, (2.31)

which is subject to ‖vik‖2 = 1. As we discussed earlier, instead of maximizing the expected value

of SLNR, we maximize the lower bound of the E{SLNRik} as follows.

E{SLNRik}= E


vH

ik hH
ik hik vik

vH
ik

 Ii

∑
m=1
m6=k

hH
imhim

vH
ik +

σ̃2
ik

ρik


(a)
≥

vH
ik E
{

hH
ik hik

}
vik

vH
ik

 Ii

∑
m=1
m6=k

E
{

hH
imhim

}vH
ik +

σ̃2
ik

ρik

where σ̃2
ik = σ2

ik +ρNr−S(R̂ik); and (a) comes from Jensen’s inequality. Hence, in order to design

the specific beam-forming vector vik , say vopt
ik for all ik ∈I , we deal with the below optimization

problem instead of solving (2.31)

arg max
vik∈C

S×1,‖vik‖
2=1

vH
ik E
{

hH
ik hik

}
vik

vH
ik

 Ii

∑
m=1
m6=k

E
{

hH
imhim

}vik +
σ̃2

ik
ρik

.
(2.32)

Theorem 4. For the given receive beam-forming vectors gik , the optimization problem (2.32) is

a generalized Rayleigh quotient problem [32, 33]. The optimal closed-form solution for vik is

available and can be expressed as follows:
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vopt
ik = νmax


 σ̃2

ik
ρik

IS +
Ii

∑
m=1
m6=k

(
Ψim +

d

∑
`=1

αim,`ê
(`)
im,iê

(`)H
im,i

)
−1(

Ψik +
d

∑
`=1

αik,`ê
(`)
ik,iê

(`)H
ik,i

). (2.33)

αik,` , |g
(`)
ik |

2|λ̂ (`)

Heff
ik ,i
|2(1−δ ),

βik,` , g(`)ik g(m)∗
ik λ̂

(`)∗
Heff

ik ,i
λ̂
(m)

Heff
ik ,i
(1− S−1

2S
δ − S−1

8(S+1)
δ

2)2,

Ψik ,
d

∑
`=1

d

∑
m=1
m6=`

βik,`ê
(`)
ik,i ê

(m)H
ik,i +

d

∑
`=1

δ

S
|g(`)ik |

2|λ̂ (`)

Heff
ik ,i
|2IS.

where νmax(A) is the eigenvector corresponding to the largest eigenvalue of the matrix A; ê(`)ik,i is the

quantized of channel direction information; λ̂
(`)

Heff
ik ,i

is the quantized of channel quality information;

and δ is the quantization error. The norm of vopt
ik is adjusted to ‖vopt

ik ‖
2 = 1.

Proof. See Appendix A.0.4.

Remark 4. In our scheme, BS i only needs to know Λ̂Heff
ik ,i

V̂H
Heff

ik ,i
from user ik. Comparing to con-

ventional SLNR-based approaches [9] and [12], our scheme has similar operations, resulting in

similar complexity. Moreover, the introduced scheme took the feedback error into account for

designing transmit precoding matrices, thus, it is more robust to the feedback error as opposed

to the conventional approaches. It is worth mentioning that the quantization error δ decreases

as the feedback payload size β increases. Therefore, the introduced scheme will converge to the

traditional beam-forming scheme when β is considerably large.

Given user-specific transmit beam-forming vectors, vopt
ik , optimal MMSE receive beam-forming

vectors become

gopt
ik =

 σ̃2
ik

ρik
INr−S + Λ̂Heff

ik ,i
V̂H

Heff
ik ,i

( Ii

∑
m=1,m6=k

ρimvopt
im voptH

im

)
V̂Heff

ik ,i
Λ̂

H
Heff

ik ,i


−1

Λ̂Heff
ik ,i

V̂H
Heff

ik ,i
vopt

ik .

Table 2 summarizes the introduced algorithm.

28



Algorithm 2: Introduced Transceiver Design with Limited Feedback

(S.1) : At each user ik ∈I , the CSI Hik, j are quantized to be Ĥik, j using the codebook C .
(S.2) : The quantized codeword indexes are then fed back to the j-th BS using feedback link.
(S.3) : Each BS receives the codebook indexes and then reconstructs the CSIs to be Ĥik, j.
(S.4) : Compute T̂i for all BSs [cf. (2.22)] based on the collected quantized CSI;
(S.5) : For all ik ∈I compute Wi [cf. (2.26)];
(S.6) : If T̂i satisfy a termination criterion: STOP.
(S.7) : Initialize the receive beam-forming vector gik for ik ∈I .
(S.8) : Compute the optimal transmit beam-forming vector vopt

ik based on Eq. (2.33) for
different feedback strategies.
(S.9) : Update the receive beam-forming vector gik based on Eq. (??) corresponding to the
quantized channel matrix.
(S.10) : If Vi satisfy a termination criterion: STOP.

vopt
ik = νmax

( σ̃2
ik

ρik
IS +

Ii

∑
m=1
m 6=k

(
αim,1ê(1)im,iê

(1)H
im,i +

δ

1−δ

1
S

αim,1IS

))−1
(

αik,1ê(1)ik,iê
(1)H
ik,i +

δ

1−δ

1
S

αik,1IS

) ,

(2.34)

vopt
ik = νmax

( σ̃2
ik

ρik
I+

Ii

∑
m=1
m 6=k

(
Ψim +αim,1ê(1)im,iê

(1)H
im,i +αim,2ê(2)im,iê

(2)H
im,i

))−1
(

Ψik +αik,1ê(1)ik,iê
(1)H
ik,i +αik,2ê(2)ik,iê

(2)H
ik,i

) ,

(2.35)

Feedback strategies: In the following, we introduce two feedback strategies: “Rank 1 feed-

back” and “Rank 2 feedback”. Rank 1 feedback: In a typical cellular network, usually the largest

singular value is dominant over other singular values. In order to reduce the feedback overhead,

each user only need to feedback the quantized version of the dominant singular value and the

corresponding eigen-direction, which is usually termed as “Rank 1 feedback”. Without loss of

generality, we assume that the first singular value is the largest one. For a given gik , the optimal

transmit beam-forming vectors vik calculated by BS i can be expressed as (2.34), and therefore,

the optimal MMSE receive beam-forming vector can be obtained via (??) where Λ̂Heff
ik ,i

V̂H
Heff

ik ,i
=

[λ̂
(1)
Heff

ik ,i
ê(1)Hik,i , 0(Nr−S−1)×S]

T is the quantized channel matrix.

Rank 2 feedback: Alternatively, each user can feed back two dominant directions: both singular

values and their corresponding eigen-directions are fed back to the BS. Without loss of generality,
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we assume that the first two singular values are the dominant ones. Similar to Rank 1 feedback,

the optimal solutions for the transmit beam-forming vectors can be expressed as (2.35), and the

optimal receive beam-forming vector gik in this case, has the same expression as (??) where the

quantized channel matrix is in the form of [λ̂ (1)
Heff

ik ,i
ê(1)Hik,i , λ̂

(2)
Heff

ik ,i
ê(2)Hik,i ,0(Nr−S−2)×S]

T . Note that Rank

2 feedback doubles the overhead as opposed to Rank 1 feedback.

Performance analysis: To characterize the performance of the introduced algorithm with lim-

ited feedback, we examine the rate loss [25] incurred by naive IA and leakage-based iterative

coordinated beam-forming algorithm, where channel estimates are used to calculate the columns

of the precoders, f̂ik and combiners ûik for ik ∈ I . The mean loss in sum-rate is then defined as

4Rsum = EH{Rsum}−EH{R̂sum} where EH{Rsum} is the average sum rate from the introduced

algorithm with perfect CSI (Algorithm 1); with the sum-rate given in (2.15), and EH{R̂sum} is the

rate achieved with imperfect CSI using Algorithm 2.

Using the received signal, the instantaneous rate expression in (2.15), and defining the leakage

interference as Îik =∑( j,m)6=(i,k)ρ jm|ûH
ik Hik, j f̂ jm |2; the following upper bound on mean loss in sum-

30



rate will be achieved

4Rsum = EH

∑
(i,k)

log2

(
1+

ρik |uH
ik Hik,ifik |2

σ̂2
ik

) (2.36)

−EH,Ĥ

∑
(i,k)

log2

(
1+

ρik |ûH
ik Hik,if̂ik |2

σ2
ik + Îik

)
= EH

∑
(i,k)

log2

(
1+

ρik |uH
ik Hik,ifik |2

σ̂2
ik

)
−EH,Ĥ

∑
(i,k)

log2

(
1+

Îik +ρik |ûH
ik Hik,if̂ik |2

σ2
ik

)
+EH,Ĥ

∑
(i,k)

log2(1+
Îik
σik

)


(a)
≤EH,Ĥ

{
∑
(i,k)

log2(1+
Îik
σik

)

}
(b)
≤ ∑

(i,k)
log2

(
1+

EH,Ĥ{Îik}
σik

)

where σ̂2
ik = σ2

ik +∑
Ii
m=1,m 6=k ρim|w

optH
ik Heff

ik,iv
opt
im |

2, (a) holds due to the fact that the desired signal

powers |uH
ik Hik,ifik |2 and |ûH

ik Hik,if̂ik |2, resulting from introduced algorithm with perfect and imper-

fect CSI respectively, are identically and exponentially distributed [19, Lemma 1] and (b) follows

from Jensen’s inequality. The total interference Îik can be simplified to include the residual in-

terference due to the channel estimation error, therefore by recalling Eq. (2.27), the mean loss in

sum-rate can be further upper bounded by ∑(i,k) log2

(
1+

ρNr−S(R̂ik )

σik

)
.

2.4 Simulation Evaluations

In this preliminary experimental evaluation, we investigate the performance of the introduced

schemes for a MU-MIMO broadcast cellular system composed of multiple cells, with one BS
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Table 2.1: System parameters used in simulation.

Parameters Values
Cell Layout Hexagonal grid
Number of transmit antenna 4
Number of receive antenna 2
Number of MSs per cell 500
Inter-site distance 500 m
Minimum distance between MS and BS > 35 m
MS distribution Uniform random distribution
Bandwidth 5 MHz
Maximum Transmission Power 43 dBm
Thermal Noise Level −174 dBm
Path Loss (dB) 128.1+37.6log10(d) with d in Km
Shadowing model Log-normal shadowing with 4dB SD.

and multiple randomly generated MSs in each cell. The setup of our experiments is the following.

We simulated seven cells with multiple users that randomly and uniformly dropped (at a distance

> 35 m and < 275 m from the BS) in each cell. The transmission is subject to interference from 6

neighboring BSs. The transmit power at each BS is fixed to 46 dBm and the noise variance at the

MS is fixed to −174 dBm. System bandwidth is taken as 5 MHz. We consider a possible antenna

configuration in a typical deployment scenario for LTE/LTE-Advanced systems: 4 transmit and 2

receive antennas. Channels are Rayleigh fading, in which path-loss is generated using 3 GPP (TR

36.814) methodology. All deployments and channel model parameters are listed in Table I. Due

to the fact that co-scheduled MSs usually have similar SNRs in MU-MIMO operation, we assume

the MSs have the same SNR. We also assume white zero-mean Gaussian noise at each receiver,

with variance of 1. Random vector quantization is used to generate the codebook which is revealed

to all BSs and the mobile MSs. In our evaluation, for simplicity, the initial guess of the receive

beam-forming vector, gik , is set to be either [1 0]H or [0 1]H , and the introduced algorithm is ter-

minated when the absolute value of the sum-rate error in two consecutive rounds becomes smaller

than 1e−2.

In Fig. 5.1, we plot the average spectral-efficiency of our scheme versus the SNR. Orthogonal
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transmissions are imposed a priori among the BSs; therefore each MS only experiences intra-cell

interference. We observed that, as expected, the spectral-efficiency performance of introduced al-

gorithm with the rank 2 feedback outperforms the rank 1 feedback by 8.869%, at SNR = 10 dB.

The benefits become more substantial in the high SNR regime which is due to the fact that the

second largest singular value cannot be ignored in this regime. However, the performance gain

is achieved at the cost of double feedback payload. The spectral-efficiency performance of our

introduced scheme is also compared to the traditional one [12] which does not consider the quan-

tization error of the channel feedback. As shown in Fig. 5.1, our strategy has a better performance

than the traditional one. To be specific, the rank 1 and rank 2 proposed scheme outperform the

traditional one at SNR = 10 dB by 5.75% and 8.03%, respectively. The benefits become more

considerable in higher SNR regime. Moreover, we compare the introduced precoding scheme with

the ZF beamforming in finite-rate feedback system which consists of quantization error. It is shown

that our introduced scheme outperforms the ZF by 143.99% at SNR = 10 dB. Moreover, with the

same feedback overheads, the performance of the introduced scheme always outperforms the ZF.

Furthermore, in the low SNR regime and with the Rank 2 feedback, the introduced scheme almost

achieves the same performance as the ZF gains with the perfect feedback. In addition, for a fixed

payload size of the codebook, unlike the ZF beamforming where the spectral-efficiency is bounded

as the SNR increases, the performance gap between the rank 2 feedback and the perfect feedback

remains almost constant as SNR increases in our scheme. As illustrated in Fig. 5.1, the introduced

scheme can significantly improve the received SINR of co-scheduled users over existing MIMO

precoding strategies.

In Fig. 5.2, we plot the average sum-rate of our introduced schemes versus the SNR under

different feedback strategies: “Rank 1 feedback”, “Rank 2 feedback”, “Rank S feedback”, and

“Perfect CSI”. In the “Rank S feedback” strategy, each user feedbacks all S quantized version

of the effective channel singular values and their corresponding eigen-directions. We observed

that, the IA with perfect CSI clearly outperforms the other feedback strategies. Moreover, the

spectral-efficiency performance of introduced algorithm with the rank 2 feedback outperforms
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Figure 2.2. Spectral-efficiency vs. SNR (Nt = 4, Nr = 2, and β = 8)
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the rank 1 feedback. The benefits become more substantial in high SNR regime which is due

to the fact that the second largest singular value cannot be ignored in this regime. However, the

performance gain is achieved at the cost of double feedback payload. Interestingly, the Rank 2

feedback performs close to the Rank S feedback with much more less feedback payload. From

Fig. 5.2, it is obvious that the introduced scheme with imperfect CSI demonstrates significant

performance improvements over the random beamforming strategy [16] in which we did not design

the beamforming matrices for combating inter-cell interference.

In Fig. 4.7, we plot the average sum-rate versus the number of co-scheduled users. The intuition

behind this result is that the interference will never be aligned due to imperfect CSI and S is a very

important system design parameter affecting the overall network performance. A larger S will lead

to a larger signal space allowing more number of co-scheduled MSs, however, in this situation the

residual inter-cell interference will be high due to the small dimension of the null-space Nr− S.

On the other hand, even though a smaller S will significantly reduce the inter-cell interference, it

sacrifices the DoF of the serving BS. Therefore, there exists an optimal S that maximizes the system

throughput so that some tolerable inter-cell interference are allowed among cells. Moreover, we

observed that, for S = 1 and S = Nr−1, the performance of Rank 1 Rank 2, and Rank S feedback

strategies are the same, which is due to the fact that in these cases the rank of the equivalent

channel is equal to one. The same happens when we compare the performance of Rank 2 and

Rank S feedback strategies for S = 2 and S = Nr−2.

2.5 Conclusions

In this chapter, limited feedback-based co-channel interference mitigation of a multi-cell MU-

MIMO is investigated. To be specific, limited feedback-based IA was introduced to eliminate

the inter-cell interference while an improved low complexity iterative leakage-based coordinated

beamforming strategy was introduced to mitigate the intra-cell interference. By jointly considering

the transmit beamforming, receive beamforming, and the quantization error of the codebook-based
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feedback, our algorithm greatly mitigates the CCI and achieves a better performance compared to

the traditional ones. Through system level evaluations, it was shown that the introduced scheme

significantly outperforms the conventional interference management schemes in practical environ-

ments.
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Chapter 3

Coordinated Multi-Point Transmission and

Reception: Resource Allocation

3.1 Introduction

Coordination among base stations (BSs) has been widely studied in recent years to tackle inter-

cell interference that strongly limits the achievable rates of cellular networks [34]. Supported by

the first results promising huge performance gains with respect to the baseline non-cooperative

system [35], a lot of attention has been paid to the topic both in the academia [36–39] and in the

industry [40–45]. This technique is usually called “Multi-cell MIMO” in academia and is also

termed as “Coordinated Multi-point (CoMP)” in 3GPP LTE-Advanced systems. CoMP allows a

group of BSs to cooperate and coordinate to improve the overall system performance and system

efficiency. To be specific, these cooperating BSs communicate with one another through the inter-

base station links such as X2 interfaces [46]. In general, depending on whether data is shared

among multiple BSs, CoMP can be categorized into the following two operations [36,40]: coordi-

nated scheduling/coordinated beamforming (CS/CB) and joint transmission (JT). While the later

one requires both channel state information (CSI) and data sharing among the BSs, the former one

only requires CSI to be shared. Although the JT approach is attractive and can provide substantial
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capacity gains for CoMP systems, it also bring a range of problems. For example, CoMP-JT will

cause high signaling overhead through the backhaul incurred by distributing each user’s data to

multiple BSs in the cooperating set, lead to high computational complexity due to user scheduling

and transmit precoding design, and require very tight synchronization among all BSs within the

cooperating set [47–49]. On the other hand, in CoMP-CS/CB schemes BSs only need to share their

associated control information (e.g., each BS’s scheduling information as well as scheduled users’

CSI) so that BSs in the cooperating set could coordinate their scheduling and/or beam-forming

schemes so that the inter-cell interference is mitigated. Due to the fact that users’ data does not

need to be shared among BSs in the cooperating set and no coherent joint transmission is needed,

CoMP-CS/CB puts a much lesser requirement on backhaul as well as synchronization. This is

the main reason CoMP-JT is not adopted in Rel-10 LTE-Advanced systems while CoMP-CS/CB

are [40, 41]. In this chapter, we focus on downlink CoMP-CB where each BS serves its associated

mobile stations (MSs) upon designing its power allocation and transmitter precoder matrices to re-

duce the inter-cell interference. BSs cooperate to share CSI to reduce the interference toward other

cell’s MSs while maintaining the power of its own desired signal. Consequently, this coordination

improves the overall network spectral-efficiency.

In general, two performance measures are critical for a cellular network: cell-average spectral-

efficiency and cell-edge user spectral-efficiency. The cell-average spectral-efficiency specifies the

average spectral-efficiency over all active MSs present in a network and the cell-edge user spectral-

efficiency is defined to be the 5%-tile of the spectral-efficiency of the corresponding MSs. In order

to achieve good spectral-efficiency performance of a cellular network, the cell-edge user spectral-

efficiency target and the cell-average spectral-efficiency target have to be met simultaneously. This

is a challenging task because there is usually a clear trade-off between cell-edge user performance

and cell-average performance [37, 43]. To deal with this issue, some literatures have proposed

different kind of fairness resource allocation such as maximum throughput and max-min fairness.

When maximum throughput scheduler is adopted, the BS will always schedule the user with the

largest throughput. This will definitely maximize the cell-average user spectral-efficiency (or the
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sum throughput of the network), however, the cell-edge user spectral-efficiency will be zero since

cell-edge users will never get the scheduling opportunity. On the other hand, max-min fairness tries

to ensure a uniform user experience across the network. This will certainly benefit the cell-edge

user spectral-efficiency, however, it will cause a hit on the cell-average user spectral-efficiency. A

good compromise between max-min fairness and maximum throughput scheduling is proportional

fairness since it can provide a good tradeoff between cell-edge user spectral-efficiency and cell-

average user spectral-efficiency [37, 43]. This is the main reason why proportional-fair scheduling

is widely used in 3GPP LTE-Advanced networks.

For an LTE-Advanced CoMP-CB system, each BS is equipped with multiple transmit antennas

and each MS is equipped with multiple receive antennas. The multiple antennas at each BS are

exploited to serve a dual objective: avoid interference and enhance throughput via multiple-input-

multiple-output (MIMO) transmission toward the intended receivers. Since these two objectives

may conflict with each other and to ensure the fairness across the network to achieve good balance

between the two importance performance measures, MIMO transmit precoding has to be coupled

with network scheduling. To be specific, in this chapter, a network-wide proportional-fair resource

allocation problem is formulated where we optimize MIMO transmit precodings as well as power

allocations for BSs involved in CoMP-CB to maximize the network proportional-fair metric. The

network proportional-fair metric is essentially a weighted sum-rate of users presented in the net-

work where the weights are dependent on the underlying proportional-fair scheduling and quality

of service (QoS) constraints. By conducting the proportional-fair resource allocation (combin-

ing MIMO transmit precoding and power allocation), we will be able to achieve a good trade-off

between the two spectral-efficiency performance measures to optimize network performance.

Efficiently obtaining the optimal resource allocation (power allocation and precoding matrices)

to achieve the maximum network proportional-fair metric is a challenging task. The challenge is

that the relevant optimization problem often turns out to be nonconvex due to the coupled inter-

ference among different receivers. The problem of weighted sum-rate maximization with linear

precoding is claimed to be solved by the algorithm of [50]. However, convergence to the optimum
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solution is not guaranteed and it strongly depends on the initialization. The algorithm works itera-

tively, requires formulating and solving a geometric program in each step and is based on a repeated

transformation from the dual multiple access channel to the broadcast channel and back enabled

by the single data stream duality of [51]. Successive solution of geometric programming problems

was proposed in [52] with promising results. In the special case of two interfering links, a simple

on/off power control strategy was shown to be optimal [53]. The study of distributed methods for

finding the precoding matrices in a general nonconvex weighted sum-rate maximization problem is

also considered in [54,55]. Besides the application of the classical gradient projection algorithm to

the sum-rate maximization problem over MIMO interference channels [54], parallel iterative algo-

rithm for MIMO broadcast interfering channels was proposed in [55]. Unfortunately, the gradient

schemes [54] suffer from slow convergence and do not exploit any degree of convexity that might

be present in the objective function; and [55] is based on the connection with a weighted mini-

mum mean-square error (WMMSE) problem. Moreover, the authors did not consider either the

cooperation between BSs (for mitigation of strong multi-cell interference caused by aggressive/u-

niversal frequency reuse in the network) or the proportional-fair resource allocation (the weights in

weighted sum-rate are set equally for all users). The problem of weighted sum-rate maximization

in LTE-Advanced CoMP-CB system is addressed in [56–58]. These papers take the sub-optimal

concept referred to as signal-to-generating-interference-plus-noise ratio (SGINR). This metric re-

flects the covariance matrix of the interference which each BS generates as well as the covariance

matrix of the desired channel. By using the eigen matrix of this metric as a beamforming matrix

of each BS, they tried to reduce the interference among cooperating BSs.

This work differs from previously mentioned studies particularly in its aim to maximize the

throughput in a proportionally fair way, taking into account a detailed resource allocation design

for a CB-based CoMP LTE-Advanced scheme. The main contributions of this chapter can be

summarized as follows:

• for the first time, we introduce the proportional-fair resource allocation by combining MIMO

transmit precoding and power allocation to improve both the cell-edge as well as the cell-
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average user spectral-efficiency and identify the interaction between resource allocation and

MIMO transmission for a CoMP-CB LTE-Advanced network;

• we introduce a parallel scheme based on the successive convex approximation (SCA) al-

gorithm for a nonconvex network proportional-fair optimization problem in a CoMP-CB

LTE-Advanced systems. The decomposition enables all BSs to update their optimization

variables in parallel by solving a sequence of strongly convex subproblems, one for each

BS;

• to the best of our knowledge, there is no existing closed-form expressions of the locally

optimal solution for the aforementioned problem. In this chapter, we characterize the closed-

form expressions for some special cases as well as for both high and low signal-to-noise

(SNR) regimes;

• we introduce an iterative algorithm to characterize proportional-fair weights for the underly-

ing resource allocation problem;

• we show that the proposed scheme is a promising candidate for improving both the cell-

edge and cell-average user spectral-efficiency in the CoMP-CB LTE-Advanced systems and

the benefits of the proposed proportional-fair resource allocation algorithm are illustrated in

terms of performance and computational complexity.

3.2 Problem Formulation

3.2.1 System Model and Assumptions

In this chapter, we focus on the scenario where an LTE-Advanced network consists of L cooper-

ating BSs, each equipped with Nt transmit antennas, is supporting L MSs, each equipped with Nr

antennas. That is, each cooperating BS is supporting a single MS. However, it is important to note

that the framework can be easily extended to the case where more than one MSs are supported
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simultaneously by each cooperating BS. Each BS in the cooperating set is assumed to conduct its

own user scheduling individually. Once the scheduling decision is made, BSs will exchange coor-

dination messages through the X2 interface [41,46] to enable CoMP-CB operation. It is important

to note that the coordination message only contains information related to CSI. The delay required

for exchanging coordination messages is assumed to be negligible [44].

It is further assumed that receivers perform single user detection; i.e., only the desired signal

is detected at each receiver and the signals from co-channel users are treated as noise. Assuming

Rayleigh flat fading channel model, the MIMO channel between `-th BS and i-th MS is represented

by the matrix Hi` = Wi,`R
1/2
` , where Wi,` ∈ CNr×Nt is a random channel matrix whose elements

are identically and independently distributed (i.i.d.) cyclic symmetric complex Gaussian with zero

mean and unit variance, and R` ∈ CNt×Nt represents the transmit correlation matrix of the `-th BS.

The channel transfer matrices Hi`’s are assumed to be independent of each other. Moreover, all

the channels in the network are assumed to be quasi-static block fading, meaning that the channel

gains remain constant during one block and change independently from block to block.

At each transmission time slot, i-th MS is assumed to receive Ns parallel streams of information

signal. It is supposed that `-th BS simultaneously transmits the sequence x` = (x`,1, . . . ,x`,Ns)
T

to its corresponding receiver, where the entries of vector x` are independently Gaussian encoded

symbols. In our model, `-th BS processes its symbols using an Nt×Ns precoding matrix V`, whose

columns constitute an orthonormal basis for the transmitted-signal space of user ` ∈L , to form its

transmitted signal vector V`x`.

Following a matrix notation, the received signals at i-th MS, represented by the length Nr

column-vector

yi = HiiVixi + ∑
j∈L \i

Hi jV jx j +ni, (3.1)

In (3.1), the first term represents the desired signal from i-th BS, while the second term is inter-

cell interference and ni ∼ C N (0,σ2INi) is the complex normal thermal noise vector at receiver
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i ∈L . The Ns×Ns power allocation matrix P` = E[x`xH
` ] denotes the input covariance matrix at

the transmitter ` ∈L . Since the entries of x`, ` ∈L , are zero-mean and mutually independent,

covariance matrix P` is diagonal, say equal to P` = diag(p`,1, . . . , p`,Ns). For this case, the power

constraint on the transmitted vector V`x`, ` ∈L , can be written as

Tr(V`P`VH
` ) = Tr(P`)≤ p`,max, (3.2)

where p`,max is the maximum transmit-power of the `-th BS and it is finite. The achievable rate of

the i-th MS is calculated as:

Ri(Pi,P−i), log2 det(INr +Ri(Pi)R−1
i (P−i)) (3.3)

where P−i
def
=(P j) j 6=i, Ri(Pi) represent the covariance matrix of the desired signal, and Ri(P−i) =

σ2INr + ∑ j 6=i Hi jV jP jVH
j HH

i j which represents the covariance matrix of the thermal noise plus

multiuser interference at i-th MS.

3.2.2 Proportional-Fair Resource Allocation

The problem of interest is to maximize (over the resource allocation: precoding matrices and

power allocations) the network proportional-fair metric of an LTE-Advanced CoMP-CB system,

which is essentially a weighted sum-rate of users presented in the network. The maximization

of the proportional-fair metric allows to cover all the rate tuples on the rate region boundary.

Mathematically, the proportional-fair metric maximization problem can be expressed as

maximize
Pi∈K

L

∑
i=1

wiRi(Pi,P−i) (3.4)

where K , {Pi ∈CNs×Ns : Pi � 0, Tr(Pi)≤ pi,max} represents the per-node transmit power con-

straint and wi denotes the nonnegative proportional-fair weight of the i-th MS. In each time slot t,

the proportional-fair weight of MS i is defined as wi(t),Rα
i (t)/T β

i (t), where α and β tune the fair-
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ness of the algorithm and Ti is the accumulated throughput of MS i: Ti(t+1) = Ti(t)+Ri(t+1)×tc

[59] (tc is the slot duration). Selecting α ≈ 1 and β ≈ 1 will yield the proportional-fair schedul-

ing used in 3GPP LTE-Advanced networks [60]. It is important to note that the proportional-fair

weights are not fixed throughout the transmission and are adapted based on per-user average rate

over time axis.

3.3 A Novel Algorithm For Coordinated Resource Allocation

Problem (3.4) has been shown to be NP hard [61]. Then, there is no hope to compute a globally

optimal solution in polynomial time. Thus, we are interested in distributed solution methods for

computing stationary solutions (possibly local optimum) of this problem. To solve the correspond-

ing nonconvex problem efficiently, we develop a Successive Convex Approximation (SCA)-based

method where (3.4) is replaced by a sequence of strongly convex problems. At the basis of the

proposed technique, there is a suitable convex approximation of the nonconvex objective function

∑i∈L wiRi(Pi,P−i). To be specific, given the strategy profile P−i, the aim of each BS is to choose

a feasible power allocation Pi that maximizes the rate Ri(Pi,P−i). Inspired by the algorithm pro-

posed in [62], our method is based on solving a sequence of parallel convex problems, one for each

BS, obtained by preserving the convex structure of the utility function network proportional-fair

metric while linearizing the rest around P̄i. To this end and in order to isolate the interference

which makes (3.4) nonconvex, we define the network proportional-fair metric of the BSs other

than the i-th as fi(Pi,P−i) , ∑ j 6=i w jR j(Pi,P−i). By linearizing the nonconvex part of the objec-

tive function, i.e., fi(Pi,P−i), and keeping the convex part, i.e., Ri(Pi,P−i), we can convexify the

objective function. For this purpose, we use the first order Taylor series expansion of a continu-

ously R-differentiable function fi(Pi,P−i) that is given by:

fi(Pi,P−i)≈ fi(P̄i,P−i)+ 〈∇Pi fi|Pi=P̄i
, Pi− P̄i〉 (3.5)
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where we introduced the trace inner product in a matrix space 〈· , ·〉 : Rn×n×Rn×n→ R, defined

as 〈A,B〉 , Tr(AT B). Note that the norm induced by the inner product 〈· , ·〉 is the Frobenius

norm, i.e., 〈A,A〉 = Tr(AT A) = ‖A‖2
F . Recalling that d ln(det(Z)) = Tr

{
Z−1dZ

}
for all Z such

that detZ 6= 0 [63, Prop. 3.14], with d ln(det(Z)) being the differential of the ln(det(Z)), the

first-order differential (up to a constant positive factor) is given by Eqn. (3.6), at the top of the

next page, where χ j , H j jV jP jVH
j HH

j j, Z j , INr +R−1
j χ j, Y j , R−1

j H jiVi, M j = YH
j χ jZ

−1
j Y j,

d fi(Pi,P−i) = ∑
j 6=i

w jTr
(

Z−1
j dZ j

)
= ∑

j 6=i
w jTr

(
Z−1

j dR−1
j χ j

)
(a)
= ∑

j 6=i
−w jTr

(
Z−1

j R−1
j dR jR−1

j χ j

)
(3.6)

= ∑
j 6=i
−w jTr

(
Z−1

j Y jdPiYH
j χ j

)
(b)
= ∑

j 6=i
w jTr

(
−YH

j χ jZ
−1
j Y jdPi

)
= Tr

(
∑
j 6=i
−w jM jdPi

)
(c)
= vecT

(
∑
j 6=i
−w jM j

)T

vec(dPi)
(d)
= vecT

(
∑
j 6=i
−w jM j

)T

dvec(Pi)

and (a) comes from dZ−1 = −Z−1dZZ−1 [63, Prop. 3.5], (b) comes from Tr(AB) = Tr(BA)

[63, cf. (2.96)], (c) comes from Tr(AT B) = vecT (A)vec(B) where vecT (A) = (vec(A))T [63,

cf. (2.97)] and (d) comes from vec(dZ) = dvec(Z) [63, Prop. 3.9]. It is worthwhile noticing that,

when f is a (complex-valued) scalar function of complex matrices, that is f : Cn×m−→C, we have

∂ f
∂ (Z)i j

and ∂ f
∂ (Z∗)i j

which are n ·m component-wise R-derivatives and n ·m conjugate R-derivatives

of the complex-valued function f with respect to (Zi j) and (Z∗i j), respectively. Given f , the matrix

gradient and conjugate-gradient of Z0 ∈ Cn×m are defined as

∇Z f (Z0),
∂ f (Z)

∂Z

∣∣∣∣∣∣∣∣
Z=Z0

, ∇Z∗ f (Z0),
∂ f (Z)
∂Z∗

∣∣∣∣∣∣∣∣
Z=Z0

with [∂ f/∂Z]i j = ∂ f/∂ (Z)i j and [∂ f/∂Z∗]i j = ∂ f/∂ (Z∗)i j for i ∈ {1, ...,n} and j ∈ {1, ...,m}.

Note that, ∇Z f (Z0) and ∇Z∗ f (Z0) are matrices having the same size of Z. Alternatively, one can
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arrange the elements ∂ f
∂ (Z)i j

and ∂ f
∂ (Z∗)i j

in a row vector, and define DZ f (Z) and DZ∗ f (Z) at Z0 as

DZ f (Z0),
∂ f (Z)

∂vecT (Z)
= vecT (∇Z f (Z0)) , (3.7)

DZ∗ f (Z0),
∂ f (Z)

∂vecT (Z∗)
= vecT (∇Z∗ f (Z0)) ,

and then we have d f = DZ f (Z0)dvec(Z)+DZ∗ f (Z0)dvec(Z∗) which leads to the following Ja-

cobian matrices of fi(Pi,P−i):

DPi fi(Pi,P−i) = vecT

(
∑
j 6=i
−w jM j

)T

, (3.8)

recalling DPi fi(Pi,P−i) = vecT (∇Pi fi(Pi,P−i)), the partial derivative of fi(Pi,P−i) with respect to

Pi, evaluated at Pi = P̄i is then given by

∇Pi fi(Pi,P−i)|Pi=P̄i
=−∑

j 6=i
w jMT

j |Pi=P̄i
(3.9)

Retaining only the linear term in the Taylor’s expansion of fi(Pi,P−i) around P̄i and adding a

proximal like regularization term (in order to guarantee strong convexity and enhancement of the

convergence speed), it is possible to approximate the objective function in (3.4) by

f̃i(Pi; P̄i), wi log2 det(INr +CiPi) (3.10)

−Tr

∑
j 6=i

w jM j

∣∣∣∣∣∣∣
Pi=P̄i

Pi


− τi

2
vec(Pi− P̄i)

T Hi(P̄i)vec(Pi− P̄i)

where Ci , VH
i HH

ii R−1
i HiiVi, τi is a given nonnegative constant and Hi(P̄i) is an ni×ni uniformly

positive definite matrix (possibly dependent on P̄i), i.e., Hi(P̄i)− cHI � 0, for all P̄i ∈ K and

some positive cH . It is worth mentioning that Hi(·) can play the role of the Hessian matrix of
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function fi(·), defined as H X f (X) , ∂ 2 f (X)
∂vecT (X)∂vec(X)

and τi = 0 if the convex part of the original

objective function is uniformly strongly convex on K . For calculating the Hessian matrix, we

need to calculate the d2 fi(Pi, P̄i) which can be expressed as follow

d2 fi(Pi, P̄i) = Tr{−(dZ−1
j )R−1

j H jiVi(dPi)VH
i HH

jiR
−1
j χ j

−Z−1
j (dR−1

j )H jiVi(dPi)VH
i HH

jiR
−1
j χ j

−Z−1
j R−1

j H jiVi(dPi)VH
i HH

ji(dR−1
j )χ j}

= Tr{−Z−1
j Y j(dPi)YH

j χ jZ
−1
j Y j(dPi)YH

j χ j

+Z−1
j Y j(dPi)YH

j HH
jiVi(dPi)YH

j χ j

+Z−1
j Y j(dPi)YH

j H jiVi(dPi)YH
j χ j}

= Tr
(
M j(dPi)(2S j−M j)(dPi)

)
= Tr

(
(dPi)(2S j−M j)(dPi)M j

)
= vecT (dPT

i )vec((2S j−M j)(dPi)M j)

(a)
= vecT (dPT

i )
[
MT

j ⊗ (2S j−M j)
]

vec(dPi)

= [dvec(Pi)]
T KNtNt

(
MT

j ⊗ (2S j−M j)
)
[dvec(Pi)]

where S j ,YH
j H jiVi, (a) follows from the property vec(XYZ)= (ZT⊗X)vec(Y) [63, Lemma 2.11],

and we introduced the commutation matrix KN2
t

which is the N2
t ×N2

t permutation matrix such that

vec(XT ) = KN2
t
vec(X) [63, Def. 1.8]. Then, using the identification rule [63, Table 3.3], the Hes-

sian matrix of function fi(Pi, P̄i) is given by

H Pi fi(Pi, P̄i) =
w j

2
KNtNt

MT
j ⊗ (2S j−M j) (3.11)

+(2S j−M j)
T ⊗M j

.

in which, we use the properties of the commutation matrix where Kmn = KT
mn and Kpm(Am×n⊗
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Bp×q)= (Bp×q⊗Am×n)Kqn. Now it is possible to approximate (3.4) by a set of L per link problems

given for i ∈L by

maximize
Pi∈K

f̃i(Pi; P̄i) (3.12)

Associated with each f̃ (Pi; P̄i) we have the following best response mapping for each user using

the proposed algorithm in [62], which consists then in solving iteratively (possibly with a memory)

the following sequence of a (strongly) convex optimization problem

P̂i(P̄i,τi), arg max
Pi∈K

f̃ (Pi; P̄i). (3.13)

Unlike (3.4), (3.13) is strongly convex in Pi, then it has a unique solution and can be efficiently

solved by numerical iterative algorithms in which each user updates its strategy based on the best-

response P̂i(·,τ).

3.3.1 Some Special Cases

In this subsection, we analyze the network proportional-fair metric expression in high and low

SNR regimes and consider some special cases of f̃i(Pi; P̄i).

1) τi = 0.

If τi = 0, then we can rewrite the optimization problem (3.12) as follow

maximize
Pi∈K

wi log2 det(INr +CiPi)−Tr(EiPi) (3.14)

where Ei , ∑ j 6=i w jM j|Pi=P̄i
. Note that (3.14) essentially maximizes the same objective function

as (3.4) with respect to Pi, except that the proportional-fair metric of the other link is approximated

to the first order at the point P̄i. The trace term in (3.14) plays the role of interference tax, dis-

couraging selfish behavior of link i, which would otherwise just want to maximize its own rate (if

the trace term be equal to zero, each link selfishly maximizes its own rate). We can reconsider it

as follows: for a given LTE-Advanced CoMP-CB system, in each iteration, i-th MS announces an
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interference price to all BSs, which is the marginal decrease in utility for an increase in received

interference. The transmitters update their power to maximize their own utility minus the cost of

interference they produce.

Theorem 5. In an LTE-Advanced CoMP-CB system in which the proportional-fair metric of all

the interference links are approximated to the first order (at the point P̄i), the closed-form solution

of power allocation for CoMP transmissions is available and can be expressed as

Pi(k,k) =
[

wiCi(k,k)−Gi(k,k)
Ci(k,k)Gi(k,k)

]+
(3.15)

where Ci , VH
i HH

ii R−1
i HiiVi, Gi , VH

i (Ẽi +µiI)Vi, and Ẽi , ∑ j 6=i w jHH
jiR
−1
j χ jZ

−1
j R−1

j H ji eval-

uated at Pi = P̄i. The remaining elements of Pi are zero.

Proof. See Appendix A.0.5.

Theorem 6. An optimal solution of downlink precoding matrices for the aforementioned system is

the generalized eigenmatrix of HH
ii R−1

i Hii and Ẽi+µiI, with HH
ii R−1

i HiiṼi = (Ẽi+µiI)ṼiΛi, where

Ṽi = ViP
1/2
i is an unnormalized transmit precoder of i-th BS and the elements of the diagonal

matrix Λi are the generalized eigenvalues of HH
ii R−1

i Hii and Ẽi +µiI.

Proof. See Appendix A.0.6.

2) High SNR.

In the high SNR regime, the achievable rate Ri(Pi; P̄i) can be approximated by R̃i(Pi; P̄i) =

log2 det(χ i)− log2 det(Ri). Then, one can formulate the high SNR proportional-fair maximization

problem as follows

maximize
Pi

K

∑
i=1

wiR̃i(Pi; P̄i)

subject to Pi � 0, Tr(Pi)≤ pi,max

(3.16)

It is worth mentioning that, if we focus on optimizing the interference subspace, thus, by dropping
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the signal term in R̃i, we can bound it as follows

R̃i >− logdet(Ri)
(a)
>

n

∑
k=1
− log([Ri]kk) (3.17)

(b)
>−

n

∑
k=1

[Ri]kk =−Tr(Ri)

where (a) comes from applying Hadamard’s inequality, i.e., det(M) 6 ∏ j M j j for M � 0, (b)

follows from the fact that ∀x > 0, x > log(x), and n = min(Nr,Nt). It shows that minimizing the

interference leakage at each user results in optimizing a lower bound on the user’s high SNR rate.

Back to the optimization problem at high SNR regimes, and by retaining only the linear term in

the Taylor’s expansion of nonconvex part of the above objective function around P̄i, it is possible

to approximate (3.16) by a set of L per-link problems given for i ∈L by

maximize
Pi

wi log2 det(χ i)−Tr(AiPi)

subject to Tr(Pi)≤ pi,max, Pi � 0,
(3.18)

where Ai , ∑ j 6=i w jS j evaluated at Pi = P̄i. Note that unlike (3.16), (3.18) is convex in Pi and can

be efficiently solved by numerical iterative algorithms.

Theorem 7. In the high SNR regime, the power allocation of each BS in an LTE-Advanced CoMP-

CB system can expressed as follows

Pi = UH diag
[

wi

σk +µi

]
U (3.19)

where U is a unitary matrix and can be achieved by eigenvector decomposition of Ai.

Proof. See Appendix A.0.7.

3) Low SNR.

In the low SNR regime, we can replace log2 det(INr +R−1/2
i χ iR

−1/2
i ) with ∑i=1 log(1+ λi),

where λi is the i−th eigenvalues of R−1/2
i χ iR

−1/2
i . Now, we use the fact that χ i is small, it implies
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λi are small, so to first order we have log(1+λi)≈ λi. Using this first-order approximation in the

expression above, we get ∑i=1 log(1+λi) = ∑i=1 λi = Tr(R−1/2
i χ iR

−1/2
i ) = Tr(R−1

i χ i). Thus, we

have

maximize
Pi∈K

K

∑
i=1

wiTr(R−1
i χ i) (3.20)

which is a nonconvex optimization problem. By retaining only the linear term in the Taylor’s

expansion of nonconvex part of the above objective function around P̄i, it is possible to approximate

(3.20) by a set of L per-link problems given for i ∈L by

maximize
Pi∈K

Tr((wiCi−Di)Pi) (3.21)

where Di , ∑ j 6=i w jYH
j χ jY j evaluated at Pi = P̄i. Note that unlike (3.20), (3.21) is convex (a

Semidefinite Programming (SDP)) in Pi and is therefore amenable to a wide variety of optimization

techniques.

Theorem 8. In the low SNR regime, the power allocation of each BS in an LTE-Advanced system

can expressed as follows

Pi = VH diag
[

ε

γk +µi

]
V (3.22)

where V is a unitary matrix and can be achieved by eigenvector decomposition of matrix −wiCi+

Di.

Proof. See Appendix A.0.8.

Remark 5. It is worth mentioning that in the low SNR regime, the interference due to other BSs

is overwhelmed by the noise power seen at the MSs. The proportional-fair metric maximizing

beamformers in this regime are simply the Ns dominant right singular vectors obtained from the

singular value decomposition of the direct link Hii of the i-th BS. The MSs are the corresponding Ns

left singular vectors. The power allocation strategy reduces to that of single-user MIMO scenario,

i.e., water filling on the corresponding Ns dominant singular values. Which is not surprising
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P̂i(P̄i,τi), arg max
Pi∈K

wi log2 det(INr +CiPi)−Tr(EiPi)− τi‖Pi− P̄i‖2
F . (3.23)

because when the noise dominates the received signal, the benefit of self interference cancelation

is marginal.

4) Hi(P̄i) = I.

If Hi(P̄i) = I, the quadratic term in (3.10) reduces to the standard proximal regularization

τi‖Pi− P̄i‖2
F , and then the best response matrix function of each BS is given by Eqn. (3.23), at the

top of the next page.

Theorem 9. If Hi(P̄i) = I, then the closed-form solution of the above-mentioned optimization

problem can be expressed as

Pi =

P̄i−
1

2τi
(µ∗I+

Z 0

0 0

)

+

(3.24)

where Z is the matrix of lagrangian multipliers associated to the linear constraints, [X]+ denotes

the projection of X onto the cone of positive semidefinite matrices, and µ∗ is the multiplier which

can be found by bisection.

Proof. See Appendix A.0.9.

3.3.2 Complexity Analysis

In this section, we compare the computational complexity of our algorithm with that of the WMMSE

algorithm for coordinated beamforming [55]. For simplicity, let us assume that all channel matri-

ces of Hii are full-column rank and set τi = 0 in (3.13). Moreover, let L be the total number of users

in the system and Nt and Nr denote the number of antennas at each transmitter and receiver, respec-

tively. Since both the proposed proportional-fair resource allocation algorithm and the WMMSE
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algorithm include a similar bisection step which generally takes few iterations, we ignore this bi-

section step in the computational complexity analysis. We compare the algorithms by given per

iteration complexity, where an iteration of both algorithm means one round of updating all users’

beamforming or covariance matrices. Under these conditions, each iteration of the WMMSE al-

gorithm involves the computation of the MMSE receiver matrices and their corresponding MSE

matrices in [55], i.e., Uik in (5) and Eik in (6) of [55]. To determine these matrices in the WMMSE

algorithm, we need to first calculate the covariance matrix of the total received signal at each re-

ceiver and then compute their sum. Consequently, the per-iteration complexity of WMMSE algo-

rithm is O(L2NtN2
r +L2N2

t Nr+L2N3
t +LN3

r ). Using a similar analysis, the per-iteration complexity

of the proposed algorithm can be shown to be O(L2NtN2
r +L2N2

t Nr +LN3
t +LN3

r ).

3.3.3 Convergence

The following propositions link the solution of the original problem (3.4) with that of its con-

vexified approximation (3.13) and characterize the convergence of the proposed proportional-fair

resource allocation algorithm.

Proposition 1. A fixed point of the proposed algorithm exists, and it is a stationary solution of the

original problem. Thus, if the algorithm converges, it converges to a stationary solution of (3.4).

Proof. The proof is upon checking that the set of the first order conditions (Karush-Kuhn-Tucker

(KKT) conditions) for (3.13) amount to precisely the KKT conditions for (3.4).

Proposition 2. The proposed proportional-fair resource allocation algorithm converges.

Proof. The proof is inspired by [64] and follows from showing that after a link solves the convex-

ified optimization problem, the objective function of the original nonconvex optimization problem

is nondecreasing. Since the maximum network proportional-fair metric is bounded from above,

value of the objective function converges. To this end, suppose that P j = P̄ j and V j = V̄ j for all

j ∈L , from the previous iteration. Let P∗i and V∗i denote the optimal solution of the convexified

problem for link i and define Qi(Vi,Pi) = ViPiVH
i . Then the original objective function can be
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L

∑
j=1

w jR j(Q∗i ,Q̄−i) = wiRi(Q∗i ,Q̄−i)+ fi(Q∗i ,Q̄−i)
(a)
≥ wiRi(Q∗i ,Q̄−i)+ fi(Q̄i,Q̄−i) (3.25)

+Tr
(

∇ fi(Q̄i,Q̄−i)
T(Q∗i − Q̄i

)) (b)
≥ wiRi(Q̄i,Q̄−i)+ fi(Q̄i,Q̄−i) =

L

∑
j=1

w jR j(Q̄i,Q̄−i)

rewritten as Eqn. (3.25), at the top of the next page, where (a) comes from the fact that fi(Qi,Q−i)

is a convex function with respect to Qi (see Appendix F), and (b) holds since Q∗i is the optimal

solution of the convexified optimization problem. Thus, the original nonconvex objective function

is nondecreasing after each link i updates Pi and Vi. Since the objective is bounded from above,

the algorithm must converge.

3.3.4 System Design Issues

Channel state information. To enable the CoMP-CB operation within the cooperating set, perfect

CSI is assumed to be available at each BS (similar to [55]). In modern communication systems,

CSI can usually be obtained at the BS through the following methods. (a) In some contexts channel

reciprocity can be exploited to acquire CSI at the transmitters. To be specific, in a time division

duplex (TDD) system, the downlink channel state information can be directly obtained at the trans-

mitter through uplink sounding due to channel reciprocity; for frequency division duplex (FDD)

systems, there is also certain reciprocity relationship between uplink and downlink channels [65].

(b) Feedback channels are often available in wireless systems for the receiver to feedback the

downlink channel to the transmitter. (c) Learning mechanisms can be exploited to iteratively learn

the required CSI. In Rel-10 LTE-Advanced networks, channel reciprocity is utilized for TDD sys-

tems to work under perfect CSI while codebook based feedback is utilized for FDD systems to

obtain the CSI at the transmitter. The perfect CSI assumption provides us with an achievable upper

bound on the transmission rate for each user.

Proportional-Fair Weight. The proportional-fair weight is adopted in (3.4) to achieve a good

trade-off between cell-average and cell-edge spectral-efficiency. As discussed in Section II-B, in
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time slot t, wi = Rα
i (t)/T β

i (t). From (3), it is clear that Ri(t) depends on Vi and Pi which in

turn depend on wi. Therefore, the proportional-fair weight for MS i, wi, should be obtained by

an iterative method. In each slot, wi is initialized to some nonnegative value, and then is updated

iteratively until it converges. We repeat the iteration until the distance between two consecutive

rate is within a predefined threshold. It is worth to note that each iteration only takes a short time

to complete. The iteration process is carried out according to Algorithm I.

3.4 Simulation Evaluations

In this preliminary experimental evaluation, the performance of the proposed schemes for downlink

CoMP coordinated beamforming systems is evaluated. We consider a possible antenna configura-

tion in a typical deployment scenario for LTE-Advanced: 4 transmit antennas at the base station

and 2 receive antennas at each mobile station. We assume that the system consists of two cells

which each cell serves its own MS. The simulation is run for 1000 channel realization where each

channel element is drown i.i.d. from a real Gaussian distribution with zero mean and a variance of

1.

Fig. 1 shows the evolution of the network proportional-fair metric when optimization problem

(14) is solved via the introduced algorithm using Jacobi successive convex approximation scheme.

Two sets of weights w = [0.9 0.1] and w̄ = [0.65 0.35] were tested. The monotonic increase of the

network proportional-fair metric can be verified.

In Fig. 2-a, we plot the network proportional-fair metric versus the number of iterations. Our

experiment shows that for a two cooperating BS CoMP LTE-Advanced system, with Nt = 4 and

Nr = 2, the proposed algorithm has the monotonic convergence behavior. In Fig. 2-b and c, we

consider the case of w2� w1, since Pi is a function of wi the BS 2 has the maximum proportional-

fair metric and the optimal power allocation becomes a water-filling one over the spatial directions

associated with the singular values of BS 2’s channel transfer matrix.

In Fig. 3-a we plot the network proportional-fair metric versus the number of iterations. As
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expected, this figure shows that the proposed algorithm has the monotonic convergence behav-

ior and the network proportional-fair metric is seen to converge to the near optimal values quite

rapidly. Moreover, in Fig. 3, we consider the case of w1� w2, the number of transmit and receive

antennas are the same and equal to 8 and p1,max = p2,max = 8W , respectively. Since w1 � w2,

the optimal power allocation becomes a water-filling one. Assuming CSI is shared between BSs,

overall throughput is achieved by implementing a water-filling power allocation scheme over the

spatial directions associated with the singular values of BS 1 channel transfer matrix.

The setup of our experiments for the rest of simulation is the following. We simulated seven

cells with multiple users that randomly and uniformly dropped (at a distance > 35 m and < 275

m from the BS) in each cell. The transmission is subject to interference from 6 neighboring base

stations. The transmit power at each base station is fixed to 46 dBm and the noise variance at

the mobile station is fixed to −174 dBm. System bandwidth is taken as 5 MHz. The BSs are all

equipped with Nt = 4 transmit antennas and the MSs are equipped with Nr = 2 receive antennas.

All deployments and channel model parameters are listed in Table I.

The performance is measured in terms of the cumulative distribution function (CDF) of the

user average rate (Mbits/sec). To do so, we generate 500 drops for each user. At each time instant,

the instantaneous rate achieved by each user is recorded. At the end of the drop, the average rate

achieved by each user is computed (as an average over all instantaneous rates). According to these
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Figure 3.1. The Network proportional-fair metric versus Number of iterations.
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cooperating BS CoMP LTE-Advanced system, with Nt = Nr = 8, w = [0.999 0.001], and p1,max =
p2,max = 8 Watt, (b) and (c) Optimal power allocation at BS 1 and BS 2 versus spatial directions
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available values of user average rate, the CDF is computed. The CDF performance of the user

average rate of the proposed scheme is compared with that of the non-cooperation scenario and

that of WMMSE algorithm in Fig. 4. Proportional-fairness resource allocation algorithm is used

in all the schemes. The non-cooperative algorithm is considered as a reference scheme. In this

case, each BS does not try to reduce the interference that it induces to other MSs in determining its

resource allocation matrices. To compare proposed algorithm with WMMSE, both algorithms are

initialized by choosing the same feasible randomly generated point, and are terminated when (the

absolute value) of the sum-rate error in two consecutive rounds becomes smaller than 10−2. The

accuracy in the bisection loops (required by both algorithms) is set to 10−3.

From Fig. 4, it is clear that the proposed scheme demonstrates significant performance im-

provements over non-CoMP and WMMSE strategies. To be specific, users have much higher

probability to achieve higher user average rate under the proposed resource allocation strategy. The

corresponding cell-average spectral-efficiency and cell-edge spectral-efficiency are also obtained

and summarized in Table II. From Table II, it is clear that both WMMSE and our scheme could pro-

vide significant performance improvements over non-CoMP scheme. To be specific, the WMMSE

scheme provides a gain of 39.42% in cell-average spectral-efficiency, a gain of 241% in 10%-tile

Table 3.1: System parameters used in simulation.

Parameters Values
Cell Layout Hexagonal grid
Number of transmit antenna 4
Number of receive antenna 2
Number of MSs per cell 500
Inter-site distance 500 m
Minimum distance between UT and BS > 35 m
MS distribution Uniform random distribution
Bandwidth 5 MHz
Maximum Transmission Power 43 dBm
Thermal Noise Level −174 dBm
Doppler Spread 100 Hz
Coherence Time 10 msec
Path Loss (dB) 128.1+37.6log10(d) with d in Km
Shadowing model Log-normal shadowing with 4dB standard deviation.
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cell-edge spectral-efficiency, and a gain of 330% in 5%-tile cell-edge spectral-efficiency over the

non-CoMP scheme. Meanwhile, the proposed proportional-fair resource allocation strategy could

even provide spectral-efficiency gains over WMMSE. To be specific, the proposed scheme pro-

vides a gain of 8.23% in cell-average spectral-efficiency, a gain of 35.1% in 10%-tile cell-edge

spectral-efficiency, and a gain of 49.2% in 5%-tile cell-edge spectral-efficiency over the WMMSE

algorithm. These results suggest that the proposed proportional-fair resource allocation scheme

outperforms existing schemes and has the capability of sufficiently suppressing the inter-cell inter-

ference and simultaneously improving the cell-average and the cell-edge performance.

The cumulative distributive function of signal-to-noise-plus-interference ratios (SINRs) for dif-

ferent transmission schemes are shown in Fig. 5. The proposed proportional-fair resource alloca-

tion scheme shows significant performance gains over its counterparts in the low SINR regime

where cell-edge users usually operate. Moreover, the proposed scheme also shows considerable

performance gains over its counterparts in relatively high SINR regime as well.
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Figure 3.4. Cumulative distribution function (CDF) of achievable rate.

Table 3.2: Cell-average spectral-efficiency of different schemes

Transmission
Scheme

Cell-average spectral-
efficiency (bps/Hz/cell)

Cell-edge spectral-
efficiency (5%-tile)

Cell-edge spectral-
efficiency (10%-tile)

Non-CoMP 2.8570 0.2275 0.4075
WMMSE 3.9834 0.9782 1.3907
CoMP 4.3114 1.4593 1.8792
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3.5 Conclusions

In this chapter, a resource allocation problem has been studied for downlink CoMP coordinated

beamforming systems where each base station serves its own mobile stations. Due to the cou-

pled interference among mobile stations the resulting optimization problem becomes nonconvex.

To solve for optimal resource allocation strategies including downlink precoding and power al-

location for CoMP-CB transmissions, we have introduced a stochastic parallel successive convex

approximation-based algorithmic framework for a general nonconvex stochastic network proportional-

fair metric optimization problem. The introduced novel decomposition enables all base stations to

update their optimization variables in parallel by solving a sequence of strongly convex subprob-

lems. Moreover, closed-form expressions of the locally optimal solution are characterized in some

special cases as well as in both high and low SNR regimes. Numerical results show the introduced

scheme significantly improves and optimizes the system performance by mitigating inter-cell in-

terference.
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Chapter 4

Cached Cloud-RAN: Content-Based User

Association and MIMO Operation

4.1 Introduction

The big data era is being shaped with the ongoing growth of commercial data services, with mo-

bile wireless network constituting a major data source contributor. Nowadays, wireless commu-

nication is becoming tightly integrated in our daily lives; especially with the global spread of

laptops, tablets, smartphones, video streaming and online social networking applications. This

globalization has paved the way to dramatically increase wireless network dimensions in terms of

subscribers and amount of flowing data. Precisely, Cisco Systems forecasts that the number of

mobile-connected devices per capita will reach 1.5 by 2021 and global mobile data traffic will in-

crease sevenfold between 2016 and 2021 [1]. The volume, velocity, and variety of data from both

mobile users and communication networks follow an exponential increase pattern. Consequently,

big data will further be entrenched in the upcoming fifth-generation (5G) wireless networks.

The two important fundamental requirements for the future 5G wireless networks are abil-

ities to support high data traffic and exceedingly low latency [2]. A likely candidate to fulfill

these requirements is a Cloud Radio Access Network (Cloud-RAN). The network architecture of
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Cloud-RAN meets the tremendous increase in data traffic while improving network throughput

and energy efficiency for future networks [66–70]. This architecture spreads several low-cost low-

power Base Stations (BSs) all over a small area as an alternative to a high-power BS [2]. In order

to have an efficient resource allocation and interference management among multiple BSs, digital

backhaul links connect all these low-power BSs to a central computing unit (cloud). Since one of

the fundamental requirements for the 5G wireless networks is ability to support exceedingly low

latency, establishing backhaul links with low latency is necessary [2]. High-speed fiber cables can

achieve this requirement at the expense of an increase in infrastructure cost. Using the limited-

capacity backhaul links can save cost; however, these links may result in higher latency and then,

the overall performance would be much lower than that of network with high-capacity backhaul

link. Therefore, the problem of interest in the Cloud-RANs is providing a new technique which

can reduce the backhaul consumption.

More recently, researchers have investigated that the wireless caching is an effective way to

address this issue. Caching capacity at the BSs is a new type of wireless networks’ resource.

The low-cost, low-complexity, and tight integration with big data analytical tools of the wireless

caching will help shape future wireless big data processing. However, research on cache-enabled

wireless networks is still in its infancy. The main idea behind wireless caching is equipping the

BSs with inexpensive limited-size local storage units, and placing the most popular contents in

them to create more Coordinated Multi-Point (CoMP) transmission opportunities while serving

the users [71–76]. To do so, a cluster of BSs is assigned to each user to effectively relieve the

backhaul capacity demand at the Cloud-RAN. The cutback in backhaul utilization is because of

the reduced payload data transmission throughout the backhaul which is due to employing the

caching capacity at each BS. Each cluster is formed by aggregating the BSs whose transmission

strategies cooperatively serve the UEs within the cluster through joint proceding [71]. If the user’s

serving BSs cache the content that the user requests, it will be transmitted directly by the serving

BSs, thereby reducing delivery latency as well as backhaul overhead. Otherwise, the content needs

to be fetched into the serving BSs’ caches from the cloud via the backhaul link. In such a model,
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by downloading the most popular content during off-peak hours and serving users from the cache

during peak hours, aside from reducing the capacity requirement of backhaul links as well as

the delivery latency, CoMP opportunities also allow a reduction in the inter-cell interference [5].

Consequently, the users experience a substantial data rate improvement and the network can attain

a high capacity gain. However, this wireless networks’ resource is limited in comparison with the

total amount of mobile data traffic.

In order to entirely utilize the benefit of wireless caching and to fully exploit the opportunity of

serving users through a CoMP transmission, developing advanced caching placement strategies in

Cloud-RANs is required. One way to increase the possibility for a user to access its desired content

locally is designing the caching contents following some data popularity distribution, such as the

Zipf distribution [77]. Moreover, user association can be regarded as an important consideration

of whether a BS caches a content or not. To be specific, BSs might cache files which assigned

channels to the particular user are not desirable in terms of the signal strength. In this case, although

BSs are clustered to share the requested data and deliver service to a specific user, data transmission

is not reliable or the high transmit power will be needed. Consequently, allocating the requested

files via backhaul to BSs which have good channels to the served users will be unavoidable and

such allocation via backhaul will increase the backhaul cost [2]. In a densely deployed wireless

network, such as Cloud-RAN, each user can be associated with one or several BSs depending on

both content availability and channel condition. As a result, jointly optimizing the user-association

policy, caching placement strategy, and beamforming design can enhance the user experience.

A. Related Work

The importance of caching in the fifth-generation wireless networks was recognized in [78–86].

In [87–90], the authors considered the problem of jointly minimizing the total transmit power

and backhaul traffic in wireless cooperative networks under the constraint of each user’s SINR

requirements and with respect to the beamforming vectors. Assuming there is a backhaul constraint

per each BS, [91] considered a weighted sum rate optimization problem to design the beamforming

vectors. Other than these works on unicast, [92,93] discussed the effect of caching on the multicast
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beamforming in the Cloud-RAN. However, these works assumed that the cache placement is static,

which means the caching placement matrix is fixed and known at the cloud.

In order to improve the efficiency of cache-enabled networks, [2, 94–96] conducted an investi-

gation into the design of caching policy. In [94,95], the caching problem at the small cell BSs was

considered, and a caching policy was designed in such a way that the cache-hit-ratio is maximized.

In order to minimize the downloading latency, [96] proposed a distributed caching algorithm. The

line of works in [94–96] are further expanded in [2] for a cache-enabled Cloud-RAN system to

take the tradeoff between the transmission power and the backhaul cost into consideration. In [2],

the authors defined the network cost of the Cloud-RAN system as a normalized weighted sum and,

minimized the network cost with respect to both the beamforming matrix and the cache placement

matrix by considering the quality of service (QoS), peak transmission power, and cache capacity

constraints. However, these works are only focused on designing the beamforming vectors and

cache placement matrix while assuming the user association matrix is given and known at the

cloud.

The user association problem that is mainly concerned with load balancing, was discussed

in [97, 98]. The key point here is accounting for both wireless channels and the number of UEs

connected to each BS. Based on a given caching policy, [99] designed the user association policy

in a way that maximizes the average download rate. However, the aforementioned studies did not

optimize the user association and cache placement jointly. As a result, the system was led to an

inefficient operating point.

Designing jointly the caching strategy and the user association policy in cache-enabled wire-

less networks is considered in [100–105]. In order to minimize the number of requests performed

by the macro BSs in a small-cell network, [100] designed a joint data caching and user association

policy. To this end, [101] jointly designed user association and video caching policy by minimizing

the user experienced delay while taking different quality requirements for each user into account.

In order to obtain an optimal tradeoff between the content availability and the load balancing in the

heterogeneous networks, an online algorithm was proposed in [102]. The complexity analysis of
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joint user association and cache placement in heterogeneous networks was investigated in [103]. In

order to maximize the system throughput in a coordinated small-cell cellular system, the problem

of joint designing of caching, user association, and routing is discussed in [104]. Considering dis-

tinct users have different wireless channels, [105] jointly designed the caching and user association

policy by minimizing the average delay of small cell UEs in a heterogeneous network. The line of

these works was further expanded in [106] for a cache-enabled Cloud-RAN network to lessen the

backhaul traffic by maximizing a proportional fairness network utility. However, [106] considered

a single-input single output (SISO) case in which both UEs and BSs are equipped with a single

antenna, and each user is only connected with one BS.

In practice, the cache placement and the content delivery (precoding and user association)

usually happen in different timescales. Cache placement usually takes much longer (e.g., days

or hours) than that of content delivery (e.g., seconds). Therefore, like [30], we study a mixed-

timescale joint optimization, but in this case for content placement and content delivery in the

cache-enabled cloud radio access networks to maximize a weighted backhaul-aware network utility

function subject to the peak transmission power and cache capacity constraints at all BSs. The

cache placement reduces the backhaul consumption and provides more CoMP opportunities. It is

adaptive to the long-term popularity of data, therefore, the caching strategy should be adaptive to

the channel statistics instead of the instantaneous channel realization in each channel coherent time.

In contrast, the role of the content delivery is to guarantee to provide a better average throughput

to each user and be adaptive to the instantaneous channel state information.

B. Main Contributions

This chapter differs from previously mentioned studies particularly in its aim to bring a consid-

eration of caching along with the user association and resource allocation. We optimize the tradeoff

between backhaul reduction and network throughput by maximizing a weighted backhaul-aware

network utility function. Furthermore, we consider multiple real-word factors for effective content

caching such as popularity distribution, caching placement from the user perspective, and temporal

and spatial locality of the content demand, in order to accommodate challenging use cases with
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strict quality of service requirement [107]. That’s why the original problem and, therefore, the

three sub-problems in our manuscript are completely different from the previous works. The main

contributions of this chapter can be summarized as follows.

• For the first time, we define and maximize the network throughput as a function of caching

placement strategy, user association policy, precoding vectors, probability that a file is re-

quested by a specific user, and the distance from all connected BSs to this specific user.

• We introduce the tradeoff between network throughput and backhaul saving by combining

content-based user association, MIMO transmit precoding, and cache placement to boost

user experience, and identify the interaction between user association, resource allocation

and cache placement for a multi-cluster multi-user cache-enabled Cloud-RAN network.

• To the best of our knowledge, there is no existing study on jointly optimizing the cache place-

ment strategy, the user association policy, and the beamforming design. In this work, we con-

sider a multi-cluster multi-user cache-enabled Cloud-RAN network consisting of different

users with distinct file preferences, and jointly optimize the mixed-timescale optimization

problem of cache placement, the user association, and the beamforming matrices which can

result in significant benefit. Due to the coupled interference among UEs, the mixed-timescale

joint optimization of content delivery and content placement is a non-convex optimization

problem. Furthermore, the entries of cache placement and user association matrices take bi-

nary values making the optimization problem a mixed integer nonlinear programming, which

is an NP-hard problem and non-tractable in practice. Since, it is highly unlikely to compute

a globally optimal solution in polynomial time, our goal is to obtain a trackable near-optimal

solution by developing effective suboptimal algorithms. As a consequence, the joint opti-

mization problem decomposes into a short-term content delivery and a long-term content

placement problem. Moreover, by making use of the fact that all constraints are separable,

we propose an iterative algorithm which optimizes the cache placement, user association,

and beamforming vectors.
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• We propose an iterative novel algorithm for multi-cluster multi-user cache-enabled Cloud-

RANs by leveraging the Successive Convex Approximation (SCA)-based method and the

Alternating Direction Method of Multipliers (ADMM). The original non-convex optimiza-

tion problem is essentially divided into three subproblems. In designing the optimal content

placement, the SCA approximates this subproblem as a sequence of convex subproblems.

The decomposition enables all BSs to update their optimization variables in parallel by solv-

ing a sequence of convex subproblems, one for each BS. In order to find the optimal beam-

formers, each subproblem can be replaced by a novel ADMM form. By solving multiple

small-size subproblems, the proposed ADMM allows the updation of each step to take place

in parallel. Finally, to design the user association strategy, each subproblem is reformulated

as a partially dualized version of the original subproblem. By reducing the complexity, the

proposed algorithm is feasible for future wireless big data processing systems.

4.2 System Model and assumptions

We consider a cache-enabled Cloud-RAN network consisting of one central computing unit (cloud),

B base stations (BSs), and K user equipments (UEs) as depicted in figure 1. Table 4.1 summarized

the major notations and symbols used in this chapter. The location of the BSs is modeled by a Pois-

son Point Process (PPP) with density λB while UEs are distributed around each BS independently

and uniformly. We partition the area to M clusters. |Ii| and |Qi| indicate the number of UEs and

BSs in the i-th cluster, respectively, where Qi ⊆ {1,2, . . . ,B}, Ii ⊆ {1,2, . . . ,K}, Qi ∩Q j = ∅,

Ii ∩I j = ∅, ∀i 6= j, i, j ∈M , {1,2, . . . ,M}. Let i j, i ∈M and j ∈ Qi, denote the j-th BS

in the i-th cluster and ik, i ∈M and k ∈ Ii, indicate the k-th user in the i-th cluster. BS i j is

equipped with Ni j
t transmit antennas and a cache that stores si j bits of data whilst user ik has Nik

r

receive antennas. The channel (propagation) coefficient between the i j BS and the ik user form

channel matrix Gik,i j =
√

βik,i jHik,i j ∈ CN
ik
r ×N

i j
t where βik,i j is a large-scale fading coefficient that

depends upon the shadowing and distance between the corresponding user and BS. The large-scale
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Figure 4.1. System architecture of a cache-enabled cloud radio access network.

fading coefficient denotes by βik,i j = ψik,i jd
−α

ik,i j
, where dik,i j is the distance between the ik user

and the i j BS; α is the path-loss exponent; and ψik,i j is a log-normal random variable, i.e., the

quantity 10log10(ψik,i j) is distributed zero-mean Gaussian with a standard deviation of σshadowing.

The small-scale fading coefficients, i.e., elements of Hik,i j , are modeled as i.i.d. complex Gaussian

variables with zero-mean and unit-variance. We further assume a block fading model, where small-

scale channels are constant over a few time slots with respect to channel estimation and channel

state information feedback procedures. Similarly, we assume that large-scale fading coefficients

βik,i j stay constant during large-scale coherence blocks. The small-scale and large-scale fading

coefficients in different coherence blocks are assumed to be independent.

All BSs are connected to the cloud through high-capacity backhaul links as in [74]. The cloud

has access to the whole data library containing F files, where different contents are independent.

We define Πi = {πi1, . . . ,πi|Ii|
} as the user request profile at the i-th cluster, where πik denotes the

index of the requested file by the ik user. Users can make random requests from a directory of files

F = { f1, f2, . . . , fF} where each file fn has size ` fn bits. For the sake of simplicity, we assume

that the cache size at any BS is at least large enough to cache any of the files, i.e., ` fn ≤ si j for all

fn ∈F , i ∈M , j ∈Qi. Moreover, we assume that the ik user makes qik number of requests over

a given time interval T . Therefore, qi = [qi1, . . . ,qi|Ii|
] indicates the rates of requests that are made
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by users in the i-th cluster. We also assume different users in the i-th cluster, i ∈M , may have

different file preferences. Assuming p̄ik, fn is the probability that ik user, i∈M , k ∈Ii, request file

fn ∈F , the discrete popularity distribution of files for the UEs in the i-th cluster can be indicated

as

Pi =



pi1

...

pik

...

pi|Ii|


=



p̄i1, f1 . . . p̄i1, fF

... . . . ...

p̄ik, f1 . . . p̄ik, fF

... . . . ...

p̄i|Ii|, f1
. . . p̄i|Ii|, fF


∈ [0,1]|Ii|×F

where p̄m,n represents the probability that the m-th UE in the i-th cluster requests the n-th file. It

is worth noting that, the m-th row of matrix Pi is a stochastic vector which indicates the discrete

probability distribution of the m-th user.

Since the file popularity distributions seen at each BS depends on the local file popularities of

all connected UEs to the BS [108], this matrix will be different from Pi. The popularity distribu-

tions at the BSs in the i-th cluster, namely Pi ∈ [0,1]|Qi|×F , can be derived as

Pi =


pi1

...

pi|Qi |

=



pi1, f1 . . . pi1, fF

pi2, f1 . . . pi2, fF

...
. . .

...

pi|Qi |, f1 . . . pi|Qi|, fF


=



1
di1 qT

i
0 . . . 0

0 1
di2 qT

i
. . . 0

...
. . .

...

0 . . . 0 1
di|Qi |

qT
i


Di



qi1 0 . . . 0

0 qi2 . . . 0

...
. . .

...

0 . . . 0 qi|Ii |


Pi

where

pi j, fn =

|Ii|
∑

k=1
di j,ikqik p̄ik, fn

|Ii|
∑

k=1
di j,ikqik

denotes the n-th file popularity distribution observed at the j-th BS in the i-th cluster and the

69



denominator is a normalization factor. In practice, by adding up the number of times that the fn

file is requested by users, pi j, fn can be computed at the cloud. Moreover, since the user behavior

is correlated with the previously requested data, pi j, fn can provide the information regarding the

file popularity of the future requests and so, it helps to efficiently store the files in caches before

a request is made. Di denotes the user association matrix in the i-th cluster which depicts the

connection between the BSs and UEs in the i-th cluster. The user association matrix is structured

as

Di =


di1

...

di|Qi|

=


di1,i1 . . . di1,ik . . . di1,i|Ii|

... . . . ... . . . ...

di|Qi|,i1
. . . di|Qi|,ik

. . . di|Qi|,i|Ii|

 ∈ {0,1}|Qi|×|Ii|

where dm,n = 1(r̃m,n ≥ r). r̃m,n is the mn-th entry of the wireless downlink rate matrix R̃i ∈

R|Qi|×|Ii| in the i-th cluster and represents the achievable data rate from BS m to user n while

r guarantees a certain quality of service so that the n-th user would not connect to the m-th BS if

the wireless link rate between them was below the threshold r.

Since the caching capacity is limited, the aim of designing a cache placement strategy is to store

the most popular contents such that the BSs can directly serve the majority of UEs’ demands. We

define the content placement matrix at the i-th cluster as Ci ∈ {0,1}F×|Qi|, where Ci( fn, i j) = 1

means the fn-th content is stored in the i j BS and Ci( fn, i j) = 0 represents the opposite. The

caching matrix will be different for different user in one cluster. To be specific, the caching matrix

corresponding to the BSs that are associated with UE ik, i ∈M and k ∈Ii, can be expressed as

Cik = Ci (Di(:, ik)); (4.1)

where (x) is a diagonal matrix formed from vector x and A(:,n) indicates the n-th column of the

matrix A. Therefore, the sum of all elements in the n-th row of Cik represents the number of BSs

whose serve the ik user and cache the fn-th file. Considering that the cache at i j BS can only store
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si j bits of data1, the following cache size constraint should be fulfilled at BS i j

F

∑
n=1

Ci( fn, i j)` fn ≤ si j , ∀i ∈M , j ∈Qi. (4.2)

Moreover, the ik user is able to download the fn-th file from the cache if the following condition is

satisfied:

|Qi|

∑
j=1

di j,ikCi( fn, i j)> 0; ∀i ∈M ,k ∈Ii, fn ∈F , (4.3)

otherwise, corresponding links may have backhaul cost to transfer the fn-th file. As a result, by

associating each user with the BSs that caches its requested content, the total backhaul reduction

of the aforementioned cache-enabled Cloud-RAN can be represented as

E{
M

∑
i=1

|Ii|

∑
k=1

|Qi|

∑
j=1

di j,ikCi( fn, i j)}=
M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

|Qi|

∑
j=1

di j,ik p̄ik, fnCi( fn, i j) =
M

∑
i=1

Tr(PiCiDi).

where expectation is with respect to the random user requests.

Furthermore, we assume that in the underlying Cloud-RAN, a cluster of cooperative BSs serves

each UE. To be specific, a cooperating set Bik is assigned to ik user where Bik = {i j|di j,ik = 1} ⊆

Qi is formed by aggregating all the BSs that have knowledge of channels Hik,i j , i j ∈ Bik and,

have access to ik user’s message. They may also jointly encode the message intended for this

user in their transmission [109]. Note that, due to the shadowing effect, the |Bik | strongest BSs

under coordination are not necessarily the |Bik | nearest BSs, where |Bik | = ‖Di(:, ik)‖0 denote

the set’s cardinality. Since each BS may get involved in transmission to more than one UE, the

cooperating set of different users may overlap. We designate the set of users served by the i j BS by

Ki j , {ik|i j ∈Bik}⊆Ii. Moreover, similar to [110], we assume each co-scheduled user operating

in the MU-MIMO mode only receives one spatial stream (rank 1 transmission) as specified by the

Rel-10 LTE-Advanced standard [27, Chapter 11]. BS i j plans to communicate a symbol vector

1We assume that a file is either completely cached or not cached at all in a BS. Of course, partial/coded caching
techniques can be envisaged, and these are left for future research.
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si j = [si1,i j , . . . ,si|Ki j
|,i j ]

T ∈ C|Ki j | to its associated receivers, where sik,i j is the transmit symbol

from the i j BS to the ik ∈Ki j receiver with unit power of E{|sik,i j |2}= 1 and |Ki j | denote the set’s

cardinality.

Remark 6. The main idea behind defining M and Bik is that the demand for content shows vari-

ations both across time and space and, in this chapter, we considered both temporal and spatial

locality of the content demand. To be specific, it is crucial to consider the user location since the

demand may differentiate from one geographical area to another. This space variation of the con-

tent request, referred to spatial locality, is why we define M clusters, which M can be any arbitrary

number. On the other hand, the demand may differentiate from time to time. This temporal vari-

ation of the content request, referred to time locality, is the reason that we defined the Bik cluster

associated with user ik.

Prior to transmitting, the i j BS linearly precodes its symbol vector xi j =∑ik∈Ki j

√
p̃ik,i jvik,i jsik,i j

where p̃ik,i j stands for the transmit power allocated to user ik from the i j BS and vik,i j denotes the

unit-norm beamformer that BS i j uses to transmit the signal sik,i j to receiver ik. Each BS i j is

under a transmit power constraint of Pmax
i j

and so, the transmit power at the i j BS is computed as

P̃i j = E{‖xi j‖2}= ∑ik∈Ki j
p̃ik,i jvH

ik,i j
vik,i j = ∑ik∈Ki j

p̃ik,i j ≤ Pmax
i j

[16,110]. Under our assumptions,

when user ik request for file fn which is available at the cache of the BSs in Bik , the received signals

from these BSs are combined coherently using the coordinated joint transmission. Since there

are |Bik | BSs participating in the cooperating data transmission to user ik, at the same frequency

and time, we denote sik ∈ C as the complex data symbol for the ik UE, where i ∈M and k ∈

Ii. Consequently, throughout each symbol duration time, the cooperating BSs transmit the same

symbol sik and the received signal vector yik, fn ∈ CN
ik
r ×1 at the k-th user in the i-th cluster, when

user ik requested file fn, can be written as

yik, fn =
|Qi|

∑
j=1

p̄ik, fnCik( fn, i j)
√

p̃ik,i j

√
βik,i j Hik,i j vik,i j sik +

F

∑
n=1

|Ii|

∑
m=1
m 6=k

|Qi|

∑
j=1

p̄im, fnCim( fn, i j)
√

p̃im,i j

√
βik,i j

×Hik,i j vim,i j sim +
F

∑
n=1

M

∑
q=1
q6=i

|Iq|

∑
`=1

|Qq|

∑
j=1

p̄q`, fnCq`( fn,q j)
√

p̃q`,q j

√
βik,q j Hik,q j vq`,q j sq` +nik , (4.4)
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where the first term on the right-hand side of (4.4) represents the received useful signal, the second

and third terms represent the intra-cluster and inter-cluster interference respectively, and nik ∼

C N (0,σ2
ikI) is the additive white Gaussian noise (AWGN) at the ik UE. We assumed that the

signals for different users are independent from each other. In this chapter, we treat interference

as noise and consider a linear receive beamforming strategy so that the estimated signal is given

by ŝik = uH
ik yik, fn . Indeed, each receiver ik ∈Ki j , linearly processes the received signal to obtain

uH
ik yik, fn where uik ∈CN

ik
r denotes the unit-norm post processing filter at receiver ik, i.e., ‖uik‖2 = 1.

Thus, after receive beamforming the received signal at receiver ik ∈Ki j , can be expressed as

ŝik, fn =
|Qi|

∑
j=1

p̄ik, fnCik( fn, i j)
√

p̃ik,i j

√
βik,i j u

H
ik Hik,i j vik,i j sik +

F

∑
n=1

|Ii|

∑
m=1
m6=k

|Qi|

∑
j=1

p̄im, fnCim( fn, i j)
√

p̃im,i j

√
βik,i j×

uH
ik Hik,i j vim,i j sim +

F

∑
n=1

M

∑
q=1
q6=i

|Iq|

∑
`=1

|Qq|

∑
j=1

p̄q`, fnCq`( fn,q j)
√

p̃q`,q j

√
βik,q j u

H
ik Hik,q j vq`,q j sq` +uH

ik nik . (4.5)

As mentioned above, the received interference at the ik-th UE is the summation of the intra-

cluster and inter-cluster interferences. While the former is the interference experienced by the ik

UE from all BSs inside the i-th cluster, i.e.,

Iintra
ik, fn =

F

∑
n=1

|Ii|

∑
m=1
m 6=k

|Qi|

∑
j=1

p̄2
im, fnCim( fn, i j)p̃im,i jβik,i jTr

(
vH

im,i j
HH

ik,i j
uikuH

ik Hik,i jvim,i j

)
,

the latter is the received interference from all the BSs outside the i-th cluster and can be represented

as

Iinter
ik, fn =

F

∑
n=1

M

∑
q=1
q 6=i

|Iq|

∑
`=1

|Qq|

∑
j=1

p̄2
q`, fnCq`( fn,q j)p̃q`,q jβik,q jTr

(
vH

q`,q j
HH

ik,q j
uikuH

ik Hik,q jvq`,q j

)
.

Therefore, the SINR at the k-th user in the i-th cluster, when user ik requests file fn, can be written
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as

SINRik, fn =

|Qi|
∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j Tr
(

vH
ik,i j

HH
ik,i j

uik uH
ik Hik,i j vik,i j

)
Iintra
ik, fn

+ Iinter
ik, fn

+σ2
ik

, (4.6)

=

|Qi|
∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j |uH
ik Hik,i j vik,i j |2

uH
ik

(
F
∑

n=1
∑

(`,q)6=(k,i)

|Qq|
∑
j=1

p̄2
q`, fn

Cq`( fn,q j)p̃q`,q j βik,q j Hik,q j vq`,q j vH
q`,q j

HH
ik,q j

+σik I
)

uik

,

where Cq`( fn,q j) = Cq( fn,q j)Dq(q j,q`). Therefore the transmission rate for user ik, when re-

quests file fn, can be written as Rik, fn = log(1+SINRik, fn). The SINR at the ik user, when requests

file fn, is a function of transmit power, cache placement matrix, user association matrix, probabil-

ity of file being requested, and distance from all connected BSs to ik user. Therefore, the average

throughput of ik user can be formulated as

Rik = E{Rik, fn}=
F

∑
n=1

p̄ik, fnRik, fn , ∀i ∈M , k ∈Ii (4.7)

where expectation is with respect to both the channel realizations and the random user requests.

The distribution of the UEs’ content demands follows a Zipf-like distribution PF ( f ) given as

PF ( f ) =
1

f γ
F
∑

f=1
f−γ

, ∀ f ∈F (4.8)

where γ models the skewness of the popularity profile [111, 112]. Depending on both BSs de-

ployment strategies and users’ behavior, γ can take different values. The popularity is uniformly

distributed over content files for lower values of γ meaning that users have more distinct interests.

As γ grows, the popularity becomes more skewed towards the most popular files which means

users have very similar file interests and a small subset of files are more desired than the rest.
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4.3 Problem Formulation and Analysis

In this section, the problem of interest is a joint optimization of the content placement and content

delivery (precoding and user association). We formulate a mixed-timescale optimization problem

which maximizes the trade-off between the backhaul saving and the network throughput. For

maximizing the backhaul reduction, each UE should be associated with a BS (cluster of BSs) that

caches the largest amount of its desired contents. However, such a BS might be long way away.

On the other hand, in order to maximize the network throughput, each UE should take the BSs’

load into account and accordingly associate with a BS which provides it a reasonably high SINR.

Nonetheless, such a BS may not store the user’s desired contents. Considering such a tradeoff into

account, in this chapter the problem of maximizing the user throughput and backhaul saving with

respect to the precoding matrix, cache placement matrix, and user association matrix is formulated

subject to the peak transmission power and cache capacity constraints.

Let v =

{
vik,i j(Πi,{Hik,i j}

|Qi|
j=1) : ∀i,k, j

}
and D =

{
Di(Πi,{Hik,i j}

|Qi|
j=1) : ∀i,k, j

}
denote all

the beamforming vectors and user-association matrices for all user request profile {Πi}M
i=1 and

instantaneous channel state information matrices {Hik,i j}
|Qi|
j=1, respectively. Then for given set of

optimization variables (v,D,Ci) and user request profile {Πi}M
i=1, the average utility function of

our optimization problem can be express as
M
∑

i=1

|Ii|
∑

k=1
E
[

λRik, fn +(1−λ )
|Qi|
∑
j=1

di j,ikCi( fn, i j)

∣∣∣∣Πi

]
where

the parameter controlling the tradeoff between network throughput and backhaul saving is denoted

by 0 < λ < 1 so that by adjusting λ we can emphasize one term over the other. The optimization

variables are partitioned into short-term (user association and beamforming) and long-term (con-

tent placement) variables. While the latter one is adaptive to the popularity of data and the channel

statistics, the former one is adaptive to the instantaneous channel state information. The following

feasible sets are defined for the cache placement Ci, the user association Di, and the beamforming
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vectors vik,i j as follows

SC = {Ci : Ci( fn, i j) ∈ {0,1} ,
F

∑
n=1

Ci( fn, i j)` fn ≤ si j , ∀i ∈M , j ∈Qi},

SD = {Di : Di(i j, ik) ∈ {0,1}, ∀i ∈M , j ∈Qi,k ∈Ii},

Sv = {vik,i j :
|Ii|

∑
k=1

Tr(vH
ik,i j

p̃ik,i jvik,i j)≤ Pi j , ∀i ∈M , j ∈Qi}.

Then the joint content placement and content delivery problem is formulated as follows2:

P : maximize
Ci∈SC,D,v

M

∑
i=1

|Ii|

∑
k=1

E
[

λRik, fn +(1−λ )
|Qi|

∑
j=1

di j,ik Ci( fn, i j)

∣∣∣∣Πi

]
subject to v ∈Sv , D ∈SD

(4.9)

where the objective function can be expressed in a more compact form of
M
∑

i=1
Tr
(

λEi(Pi�Ri)+

(1−λ )PiCiDi

)
in which Ei is a F×|Ii| matrix full of 1’s and Ri is a |Ii|×F rate matrix so that

its (ik− fn)-th element is equal to Rik, fn .

Due to the coupled interference among mobile stations, the optimization problem (4.9) is non-

convex. Moreover, the entries of user association and cache placement matrices take binary values

0 and 1, thus the optimization problem falls into a mixed integer nonlinear programming (MINLP)

which is usually NP-hard in general [113] and non-tractable in practice. Since, it is highly un-

likely to compute a globally optimal solution in polynomial time, our goal is to obtain a trackable

near-optimal solution by developing effective suboptimal algorithms. By utilizing the timescale

separations of the optimization variables and making use of the fact that all constraints are separa-

ble, we divide the original optimization problem into three subproblems and propose an iterative

algorithm that at each time maximizes the objective function with respect to one variable while

assuming the rest two variables are given. Therefore, each of these subproblems can be relaxed to

a convex problem so that it can be solved efficiently. The mixed-timescale joint optimization of

content delivery and content placement can be decomposed to the following sub-problems:

2Note that we are considering a particular realization of the PPP, i.e., B is a sample of a Poisson random variable.
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(a) Short-term Content Delivery (For given Π and H)

As mentioned before, the content placement usually takes much longer than that of the content

delivery. Therefore, in this subsection, it is assumed that the content placement matrix Ci is fixed

and given. Therefore, we pay attention to the joint optimization of beamforming design and user-

association. We further decouple the joint optimization problem in two stages. At the first stage,

we associated each user with a cluster of BSs and the second stage, assuming the user-association

is fixed and given, we design the beamformers. The proposed algorithm is described as follows:

� User-association Stage: Assuming caching policy and beamforming vectors are given, the user

association problem can be simplified as

P1 : maximize
Di

M

∑
i=1

|Ii|

∑
k=1

|Qi|

∑
j=1

di j,ik µi j,ik

subject to di j,ik(1−di j,ik) = 0,∀i ∈M , j ∈Qi,k ∈Ii

(4.10)

where µi j,ik =
F
∑

n=1
p̄ik, fnCi( fn, i j) represents the amount of backhaul saving by associating ik-th UE

with the i j-th BS. Due to the fact that the entries of Di take binary values 0 and 1, the optimization

problem is a mixed integer optimization over the user association. In order to solve this optimiza-

tion problem and inspired by the idea used in [98], this chapter adopts a new approach called dual

analysis. The main idea behind this method is to answer how the optimal value can be deduced

from the constraints. This method is used in [98] and [106] to find a solution to the user association

problem in heterogeneous cellular networks under the proportional fairness criterion. Using this

method, the optimization problem can be easily decoupled among the clusters and the solution can

be expressed as:

d∗i j,ik =


1, if µi j,ik > 0

0, Otherwise
(4.11)

which shows that tacking caching placement and so backhaul reduction into account can be viewed
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as an additional incentive for UEs to associate with a BS.

� Beamforming Stage: With fixed content placement and user association, the problem of design-

ing beamforming vectors vik and uik can be written as

P2 : maximize
vik ,i j
uik ,i j

M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fn log(1+SINRik, fn)

subject to
|Ii|

∑
k=1

p̃ik,i j ‖ vik,i j ‖2≤ Pi j ,∀i ∈M , j ∈Qi

(4.12)

In order to suit our system model we applied the weighted minimum mean-square error (WMMSE)

framework [114] into the above optimization problem and modified the Proposition 3.2. in [115].

This way, each user can connect to a cluster of BSs instead of serving by only one BS. Thereby,

problem (4.12) can be effectively rewritten as

maximize
vik ,i j
uik ,i j
wik

M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fn

(
log(wik)−wik εik +1

)

subject to
|Ii|

∑
k=1

p̃ik,i j ‖ vik,i j ‖2≤ Pi j ,∀i ∈M , j ∈Qi

(4.13)

where {wik} are the weights variable introduced by WMMSE framework and {εik} are the mean

square estimation errors which are defined by

εik , |1−
|Qi|

∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j u
H
ik Hik,i j vik,i j |2

+
F

∑
n=1

∑
(`,q)6=(k,i)

|Qq|

∑
j=1

p̄2
q`, fn

Cq`( fn,q j)p̃q`,q j βik,q j |uH
ik Hik,q j vq`,q j |2 +σik‖uik‖

2

The objective function of (4.13) is convex with respect to each of the optimization variables

vik,i j , uik,i j , and wik , which enables us to employ the block coordinate descent method to solve

it [114]. To be specific, we maximize the cost function of (4.13) by updating one of three variables

vik,i j , uik,i j , and wik , while assuming the rest are given. In particular, we iteratively run the following

steps.

• Initializing all the transmit beamformers vik,i j’s, ∀i,k, j, and minimizing the weighted sum-MSE
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leads us to the MMSE receiver uik as follows

ummse
ik = J−1

ik Hik,i jvik,i j (4.14)

where

Jik =
F

∑
n=1

M

∑
q=1

|Iq|

∑
`=1

|Qq|

∑
j=1

p̄2
q`, fn

Cq`( fn,q j)p̃q`,q j βik,q j Hik,q j vq`,q j v
H
q`,q j

HH
ik,q j

+σ
2
ik I

is the covariance matrix of the total received signal at the ik receiver.

• By fixing all uik’s and vik,i j’s, ∀i, j,k, the weights, for all i and k, can be updated as follows

wik = (1−
|Qi|

∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j u
H
ik Hik,i j vik,i j)

−1, (4.15)

• By fixing all wik’s and uik’s, the transmit beamformers can be calculated using the following

optimization problem

minimize
vik ,i j

M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fnwik εik

subject to
|Ii|

∑
k=1

p̃ik,i j ‖ vik,i j ‖2≤ Pi j ,

(4.16)

Problem (4.16) is convex and (4.14) and (4.15) can be locally implemented at the users. Therefore,

we solve the problem (4.16) in a distritbuted manner based on the alternating direction method

of multipliers (ADMM) [116]. In what follows, it is shown that by exchanging a fair amount of

information between UEs and BSs the ADMM can be applied in a distributed fashion to solve

optimization problem (4.16). In order to achieve distributed implementation of the ADMM in

the aforementioned cache-enabled C-RAN network, the following assumptions are made (similar

to [114] and [115]). We assume that each BS j ∈ Qi knows Hik,i j for all ik user in cluster Bik and

each user ik can estimate the interference plus noise covariance matrix. Under these assumptions,

the ADMM can be applied distributively. Note that, In order to identify the beamforming vectors

in a distributed fashion, our aim here is to have a same form as the one in [116]. To do so, we
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introduce auxiliary variables {xik,i j} and {X ik,i j
ik } and rewrite problem (4.16) as

minimize
vik ,i j
xik ,i j

X
ik ,i j
ik

M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fn

(
|√wik −

|Qi|

∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j X
ik,i j
ik |

2

+
F

∑
n=1

∑
(`,q)6=(k,i)

|Qq|

∑
j=1

p̄2
q`, fn

Cq`( fn,q j)p̃q`,q j βik,q j |X
q`,q j
ik |2

)

subject to
|Ii|

∑
k=1

p̃ik,i j ‖ xik,i j ‖2 ≤ Pi j , ∀i ∈M , j ∈Qi,

vik,i j = xik,i j , ∀i ∈M ,k ∈Ii, j ∈Qi,

√
wik u

H
ik Hik,i j vim,i j = X im,i j

ik , ∀i ∈M , m ∈Ii, m 6= k, j ∈Qi,

√
wik u

H
ik Hik,qmvq`,qm = Xq`,qm

ik , ∀q ∈M , q 6= i, ` ∈Iq, m ∈Qq

(4.17)

Then, we form the augmented Lagrangian as follows

Lρ(v,x,X;λ ik ,zik) =
M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fn

(
|√wik −

|Qi|

∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j X
ik,i j
ik |

2 (4.18)

+
F

∑
n=1

∑
(`,q)6=(k,i)

|Qq|

∑
j=1

p̄2
q`, fn

Cq`( fn,q j)p̃q`,q j βik,q j |X
q`,q j
ik |2

)

+Re
( M

∑
i=1

|Ii|

∑
k=1

|Ii|

∑
m=1
m 6=k

|Qi|

∑
j=1
〈√wik u

H
ik Hik,i j vim,i j −X im,i j

ik ,λ
im,i j
ik 〉

)

+
ρ

2

M

∑
i=1

|Ii|

∑
k=1

|Ii|

∑
m=1
m6=k

|Qi|

∑
j=1
|√wik u

H
ik Hik,i j vim,i j −X im,i j

ik |2

+Re
( M

∑
i=1

|Ii|

∑
k=1

M

∑
q=1
q6=i

|Iq|

∑
`=1

|Qq|

∑
m=1
〈√wik u

H
ik Hik,qmvq`,qm−Xq`,qm

ik ,λ q`,qm
ik 〉

)

+
ρ

2

M

∑
i=1

|Ii|

∑
k=1

M

∑
q=1
q6=i

|Iq|

∑
`=1

|Qq|

∑
m=1
|√wik u

H
ik Hik,qmvq`,qm−Xq`,qm

ik |2

+Re
( M

∑
i=1

|Ii|

∑
k=1

|Qi|

∑
j=1
〈vik,i j −xik,i j ,zik,i j〉

)
+

ρ

2

M

∑
i=1

|Ii|

∑
k=1

|Qi|

∑
j=1
‖vik,i j −xik,i j‖2

where ρ is the penalty parameter, and λ ik , {λ
im,i j
ik |m,k ∈Ii, j ∈Qi} and zik , {zik,i j ∈ CN

i j
t |k ∈

Ii, j ∈Qi} are the scaled dual variables for the last three sets of equality constraints.
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The ADMM approach consists of three steps. First, minimizing the augmented Lagrangian

(4.18) over the decision variables v, while assuming all the other variables are given at their cur-

rent values. Second, minimizing the augmented Lagrangian (4.18) over the decision variables

{x,X}, assuming the rest of variables are given and fixed. While the latter is a constrained op-

timization problem the former is an unconstrained one. The last step consists of a simple dual

update. Therefore, assuming x and X are given, the optimization problem with respect to v can be

expressed as

minimize
v

Lρ(v,x,X;λ ik ,zik), (4.19)

which can be decomposed into i = 1, . . . ,M, k = 1, . . . , |Ii|, j = 1, . . . , |Qi|

minimize
vik ,i j

f (vik,i j) (4.20)

where f (vik,i j) is defined as

f (vik,i j), Re
( |Ii|

∑
m=1
m6=k

λ
ik,i j
im
√

wimuH
imHim,i j vik,i j

)
+

ρ

2

|Ii|

∑
m=1
m6=k

|√wik u
H
imHim,i j vik,i j −X ik,i j

im |
2

+Re
(

zH
ik,i j

(vik,i j −xik,i j)

)
+

ρ

2
‖vik,i j −xik,i j‖2,

Assuming v is given, the constrained optimization problem with respect to {x,X} can be ex-

pressed as

minimize
x,X

Lρ(v,x,X;λ ik ,zik), (4.21)

subject to
|Ii|

∑
k=1

p̃ik,i j ‖ xik,i j ‖2≤ Pi j , ∀i ∈M , j ∈Qi

which can be decomposed into i = 1, . . . ,M, k = 1, . . . , |Ii|

minimize
X

ik ,i j
ik

g(X ik,i j
ik ) (4.22)
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and i = 1, . . . ,M

minimize
xik ,i j

h(xik,i j)

subject to
|Ii|

∑
k=1

p̃ik,i j ‖ xik,i j ‖
2≤ Pi j ,

(4.23)

where g(X ik,i j
ik ) and h(xik,i j) are defined as follows

g(X ik,i j
ik ),

F

∑
n=1

p̄ik, fn

(
|√wik −

|Qi|

∑
j=1

p̄2
ik, fn

Cik( fn, i j)p̃ik,i j βik,i j X
ik,i j
ik |

2
)
−
|Ii|

∑
m=1
m6=k

|Qi|

∑
j=1

X ik,i j
im λ

ik,i j
im

+
ρ

2

|Ii|

∑
m=1
m 6=k

|Qi|

∑
j=1
|√wimuH

imHim,i j vik,i j −X ik,i j
im |

2,

h(xik,i j), Re
( |Ii|

∑
k=1

|Qi|

∑
j=1
〈vik,i j −xik,i j ,zik,i j〉

)
+

ρ

2

|Ii|

∑
k=1

|Qi|

∑
j=1
‖vik,i j −xik,i j‖2

Note that all the three subproblems (4.20) and (4.22-4.23) are convex problems and can be solved

efficiently. After calculating each variable at the m+1 iteration, we will update the λ ik as discussed

earlier.

(b) Long-term Caching Placement (For given D and v)

Assuming user-association strategy and beamforming vectors are given, the caching problem can

be decoupled among all the clusters in the aforementioned cache-enabled Cloud-RAN network.

Precisely, the caching problem for the i-th cluster can be expressed as

P3 : maximize
Ci

λ

M

∑
i=1

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fnRik, fn +(1−λ )
M

∑
i=1

F

∑
n=1

|Qi|

∑
j=1

µi j, fnCi( fn, i j)


subject to

F

∑
n=1

Ci( fn, i j)` fn ≤ si j , ∀i ∈M , j ∈Qi

(4.24)

where µi j, fn =
|Ii|
∑

k=1
p̄ik, fndi j,ik represents the amount of backhaul saving due to storing fn-th file in

the i j-th BS’s cache. Maximization of
F
∑

n=1
µi j, fnCi( fn, i j) for a simple SISO case in which both

BSs and UEs are equipped with a single antenna, and each UE is only connected with one BS

82



is considered in [106]. This maximization can be understood as follows: Which files should be

cached in the i j-th BS to achieve the backhaul reduction µi j, fn? Under the condition that all files

have the same size, the optimal solution to maximize
F
∑

n=1
µi j, fnCi( fn, i j) is caching the si j files that

make the largest backhaul reduction; i.e.,

C∗i ( fn, i j) =


1, if µi j, fn ∈ {µi j, f1, . . . ,µi j, fsi j

}

0, Otherwise

where µi j,s is the s’th item which is more requested in the list of µi j, fn [106]. If each content has

different sizes, the aforementioned caching strategy at each BS becomes a knapsack problem [117]

that can be solved using dynamic programming. Here, we consider a more general case than the

one discussed in [106], by considering the multi-cluster multi-user MIMO network in which each

UE can be associated with a cluster of BSs. Consequently, the optimization problem becomes

more complicated and the objective function can be written as:

O(Ci,C−i) =
M

∑
i=1

λ

|Ii|

∑
k=1

F

∑
n=1

p̄ik, fn log2 det

I+Mi(Ci)N−1
i (C−i)

+(1−λ )
F

∑
n=1

|Qi|

∑
j=1

µi j, fnCi( fn, i j)


,

M

∑
i=1

Oi(Ci,C−i)

where C−i , (Cq)q6=i and

Mi(Ci) =
|Qi|

∑
j=1

p̄2
ik, fnCi( fn, i j)di j,ik p̃ik,i jβik,i jHik,i jvik,i jv

H
ik,i j

HH
ik,i j

and

Ni(C−i) = ∑
(`,q)6=(k,i)

|Qq|

∑
j=1

p̄2
q`, fnCq( fn,q j)dq j,q` p̃q`,q jβik,q jHik,q jvq`,q jv

H
q`,q j

HH
ik,q j

+σ
2I.

Since the entries of Ci take binary values 0 and 1, the optimization problem falls into a mixed

integer nonlinear programming which is usually NP-hard in general [113] and non-tractable in
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practice. Therefore, we are interested in obtaining a near-optimal solution. Inspired by the pro-

posed method in [118], we allow the binary variables to take real values in [0,1], and hence the

original MINLP can be relaxed to a non-linear programming problem. Our aim is introducing

a distributed solution method that efficiently computes the stationary solutions of this problem.

To do so, we develop a Successive Convex Approximation (SCA)-based method and substitute a

series of strongly convex problems for the optimization problem (4.24). The main idea here is

approximating the non-convex objective function O(Ci,C−i) by a suitable convex approximation.

To be specific, the aim of BSs in each cluster is to choose a feasible cache placement matrix Ci that

maximizes the objective function O(Ci,C−i) assuming the strategy profile C−i is given. Inspired

by the introduced scheme in [5,119], our method is based on solving a sequence of parallel convex

problems, one for each cluster. Each of these convex problems is obtained by maintaining the con-

vex structure of the utility function while linearizing the rest around C̄i. To isolate the inter-cluster

and intra-cluster interferences which make O(Ci,C−i) nonconvex, we define the utility function of

the clusters other than the i-th cluster as

fi(Ci,C−i) = ∑
s6=i

λ

|Is|

∑
k=1

F

∑
n=1

p̄sk, fn log2 det

I+Ms(Cs)N−1
s (C−s)

+(1−λ )
F

∑
n=1

|Qs|

∑
j=1

µs j, fnCs( fn,s j)

.

Convexifing the objective function can be done by keeping the convex part; i.e., Oi(Ci,C−i)

while linearizing the nonconvex part; i.e., fi(Ci,C−i). As a consequence, we use the first order

Taylor series expansion of the function fi(Ci,C−i) that is given by:

fi(Ci,C−i)≈ fi(C̄i,C−i)+ f
′
i (Ci,C−i)|Ci=C̄i

(Ci− C̄i).

Recalling that d/dx(loga( f (x))) = f (x)
′
/( f (x) lna), the first-order differential is given by

f
′
i (Ci,C−i) = ∑

s6=i

λ

|Is|

∑
k=1

F

∑
n=1

ξ p̄sk, fn

h(Ci)

−
|Qs|
∑
j=1

p̄2
sk, fn

Cs( fn,s j)ds j,sk p̃sk,s j βsk,s j |Hsk,s j vsk,s j |2( |Qq|
∑
j=1

p̄2
q`, fn

Cq( fn,q j)dq j,q` p̃q`,q j βsk,q j |Hsk,q j vq`,q j |2 +σ2I
)2
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where ξ =
|Qi|
∑
j=1

p̄2
i`, fndi j,i` p̃i`,i jβsk,i j |Hsk,i jviq`,i j |2 and

h(Ci), 1+

 |Qs|

∑
j=1

p̄2
sk, fn

Cs( fn,s j)ds j,sk p̃sk,s j βsk,s j |Hsk,s j vsk,s j |2

×
 ∑

(`,q)6=(k,s)

|Qq|

∑
j=1

p̄2
q`, fn

Cq( fn,q j)dq j,q` p̃q`,q j βsk,q j |Hsk,q j vq`,q j |2 +σ
2I


−1

By keeping only the linear term in the TaylorâĂŹs expansion of fi(Ci,C−i) around C̄i and

adding a proximal like regularization term, the objective function in (4.24) can be approximated as

Õ(Ci,C−i) = Oi(Ci,C−i)+Ci( fn, i j) f
′
i (Ci,C−i)|Ci=C̄i

− τi

2
|Ci( fn, i j)− C̄i( fn, i j)|2

where τi is a given nonnegative constant. Now, it is possible to approximate (4.24) by a set of |Qi|

per cluster problems given for i ∈M by

maximize
Ci∈K

Õ(Ci,C−i) (4.25)

where K , {Ci( fn, i j)|
F
∑

n=1
Ci( fn, i j)` fn ≤ si j}. Using the proposed algorithm in [119], for each

BS we have got the following best response mapping which consisting in solving iteratively the

sequence of a (strongly) convex optimization problem

C∗i ( fn, i j) = argmax
Ci∈K

Õ(Ci,C−i) (4.26)

Unlike (4.24), (4.26) is strongly convex and can be efficiently solved by numerical iterative algo-

rithms.

Remark 7. (A Summary of Overall Operation) Utilizing the timescale separation of the opti-

mization variables, we divide the original solution into short-term content delivery and long-term

content placement. While the short-term process consists of user-association and beamforming
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optimization, the long-term process is composed of cache content placement. The content place-

ment and the content delivery optimizations are performed in the cloud. The caching placement

strategy is adaptive to the channel statistic. As soon as the user request profile changes, the cloud

computes the updated cache placement and passes it to the BSs. Then the BSs update their cache.

In each channel coherence time, the channel state information is acquired from the users through

feedback, and the user-association and beamforming vectors are determined based on the instan-

taneous channel realization.

Remark 8. (Computational Complexity) Since we employ the WMMSE algorithm [114] for de-

signing the beamformers, the computational complexity of the beamforming optimization problem

is much like the WMMSE, with the difference that the introduced ADMM-based algorithm decom-

poses the original large-scale problem into parallel small-scale subproblems. As a result, it needs

more complex calculations than the coordinated descent method which is more desirable when the

network size is small. However, the computation complexity of the proposed algorithm increases

at a slower linear rate with respect to the number of users. The computational complexity of the

user-association algorithm is similar to [98] and is polynomial in relation to the network size.

However, we further lower the complexity of associating a user with a BS by taking content place-

ment into account and excluding the candidate users that increase the backhaul consumption from

consideration. The computational complexity of the long-term caching placement is exceedingly

low due to the fact that for each realization of the user request profile, the only thing the introduced

algorithm needs to do is a simple Jacobi/Gauss-Seidel update.

4.4 Simulation Evaluations

In this preliminary simulation evaluation, we evaluate the performance of the proposed schemes in

cache-enabled Cloud-RAN networks. The setup of our experiments is the following: we simulated

a multi-cluster multi-user cache-enabled Cloud-RAN network in which the locations of the BSs

are modeled using a PPP with density λB = 1/(πR2
B) = 5 BS/km2 which corresponds to an av-
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erage inter-site distance of 500 m. Multiple users are randomly and uniformly distributed around

each BS, excluding an inner circle of 35 meters, as illustrated in figure 5.1. The transmission is

subject to interference from all neighboring base stations that do not serve the specific user. The

transmit antenna power gain and the transmit power at each BS is set to 10 dBi and 46 dBm, re-

spectively. The noise variance at the mobile station is fixed to −174 dBm. System bandwidth is

taken as 5 MHz. We consider a possible antenna configuration in a typical deployment scenario

for LTE/LTE-Advanced systems: 4 transmit and 2 receive antennas. The simulation is run for

1000 channel realizations where each channel is an uncorrelated Rayleigh fading and each chan-

nel element is drown i.i.d from a complex Gaussian distribution with zero mean and a variance

of 1, i.e., C N (0,1). The path-loss is generated using 3 GPP (TR 36.814) methodology; i.e.,

PL(dB) = 148.1+37.6log10(d), where d is the distance in kilometers. The log-normal shadowing

parameter is assumed to be 8 dB. The total number of files available in the cloud is considered

as F = 20. For the sake of simplicity, it is assumed that all files have the same size of one while

the caches of the BSs can be filled with the s = {1,2,4,8,10} bits of the most popular files. A

Zipf-like distribution with parameter 0.56 is considered for the file popularity.

Figure 4.3 plots the average network throughput versus the SNR in the cache-enabled Cloud-
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Figure 4.2. A realization of the Cloud-RAN network.
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RAN containing of 10 user equipments. Here, we assume that each BS has the same cache size

of 4. The algorithm is initialized by choosing a randomly generated feasible point. Moreover, the

termination criterion is satisfied when the absolute value of the network throughput error in two

consecutive rounds becomes smaller than 1e−2.

Figure 4.4 shows the average network throughput versus the number of user equipments. Here

we assumed that UEs have the same SNR, due to the fact that co-scheduled UEs usually have

similar SNRs in multi-user MIMO operation. The average network throughput is plotted for two

different SNR values. It is observed that the average sum rate gradually increases when the number

of user equipments becomes larger. In addition, the average number of iterations versus the number

of user equipments is plotted in figure 4.5. The average is taken over 1000 independent channel

realizations. It is observed that the algorithm converges in several steps. Moreover, the average

CPU time versus the total number of UEs is plotted in figure 5.3. Our experiments were run using

Matlab R2016b on a 3.6 GHz Intel(R) Xeon(R) E51620 Processor Cores machine, equipped with

8 GB of memory. As can be expected, the average CPU time increases with the number of user

equipments.

The influence of weighted coefficient on the introduced objective function in (10) is demon-

strated in figure 4.7. The results can be interpreted as follows: when λ increases the backhaul

saving plays a less critical role than the network throughput. Conversely, when λ approaches zero
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Figure 4.3. Average sum-rate versus SNR.
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Figure 4.4. Average sum-rate versus number of
UEs.
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the backhaul reduction dominates the objective function. Figure 4.7 also investigates the influence

of the cache size. It shows that the defined weighted objective function of the network with bigger

cache size always performs better than the system in which the BSs have a smaller cache. The

reason is, the smaller the cache sizes, the less the portions of contents cached. Therefore, the files

need to fetch from cloud, which increases the backhaul usage. Moreover, when the size of caches

grow from 2 to 8, an increase of approximately 76.42% in the backhaul saving is observed. Fur-

thermore, 84% additional increase is acquired when the cache sizes enlarge from 1 to 2. It shows

that even a small size of cache at each BS causes a substantial decrease in the backhaul usage.

Figure 4.8 demonstrate the performance comparison between our scheme and some bench-

marks [90]. A different metric, normalized network cost is used for the comparison which is

defined as a weighted sum of the backhaul cost and the transmit power cost. As shown in figure

4.8, compared to the full group sparse beamforming (F-GSBF) algorithm and the partial group

sparse beamforming (F-GSBF) algorithm proposed in [90] which considered the caching matrix

is given, our introduced algorithm can reduce the network cost which can interpreted as follows.

Tacking caching placement into account can be viewed as an additional incentive for backhaul

reduction.
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Figure 4.5. Average number of iterations vs num-
ber of UEs
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4.5 Conclusion

In this chapter we introduced a novel iterative algorithm to increase the network throughput and

backhaul saving of a multi-cluster multi-user Cloud-RAN, by jointly optimizing the user associ-

ation, caching placement, and beamforming design. The proposed algorithm utilizes the ADMM

along with the SCA-based method and enables all base stations to update their optimization vari-

ables in parallel. Simulation results demonstrated that efficiently designing of the caching place-

ment along with the user association and beamforming design will greatly influence the backhaul

saving and network throughput.
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Table 4.1: Nomenclatures and Notations Used

Notation Description
B Number of BSs
K Number of UEs
M Number of Clusters
|Ii| Number of UEs in the ith cluster,
|Qi| Number of BSs in the ith cluster,
i j The jth BS in the ith cluster
ik The kth UE in the ith cluster

Ni j
t Number of transmit antennas at the i j BS

Nik
r Number of receive antennas at the ik UE

Gik,i j The channel coefficient between the i j BS and the ik UE
βik,i j Large-scale fading coefficients
dik,i j The distance between the ik UE and the i j BS
α The path-loss exponent
ψik,i j A log-normal random variable
σshadowing The standard deviation of shadowing
Hik,i j The small-scale fading coefficients between the i j BS and the ik UE
F Number of data files at the cloud
l fn The size of the f th

n file in bits
si j The capacity of the cache at the i j BS
qik Number of requests made by the ik UE over a given time interval
πik The index of the requested file by the ithk user
p̄ik, fn Probability that the ik UE request file fn

pi j, fn The popularity distribution of file n observed at the i j-th BS
Di The user association matrix in the ith cluster
Ci The cache placement matrix in the ith cluster
Cik The caching matrix corresponding to the BSs that are associated with UEï£¡ik
Bik A cooperating set of BSs assigned to ithk user
Ki j A set of users served by ithj BS
sik,i j The transmit symbol from the i j BS and the ik UE
p̃ik,i j The transmit power allocated to the ik UE from the i j BS
vik,i j The unit-norm beamformer from the i j BS to the ik UE
Pmax

i j
The transmit power constraint at the i j BS
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Chapter 5

Cell-free Massive MIMO networks:

Resource Allocation

5.1 Introduction

Multiple-input multiple-output (MIMO) systems with a large array antenna at the base stations

(BSs), also known as Massive MIMO, have been widely studied recently to improve the spectral

and energy efficiency of wireless systems with simple signal processing [120]. Due to the promis-

ing gains in [120], depicting high performance results with respect to the baseline MIMO system,

more attention has been paid to the topic both in the academia [121,122] and in the industry [123].

Massive MIMO allows a BS to simultaneously serve many number of user equipments (UEs) along

with time-frequency resources to improve the overall system performance. In general, depending

on the antenna arrays setup at the BSs, massive MIMO can be categorized into the following two

architectures: distributed massive MIMO and co-located massive MIMO. While the latter one lo-

cates the service antennas in a compact area, the former spreads antennas all over a large area.

Although the co-located architecture is attractive due to its low backhaual requirements, the dis-

tributed one offers higher coverage probability at the expense of increased infrastructure costs.

A cell-free Massive MIMO network, which has been introduced recently in [124], is a form of
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distributed massive MIMO. It is considered a promising network architecture for the upcoming 5G

wireless networks due to its ability to offer huge throughput and coverage probability to all users

throughout a system. This architecture spreads a tremendous number of randomly-located access

points (APs) over a large area, to simultaneously serve a much smaller number of single-antenna

UEs, as an alternative to a small-cell network. In order to have an efficient resource allocation and

interference management among multiple APs, unspecified backhaul links connect all these APs

to a central processing unit (CPU) [124–126].

The performance of conjugate beamforming (CB) along with a pilot assignment algorithm has

been investigated in [124, 125] to combat pilot contamination in a cell-free massive MIMO net-

work. In order to boost system throughput, a max-min power allocation was considered. However,

the optimal solution to the power allocation problem involves high computational complexity, due

to the non-convexity of the optimization problem. To address this issue, [126] proposed a power

allocation algorithm with a trade-off between low complexity and moderate decrease in perfor-

mance. The authors in [126] further combined the max-min power allocation algorithm with a

linear zero-forcing (ZF) precoder to tackle the high inter-user interference in CB technique. These

studies restricted their discussion to the simplest linear precoding schemes which are CB and ZF,

and did not design an optimal beamformer that ensures uniformly good service over all the cover-

age area.

In order to address this issue and improve the system performance along with per-user mini-

mum level of service, we propose a design of the resource allocation in a way that the same quality

of service can be provided to all UEs [127]. To enforce such fairness, we maximize (over the re-

source allocation: precoding vectors and power allocations) the minimum achievable rate among

the users in a cell-free massive MIMO network. Due to the coupled interference among UEs, the

resulting optimization problem is non-convex and difficult to solve. Therefore, we demonstrate

the uplink-downlink duality and propose an iterative algorithm which solves the primal downlink

problem efficiently by utilizing the result of the dual uplink. Exploiting proposed precoder and

taking the channel estimation error into consideration, we derive the lower bound for the capacity
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Figure 5.1. System architecture of a cell-free massive MIMO network.

of the underlying cell-free massive MIMO system. Furthermore, unlike [124–126] which assumed

each single-antenna AP serves all UEs, we consider a cluster of multiple-antenna APs serving each

UE. Note that, the strongest APs under coordination may not necessarily be the nearest ones to the

UE, due to the shadowing effect.

5.2 System Model and Assumptions

We consider a downlink cell-free massive MIMO network consisting of one central processing unit,

M access points, and K user equipments as depicted in Figure 5.1. The APs and UEs are randomly

distributed over a large area. To exchange the network information, all APs are connected to the

CPU through error-free infinite-capacity backhaul links.1 Each AP is equipped with Nt transmit

antennas, serves several single-antenna UEs. We assume that each UE is served by a cluster of

cooperative APs. To be specific, a cooperating set Bk is assigned to the kth UE, where Bk is formed

by aggregating all the APs that have knowledge of channels to the kth UE, access to its message,

and may also jointly encode the intended message for the kth UE in their transmission [110]. Note

that, due to the shadowing effect, the |Bk| strongest APs under coordination are not necessarily the

1However, in a practical scenario the backhaul links are subject to practical constraints and investigating the effect
of these constraints would be an important topic for future work.
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|Bk| nearest APs, where |Bk| denote the setâĂŹs cardinality. Since each AP may get involved in

transmission to more than one UE, the cooperating set of different users may overlap. We denote

the set of users served by the ith AP by Ki = {k|i ∈Bk}.

The channel (propagation) coefficient between the ith AP and the kth UE form channel vector

gk,i =
√

βk,ihk,i ∈ CNt where βk,i and hk,i indicate the large-scale and small-scale fading coeffi-

cients, respectively. The large-scale fading coefficient depends upon the shadowing and distance

between the corresponding UE and AP, and is denoted by βk,i = ψk,id−α

k,i where dk,i is the distance

between the kth user and the ith AP; α is the path-loss exponent; and ψk,i is a log-normal random

variable, i.e., the quantity 10log10(ψk,i) is distributed zero-mean Gaussian with a standard devia-

tion of σshadowing. Here, we employ the same three slope path-loss model as in [125,128,129]. The

path loss from the kth user to the ith AP is modeled as COST-231 Hata propagation model [130]

and can be expressed in dB as

PLk,i =



−L−35log10(dk,i), if dk,i > d1

−L−10log10(d
2
k,id

1.5
1 ), if d0 < dk,i ≤ d1

−L−10log10(d
2
0d1.5

1 ), if dk,i ≤ d0

where

L = 46.3+33.9log10( f )−13.82log10(hAP)

−
(

1.11log10( f )−0.7
)

hUE +1.56log10( f )−0.8

where f is the carrier frequency in MHz, and hAP and hUE indicate the effective transmitter and

receiver antenna heights in meters, respectively. Furthermore, we assume that the shadow fading

random variables are correlated, since in a practical scenario the APs and UEs may be located

close by, and therefore be all around the common obstacles. To model this correlation, we use the
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two-component shadowing correlation model, as in [125, 128, 131],

zk,i =
√

δai +
√

1−δbk

where 0≤ δ ≤ 1 depicts the cross-correlation at the AP while (1−δ ) denotes the cross-correlation

at the UE, and ai∼N (0,1) ∀i= 1, . . . ,M and bk∼N (0,1) ∀k = 1, . . . ,K are independent random

variables with E{aia∗j}= 2−dAP(i, j)/ddecorr and E{bkb∗`}= 2−dUE(k,`)/ddecorr where dAP(i, j)(dUE(k, `))

denotes the geographical distance between the ith and jth (kth and `th) APs (UEs), and ddecorr is the

decorrelation distance. Therefore, the large-scale fading coefficients can be modified as βk,i =

10PLk,i/10 · 10zk,iσshadowing/10. The small-scale fading coefficients, i.e., elements of hk,i, are modeled

as i.i.d. complex Gaussian variables with zero-mean and unit-variance [124]. We further assume a

block fading model, where small-scale channels are constant over a few time slots, with respect to

channel estimation and channel state information (CSI) feedback procedures [132,133]. Similarly,

we assume that large-scale fading coefficients stay constant during large-scale coherence blocks.

The small-scale and large-scale fading coefficients in different coherence blocks are assumed to be

independent.

Time-division duplexing (TDD) mode is assumed in this system. In the uplink training phase,

the users send pilot sequences to the AP synchronously. Each AP estimates the channel to all users

based on the received pilot signals. Assuming βk,i is known, as in [124], the ith AP computes the

minimum mean squared error (MMSE) estimate of the channel vectore gk,i as ĝk,i. Considering the

channel estimation error as g̃k,i = gk,i− ĝk,i, it is easy to show that g̃k,i and ĝk,i are uncorrelated

[134]. In the downlink phase, the channel estimates ĝk,i are regarded as true channels by APs,

i.e., APs rely on channel hardening, and use these channel estimates to precode data to UEs.

Each AP, say i ∈ {1,2, . . . ,M}, plans to communicate a symbol vector si = [si1, . . . ,si|Ki|
]T ∈ C|Ki|

to its associated receivers, where sik is the transmit symbol from the ith AP to the kth receiver

with unit power of E{|sik |2} = 1. Prior to transmitting, the ith AP linearly precodes its symbol

vector xi = ∑
|Ki|
k=1 fiksik where fik denotes the precoding vector that the ith AP uses to transmit the
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signal sik to the kth UE and ||fik ||2 is the allocated downlink transmit power. Each AP i is under

a transmit power constraint of Pi,max and so, the transmit power at the ith AP is computed as

pi =E{||xi||2}≤Pi,max [?,?]. In order to transmit data to the kth UE, coordinated joint transmission

is used to coherently combine the received signals from APs that serve the kth UE. Since there are

|Bk| APs participating in the cooperating data transmission to user k, at the same frequency and

time, we denote sk ∈ C as the complex data symbol for the kth UE. Hence, over each symbol

duration time, the cooperating APs transmit the same symbol sk. The received signal at the kth

receiver can be written as:

yk = ∑
i∈Bk

gk,ifiksk +
M

∑
j=1

j 6∈Bk

K

∑
`=1
6̀=k

gk, jf j`s`+nk (5.1)

where the first term on the right-hand side of (5.1) depicts the received useful signal, the second

term denotes the multi-user interference, and nk ∼ C N (0,1) is the additive white Gaussian noise

(AWGN) at the kth UE. Recall that the signal-to-interference-plus-noise ratio (SINR) is defined as

the ratio of the received signal power at the desired user to the interference power plus the noise

power, the SINR at the kth UE can be expressed as

SINRk =
∑i∈Bk

βk,iTr(fH
ik hH

k,ihk,ifik)

σ2
k +∑

K
`=1
6̀=k

∑ j∈B`
β`, jTr(fH

j`h
H
k, jhk, jf j`)

=
∑

M
i=1 βk,iTr(fH

ik hH
k,ihk,ifik)

σ2
k +∑

M
j=1
j 6=i

∑
K
`=1
6̀=k

β`, jTr(fH
j`h

H
k, jhk, jf j`)

where the second equality holds under the assumption that fik = 0 for i 6∈ Bk. Therefore, the

downlink achievable transmission rate for the kth UE can be expressed as Rk = log2(1+SINRk).
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5.3 A Novel Algorithm for Downlink Resource Allocation

In order to assure a uniform user experience across the network along with the improved system

performance, the problem of interest in this chapter is to maximize (over the resource allocation:

precoding vectors and power allocations) the minimal performance of each user in a cell-free

massive MIMO network. Precisely, we are interested in the max-min SINR problem, over the

transmit precoder and power control, given by

max
fik

min
k

SINRk (5.2)

which is subject to ∑k∈Ki fH
ik fik < Pi,max.

Due to the interference present, the optimization problem (5.2) is non-convex and hence, find-

ing the global optimum is challenging. Therefore, in order to efficiently solve this optimization

problem we take advantage of the fact that in contrast to the downlink SINR which is coupled

with both precoders and transmit powers; the uplink SINR is only accompanied by transmit power,

thereby, it provides an easier optimization problem to solve. Consequently, to exploit network

duality, we need to reformulate the optimization problem (5.2), in terms of precoders. We use the

following theorem for this purpose, which establishes the uplink-downlink duality for the downlink

beamforming in a cell-free massive MIMO network.

Theorem 10. Let pk be the uplink transmit power of user k and pik stands for the allocated

downlink transmit power to user k from the i-th AP. Then, the uplink and downlink SINR will

be equal if the downlink power allocation satisfies the same power constraint as in the uplink, i.e.,

∑
M
i=1 ∑k∈Ki pik = ∑

K
k=1 pk.

Proof. The proof can be achieved by following the procedures incorporated by Theorem 3 in

[135].

Using Lagrangian duality presented in Theorem 10, the primal downlink problem (5.2) can be

solved by exploiting the result of the dual uplink problem. Therefore, the optimal beamforming
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vector in (5.2) can be acquired using the following theorem.

Theorem 11. The optimal precoder fik , which the i-th AP uses to transmit the signal sik to the k-th

UE, is given by f∗ik =
√pikuH

k /||uk||2 where uk is the optimal receive beamformer of the Lagrangian

dual uplink problem of (5.2) and can be expressed as uk = uopt[(k− 1)Nt + 1 : kNt ] where uopt =

νmax(B−1
i Ai) and Ai and Bi are defined as follows

Ai =



Ri,1 0 · · · 0

0 Ri,2 · · · 0
...

... . . . ...

0 0 · · · Ri,|Ki|


, Bi = I+∑

j 6=i
A j

where Ri,k = pkgH
i,kgi,k/σ2

i .

Proof. The Lagrangian dual uplink problem of the underlaying downlink precoding problem (5.2)

can be written as

max
uk

∑k∈Ki uH
k Ri,kuk

uH
k

(
I+∑ j 6=i ∑`∈K j Ri,`

)
uk

s.t. ∑
k∈Ki

pk < Pmax

The above optimization problem can be rearranged as

max
u

Tr(uHAiu)
Tr(uHBiu)

(5.3)

where u , vec(uT
1 uT

2 . . . uT
|Ki|) and the power constraint will be satisfied with ||u||2 ≤ Pmax. It

can be shown that the optimum beamformer u at problem (5.3) can be obtained by generalized

eigenvalue decomposition as uopt = νmax(B−1
i Ai).

Utilizing the optimal precoder f∗ik as given in Theorem 11, it can be shown easily that the

optimal downlink transmit power at each AP can be given using the following corollary.
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Corollary 1. Using the optimal beamformer f∗ik and assuming the perfect channel state information

is available, the optimal downlink transmit power at the ith AP can be expressed as follows:

p∗i = [p∗i1, . . . , p∗ik , . . . , p∗i|Ki|
]T

= ξiσ
2
ik(I|Ki|−ξiΓϒ)−1

Γ1|Ki|

where p∗ik denotes the optimal allocated downlink transmit power to the kth user from the ith AP,

Γ is a diagonal matrix where the kth nonzero elements in the diagonal is given by ‖f∗ik‖
2/|gH

i,kf∗ik |
2

while all its non-diagonal elements are zero, the entries outside the main diagonal of matrix ϒ are

given by [ϒ]k,i = |gH
i,kf∗ik |

2/‖f∗ik‖
2 while all its diagonal elements are zero, and ξi can be expressed

as

ξi =
Pi,max

∑
|Ki|
k=1(g

H
i,kf∗ik)

−1
.

Taking into consideration the existence of channel estimation error, the following theorem pro-

vides the lower bound on UE achievable rate in the underlying cell-free massive MIMO network.

Theorem 12. Considering the channel estimation error and by utilizing max-min precoder and

power control, the achievable rate lower bound of underlying cell-free massive MIMO network

can be expressed as

log2(1+

E
{
| ∑

i∈Bk

ĝk,ifiksk|2
}

E
{
|

M
∑
j=1

j 6∈Bk

K
∑
`=1
6̀=k

ĝk,if j`s`|2 + |
M
∑
j=1

K
∑
`=1

g̃k, jf j`s`|2
}
+1

)

Proof. Taking the channel estimation error g̃k,i into consideration, the received signal in (5.1) can
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be re-evaluated as

yk = ∑
i∈Bk

ĝk,ifiksk︸ ︷︷ ︸
desired signal

+
M

∑
j=1

j 6∈Bk

K

∑
`=1
6̀=k

ĝk,if j`s`

︸ ︷︷ ︸
multi-user interference

+
M

∑
j=1

K

∑
`=1

g̃k, jf j`s`︸ ︷︷ ︸
channel estimation error

+nk

All the terms in the right hand side of the above equation are mutually uncorrelated due to the as-

sumption that the signals are different for distinctive users, and nk is independent from the channel

coefficients and data symbols. In order to acquire the lower bound of the achievable rate, we take

the worst case noise into account. It is shown in [136, Theorem 1] that the worst case noise is a

Gaussian additive noise with the variance equal to the accumulation of variance of noise, multi-user

interference, and channel estimation error. Therefore, the SINR can be written as

SINRk =

E
{
| ∑

i∈Bk

ĝk,ifiksk|2
}

E
{
|

M
∑
j=1

j 6∈Bk

K
∑
`=1
6̀=k

ĝk,if j`s`|2 + |
M
∑
j=1

K
∑
`=1

g̃k, jf j`s`|2
}
+1

and the achievable rate lower bound of underlying cell-free massive MIMO network can be ex-

pressed as log2(1+SINRk).

5.4 Simulation Evaluations

In this preliminary experimental evaluation, we evaluate the performance of the proposed schemes

for a downlink cell-free massive MIMO network. The setup of our experiments is in accordance

with the ones in [124, 125, 128] and given as follows. We simulated a cell-free massive MIMO

network in which M APs and K single-antenna UEs are randomly distributed over a square dense

urban area of size 1000× 1000 m2. We employ a three-slope path-loss model along with an un-

correlated shadowing model as discussed in Section II. The transmission is subject to interference

from all APs in the area. We assume that all the pilot sequences have the same length as the number
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of UEs, i.e., τ = K. All deployments and channel model parameters are listed in Table 5.1. The

performance is measured in terms of the power consumption (dBm) and the rate (bit/s) per each

UE. Moreover, we considered the following schemes for comparison under simulation: CB with

optimal power allocation [124] and ZF with optimal power allocation [126].

The average total power consumption per UE in dBm is modeled as in [137, 138] and demon-

strated in Figure 5.2. We compare the proposed resource allocation scheme with the co-located

massive MIMO, the cell-free ZF with optimal power allocation, and the cell-free CB with opti-

mal power allocation. It is shown that although the cell-free ZF algorithm with optimal power

allocation causes an improved energy efficiency in compare with cell-free CB and co-located mas-

sive MIMO architecture, by designing the beamforming and power allocation vectors the proposed

algorithm provides better improvements in terms of energy efficiency.

Figure 5.3 depicts the average rate per UE versus the number of UEs in the underlying network,

for both cell-free and co-located massive MIMO architectures. It is demonstrated that the cell-free

massive MIMO architecture outperforms the co-located one for different number of UEs as well

as resource allocation schemes. The results indicate that for smaller number of UEs the proposed

algorithm provides slightly higher achievable rate than other schemes. However, it is notable that

Table 5.1: System Parameters

Parameters Values
Shadowing standard deviation 8 dB
Transmitted power of each UE 20 dBm
AP radiated power 23 dBm
Carrier frequency 1.9 GHz
Bandwidth 20 MHz
Noise figure 9 dB
Thermal noise level -174 dBm/Hz
AP antenna height 15 m
UE antenna height 1.65 m
d1 50 m
d0 10 m
ddecorr 100 m
δ 0.5
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Figure 5.2. Average total power consumption versus total number of transmit antennas in a cell-
free massive MIMO network.
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Figure 5.3. Downlink average rate per UE versus total number of UEs in both cell-free and co-
located massive MIMO networks.

with an increase in the number of UEs, the achievable rate is significantly higher.

5.5 Conclusion

We have studied the downlink resource allocation in a cell-free massive MIMO network and pro-

posed an algorithm for maximizing (over the resource allocation: precoding vectors and power

allocations) the minimum achievable rate among the UEs in the network. The optimal solution of

this problem was obtained by utilizing the uplink-downlink duality. Exploiting proposed beam-

formers and taking the effects of channel estimation error into consideration, we analyzed the per-
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formance of underlying cell-free massive MIMO network and derived the capacity lower bound.

Through the system level evaluations, the results showed that the proposed algorithm significantly

outperforms the conventional resource allocation schemes in practical environments.
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Chapter 6

Conclusions

These days, wireless communications are becoming so tightly integrated in our daily lives, es-

pecially with the global spread of laptops, tablets and smartphones. This has paved the way to

dramatically increasing wireless network dimensions in terms of subscribers and amount of flow-

ing data. Due to ever-increasing usage of wireless mobile devices, it has become necessary to

improve the spectral efficiency of wireless networks. The next generation of wireless commu-

nication networks, also known as 5G, is supposed to do that. The two important fundamental

requirements for the future 5G wireless networks are abilities to support high data traffic and ex-

ceedingly low latency. A likely candidate to fulfill these requirements is multi-cell multi-user

multi-input multiple-output (MU-MIMO); also termed as coordinated multi-point (CoMP) trans-

mission and reception in 3GPP LTE-Advanced systems. In order to achieve the highest possible

performance of this aforementioned candidate technology, a properly designed resource allocation

algorithm is needed. By designing a resource allocation algorithm which maximizes the network

throughput, this technology is able to manage the exponential growth of wireless network dimen-

sions. Moreover, with the rapidly growing data traffic, interference has become a major limitation

in wireless networks. To deal with this issue and in order to manage the interference in the wire-

less network systems, various interference mitigation techniques have been introduced in literature

among which interference alignment (IA) has been shown to significantly improve the network

105



performance. However, how to practically use IA to mitigate inter-cell interference in downlink

multi-cell multiuser MIMO networks still remains an open problem.

In this dissertation, we improved the performance of wireless networks in terms of spectral

efficiency, by developing new algorithms and protocols that can efficiently mitigate both inter-cell

and intra-cell interference, and allocate the resources. In particular, we focused on designing new

precoding algorithms. Furthermore, we mathematically analyzed the performance improvement

of multi-user MIMO networks employing proposed techniques and revealed the fundamental rela-

tionships between network parameters and the network performance, which provided guidance on

the wireless networks design.

In Chapter 2, we reviewed various interference mitigation techniques in multi-cell multi-user

MIMO networks in order to develop an efficient interference mitigation method. In this chap-

ter, limited feedback-based co-channel interference mitigation of a multi-cell multi-user MIMO

was investigated. To be specific, limited feedback-based interference alignment was introduced to

eliminate the inter-cell interference while an improved low complexity iterative leakage-based co-

ordinated beamforming strategy was introduced to mitigate the intra-cell interference. By jointly

considering the transmit beamforming, receive beamforming, and the quantization error of the

codebook based feedback, our algorithm greatly mitigates the co-channel interference and achieves

a better performance compared to the traditional ones. Through system level evaluations, it was

shown that the introduced scheme significantly outperforms the conventional interference manage-

ment schemes in practical environments.

In Chapter 3, we analyzed the state-of-the-art to identify the sub-optimal resource allocation

technique in Coordinated Multi-Point transmission and reception networks. In this chapter, a re-

source allocation problem has been studied for downlink CoMP coordinated beamforming systems

where each base station serves its own mobile stations. Due to the coupled interference among mo-

bile stations the resulting optimization problem became non-convex. To solve for optimal resource

allocation strategies including downlink precoding and power allocation for CoMP-CB transmis-

sions, we have introduced a stochastic parallel successive convex approximation-based algorithmic
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framework for a general non-convex network proportional-fair metric optimization problem. The

introduced novel decomposition enabled all base stations to update their optimization variables in

parallel by solving a sequence of strongly convex subproblems. Moreover, closed-form expres-

sions of the locally optimal solution were characterized in some special cases as well as in both

high and low SNR regimes. Numerical results shown that the introduced scheme significantly

improved and optimized the system performance by mitigating inter-cell interference.

In Chapter 4, we reviewed various aspects of wireless caching technology to develop a backhaul-

aware network utility objective function. To this end, available studies on this topic was summa-

rized and organized in such a way that helps the reader to develop a critical perspective. In this

chapter, we introduced a novel iterative algorithm to increase the network throughput and back-

haul saving of a multi-cluster multi-user Cloud-RAN, by jointly optimizing the content delivery

and content placement. The proposed algorithm utilized the alternating direction method of multi-

pliers along with the successive convex approximation-based method, and enabled all base stations

to update their optimization variables in parallel. Simulation results demonstrated that efficiently

designing of the caching placement along with the user association and beamforming design will

greatly influence the backhaul saving and network throughput.

Finally, in Chapter 5, We have studied the downlink resource allocation in a cell-free mas-

sive MIMO network and proposed an algorithm for maximizing (over the resource allocation:

precoding vectors and power allocations) the minimum achievable rate among the users in the

network. By utilizing the uplink-downlink duality, the optimal solution of this problem was ob-

tained. Exploiting proposed beamformers and taking the effects of channel estimation error into

consideration, we furthermore analyzed the performance of underlying cell-free massive MIMO

network and derived the capacity lower bound. Through the system level evaluations, the results

showed that the proposed algorithm significantly outperforms the conventional resource allocation

schemes in practical environments.
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Cisco Systems, March 2017.

[2] S. Mosleh, L. Liu, H. Hou, and Y. Yi, “Coordinated data assignment: A novel scheme for big

data over cached cloud-RAN,” IEEE Global Communications Conference (GLOBECOM),

Feb. 2017.

[3] M. Costa, “Writing on dirty paper (corresp.),” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp.

439–441, May 1983.

[4] L. Liu, J. C. Zhang, Y. Yi, H. Li, and J. Zhang, “Combating interference: MU-MIMO,

CoMP, and HetNet,” J. of Commun., vol. 7, no. 9, pp. 646–655, Sept. 2012.

[5] S. Mosleh, L. Liu, and J. Zhang, “Proportional-fair resource allocation for coordinated

multi-point transmission in LTE-advanced,” IEEE Trans. Wireless Commun., vol. 15, no. 8,

pp. 5355–5367, Aug. 2016.

[6] B. Farhang-Boroujeny, Q. Spencer, and A. L. Swindlehurst, “Layering techniques for space-

time communications in multi-user networks,” 58th IEEE Vehicular Technology Conf. (VTC)

2003, pp. 1339–1343, Oct. 2003.

[7] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink

spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52,

no. 2, pp. 461–471, Feb. 2004.

108



[8] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling us-

ing zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541,

March 2006.

[9] M. Sadek, A. Tarighat, and A. H. Sayed, “Active antenna selection in multiuser MIMO

communications,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1498–1510, April 2007.

[10] C. Suh and D. Tse, “Interference alignment for cellular networks,” 46th Annu. Allerton Conf.

on Commun., Control, and Computing, pp. 1037–1044, Sept. 2008.

[11] C. Suh, M. Ho, and D. Tse, “Downlink interference alignment,” IEEE Trans. Commun.,

vol. 59, no. 9, pp. 2616–2626, Sept. 2011.

[12] L. Liu and J. Zhang, “New leakage-based iterative coordinated beamforming for multi-user

mimo in LTE-advanced,” IEEE Int. Conf. on Commun. (ICC) 2012, pp. 2308–2312, June

2012.

[13] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communication over MIMO X

channels: Interference alignment, decomposition, and performance analysis,” IEEE Trans.

Inf. Theory, vol. 54, no. 8, pp. 3457–3470, Aug. 2008.

[14] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom for the K

user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425–3441, Aug.

2008.

[15] S. Mosleh, J. Abouei, and M. R. Aghabozorgi, “Distributed opportunistic interference align-

ment using threshold-based beamforming in MIMO overlay cognitive radio,” IEEE Trans.

Veh. Technol., vol. 63, no. 8, pp. 3783–3793, Oct. 2014.

[16] S. Mosleh, L. Liu, Y. Li, and J. Zhang, “Interference alignment and leakage-based itera-

tive coordinated beam-forming for multi-user MIMO in LTE-Advanced,” IEEE Globecom

Workshops (GC Wkshps), pp. 1–6, Dec. 2015.

109



[17] R. T. Krishnamachari and M. K. Varanasi, “Interference alignment underlimited feedback

for MIMO interference channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1339–

1343, Jun. 2010.

[18] R. Tresch and M. Guillaud, “Cellular interference alignment with imperfect channel knowl-

edge,” in Proc. IEEE Int. Conf. on Commun. (ICC), pp. 1339–1343, Jun. 2009.

[19] O. E. Ayach and R. W. Heath, “Interference alignment with analog channel state feedback,”

IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 626–636, Feb. 2012.

[20] J. Kim, S. Moon, S. Lee, and I. Lee, “A new channel quantization strategy for MIMO

interference alignment with limited feedback„” IEEE Trans. Wireless Commun., vol. 11,

no. 1, pp. 358–366, Jan. 2012.

[21] S. Cho, K. Huang, D. Kim, and H. Seo, “Interference alignment for uplink cellular systems

with limited feedback,” IEEE Commun. Lett., vol. 16, no. 7, pp. 960–963, July 2012.

[22] N. Lee, W. Shin, R. W. H. Jr., and B. Clerckx, “Interference alignment with limited feedback

for two-cell interfering MIMO-MAC,” Int. Symp. on Wireless Commun. Systems (ISWCS),

pp. 566–570, Aug. 2012.

[23] H. Gao, T. Lv, D. Fang, S. Yang, and C. Yuen, “Limited feedback-based interference align-

ment for interfering multi-access channels,” IEEE Commun. Lett., vol. 18, no. 4, pp. 540–

543, April 2014.

[24] P. Cao, A. Zappone, and E. A. Jorswieck, “Grouping-based interference alignment with

ia-cell assignment in multi-cell mimo mac under limited feedback,” IEEE Trans. Signal

Process., vol. 64, no. 5, pp. 1336–1351, March 2016.

[25] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. Inf. Theory,

vol. 52, no. 11, pp. 5045–5060, Nov. 2006.

110



[26] C. Yetis, T. Gou, S. Jafar, and A. Kayran, “On feasibility of interference alignment in mimo

interference networks,” IEEE Trans. Signal Process., vol. 58, no. 9, p. 4771âĂŞ4782, Sep.
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p. 113âĂŞ381, 2012.

[40] “3GPP TR 36.819 v11.1.0 coordinated multi-point operation for LTE physical layer as-

pects,” Dec. 2011.

[41] “3GPP TR 36.814 v9.0.0 further advancements for E-UTRA physical layer aspects,” Mar.

2010.

[42] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H. P. Mayer, L. Thiele,

and V. Jungnickel, “Coordinated multipoint: concepts, performance, and field trial results,”

IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, Feb. 2011.

112



[43] L. Liu, J. C. Zhang, Y. Yi, H. Li, and J. Zhang, “Combating interference: MU-MIMO,

CoMP, and HetNet,” Journal of Comm. Academy Publisher, vol. 7, no. 9, pp. 646–655,

Sept. 2012.

[44] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, “Co-

ordinated multipoint transmission and reception in LTE-Advanced: Deployment scenarios

and operational challenges,” IEEE Commun. Mag., vol. 50, no. 2, pp. 148–155, Feb. 2012.

[45] Y. Nam, L. Liu, and J. Zhang, “Cooperative communications for LTE-Advanced âĂŞ relay
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118



[96] J. Li, Y. Chen, Z. Lin, W. Chen, B. Vucetic, and L. Hanzo, “Distributed caching for data

dissemination in the downlink of heterogeneous networks,” IEEE Trans. Commun., vol. 63,

no. 10, p. 3553âĂŞ3568, Oct. 2015.
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Appendix A

Appendix

A.0.1 Proof of Theorem 1

As mentioned earlier, [31] shows that the condition in (9) is automatically satisfied almost surely

if Qi and T j can be found to satisfy condition (2.8). Thus, solving the linear IA feasibility problem

amounts to solve the polynomial equations in (2.8). Our approach is to view the alignment problem

as a system of multivariate polynomial equations, and determine its solvability by comparing the

number of equations and variables. It is clear that the system is solvable if and only if the number of

independent equation does not exceed the number of variables. To do so, we rewrite the conditions

in (2.8) as the following:

qH
in

G

∑
j=1
j 6=i

Hik, jt jm = 0, ∀ik ∈I (A.1)

where t jm and qin , ∀m ∈ {1,2, · · · ,S} and ∀n ∈ {1,2, · · · ,N(ik)
r − S}, are the cell-specific transmit

and receive beamforming vectors. Hence, the number of equations is directly obtained from (A.1)

and it is equal to Neq =
G
∑

i=1

Ii
∑

k=1
(N(ik)

r − S)S. However, calculating the number of variables is less

straightforward, since we have to exclude inessential variables that are not involved with IA. In-

spired by the analysis in [26], the number of variables to be designed for the transmit beamforming

Ti is (N(i)
t − S)S. Likewise, the actual number of variables to be designed for the receive beam-
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forming matrix Qi is (N(ik)
r −S)S. As a result, the total number of variables of interests become

G

∑
i=1

(
(N(i)

t −S)S+
Ii

∑
k=1

(N(ik)
r −S)S

)
.

Therefore, when
G
∑

i=1
N(i)

t > GS, IA becomes feasible.

A.0.2 Proof of Theorem 2

To solve a closed-form expression for T̂i, we will first calculate EH{SLNRik} using the Jensen’s

inequality:

EH{SLNRik}= (A.2)

EH


Tr
(

T̂H
i HH

ik,iHik,iT̂i

)
Tr
(

T̂H
i (

σ2
ik

ρik S IS +∑
G
j=1, j 6=i ∑

I j
m=1 HH

jm,iH jm,i)T̂i

)


≥
Tr
(

T̂H
i EH

{
HH

ik,iHik,i

}
T̂i

)
Tr
(

T̂H
i (

σ2
ik

ρik S IS +∑
G
j=1, j 6=i ∑

I j
m=1EH

{
HH

jm,iH jm,i

}
)T̂i

) .

By invoking the SVD of Hik,i, we have
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EH

{
HH

ik,iHik,i

}
= EH

{
VHik ,i

H
Hik ,i

Hik ,i
VH

Hik ,i

}
(A.3)

(a)
=EA,B,R

(AHik ,i
V̂Hik ,i

+BHik ,i
RHik ,i

)H

(AHik ,i
V̂Hik ,i

+BHik ,i
RHik ,i

)


(b)
= V̂Hik ,i

EA

{
AH

Hik ,i
AHik ,i

}
V̂H

Hik ,i

+EB,R

{
RH

Hik ,i
BH

Hik ,i
BHik ,i

RHik ,i

}
(c)
=Nt(1−δ )V̂H

Hik ,i
V̂Hik ,i

+δNtINt .

Since ∑
S
k=1EH

{
HH

ik,iHik,i

}
is Hermitian and positive semidefinite and (

σ2
ik

ρik SIS+∑
G
j=1, j 6=i ∑

I j
m=1EH { HH

jm,iH jm,i

}
)

is Hermitian and positive definite, by generalized eigenvalue decomposition, there exists an invert-

ible matrix Ji ∈ CNt×Nt such that

JH
i EH

{
HH

ik,iHik,i

}
Ji = i = diag(δi1 , . . . ,δiNt

) (A.4)

JH
i (

σ2
ik

ρik S
IS +

G

∑
j=1, j 6=i

K

∑
m=1

EH

{
HH

jm,iH jm,i

}
)Ji = INt

with δi1 ≥ δi2 ≥ . . .≥ δiNt
≥ 0. Here, the columns of Ji and the diagonal entries of i are the general-

ized eigenvectors and eigenvalues of the pair (∑S
k=1EH

{
HH

ik,iHik,i

}
, (

σ2
ik

ρik SIS+∑
G
j=1, j 6=i ∑

I j
m=1EH

{
HH

jm,iH jm,i

}
)),

respectively. Then, the optimal precoder maximizing the lower bound of the objective function in

Eq. (2.21) can be obtained by extracting the leading S columns of Ji as given by Theorem 2.

A.0.3 Proof of Theorem 3

For given T̂ j, the expectation of Lik(Wi, T̂ j) can be expressed as (A.5), where (a) follows readily

from applying the definition of residual interference at user ik in Eq. (2.17); (b) comes from

substituting (2.18); (c) holds since RHik , j
is independent of AHik , j

and BHik , j
, and E{RHik , j

} = 0.
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EH{Lik(Wi, T̂ j)}
(a)
=EH

{
Tr
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WH

i
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G
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ΛHik , j
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T̂ jT̂H
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H
Hik , j

)
Wi

}}
(A.5)

(b)
=EA,B,R

{
Tr

{
WH

i

(
G

∑
j=1, j 6=i

(AHik , j
V̂H

Hik , j
+BHik , j

RHik , j
)T̂ jT̂H

j (AHik , j
V̂H

Hik , j
+BHik , j

RHik , j
)H

)
Wi

}}
(c)
=Tr

{
WH

i

(
G

∑
j=1, j 6=i

EA,B,R

{
AHik , j

V̂H
Hik , j

T̂ jT̂H
j V̂Hik , j

AH
Hik , j

+BHik , j
RHik , j

T̂ jT̂H
j RH

Hik , j
BH

Hik , j

})
Wi

}
(d)
= Tr

{
WH

i

G

∑
j=1, j 6=i

(
EA

{
AHik , j

V̂H
Hik , j

T̂ jT̂H
j V̂Hik , j

AH
Hik , j

}
+EB,R

{
BHik , j

RHik , j
T̂ jT̂H

j RH
Hik , j

BH
Hik , j

})
Wi

}

Moreover, (d) holds due to the fact that the expectation of the first and second terms in (c) have

nothing to do with BHik , j
,RHik , j

matrices and AHik , j
matrix, respectively.

We start with the calculation of the first term in Eq. (A.5). Note that the expected value of

a random matrix is a matrix whose elements are the expected values of the individual random

variables that are the elements of the random matrix. Let Xik, j , V̂H
Hik , j

T̂ j and es denote the vectors

having “1” at the s-th position and zero elsewhere which the dimension of es will be clear from

the context. Moreover, we define a Nr×Nt matrix Ls, such that Ls , [INr×Nr 0]. We note that for

1≤ r, t ≤ Nr:
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rt
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H
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rt
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H
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H
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et}
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S

∑
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eT
r AHik , j

Xik, jekeT
k XH
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H
Hik , j

et}

=
S

∑
k=1

Nt

∑
`=1

Nt

∑
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EA{eT
r AHik , j

e`eT
` Xik, jekeT

k XH
ik, jemeT

mAH
Hik , j

et}

= eT
r

(
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∑
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Nt

∑
m=1

eT
` Xik, jX

H
ik, jemEA{AHik , j

e`eT
mAH

Hik , j
}

)
et

= eT
r

 Nt

∑
`=1

Nt

∑
m=1

eT
` Xik, jX

H
ik, jem

EA{λ̂
(`)
ik, j

√
1− z(`)ik, jλ̂

(m)
ik, j

√
1− z(m)

ik, j D`m}

et ,

where D`m denotes an Nr ×Nr matrix with one in the `m-th position and zeros elsewhere. For

Nr > Nt , the above expectation can be expressed as the following expression

EA{AHik , j
V̂H

Hik , j
T̂ jT̂H

j V̂Hik , j
AH

Hik , j
} (A.7)

=

 Xik, j�E 0Nt×(Nr−Nt)

0(Nr−Nt)×Nt 0(Nr−Nt)×(Nr−Nt)

 ,

where E is an d̃× d̃ matrix with (E)`m = λ̂
(`)
ik, jλ̂

(m)
ik, j

(
1− 1

2δ
Nt−1

Nt
− 1

8δ 2 Nt−1
Nt+1 −

1
16δ 3 Nt−1

Nt+2

)2
and �

is the Hadamard product. For Nr < Nt , we partition Xik, j as follows Xik, j =

(Xik, j)11 (Xik, j)12

(Xik, j)21 (Xik, j)22


where

(
Xik, j

)
11 is a d̃× d̃ matrix and can be expressed as

(
Xik, j

)
11 = LsXik, jL

T
s . Therefore, we

have
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EA{AHik , j
V̂H

Hik , j
T̂ jT̂H

j V̂Hik , j
AH

Hik , j
}=

(
LsXik, jL

T
s
)
�E, (A.8)

and for Nr = Nt , the above expression simplifies to

EA{AHik , j
V̂H

Hik , j
T̂ jT̂H

j V̂Hik , j
AH

Hik , j
}= Xik, j�E. (A.9)

The second term in Eq. (A.5) can be calculated as

EB,R{BHik , j
RHik , j

T̂ jT̂H
j RH

Hik , j
BH

Hik , j
}= (A.10)

EB{BHik , j
ER{RHik , j

T̂ jT̂H
j RH

Hik , j
}BH

Hik , j
},

where equality holds due to the law of total expectation. At first, we calculate the inner expectation

as follows

(
ER{RHik , j

T̂ jT̂H
j RH
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}
)

rt
(A.11)

= ER{eT
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j RH
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et}
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et}
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where the last equality comes from the fact that for every `,m∈ {1, . . . ,Nt} and ` 6= m, r(`)ik, j ⊥⊥ r(m)
ik, j ,

E{r(`)ik, j}= 0, E{r(`)ik, jr
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Therefore, for Nr > Nt , we have

EB,R{BHik , j
RHik , j

T̂ jT̂H
j RH

Hik , j
BH

Hik , j
}=

Yik, j�G 0

0 0

 .

By partitioning Yik, j as

(Yik, j)11 (Yik, j)12

(Yik, j)21 (Yik, j)22

where
(
Yik, j

)
11 is a d̃× d̃ matrix and can be expressed

as
(
Yik, j

)
11 = LsYik, jL

T
s , for Nr < Nt we get EB,R{BHik , j

RHik , j
T̂ jT̂H

j RH
Hik , j

BH
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j RH
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}= Yik, j�G, where G is a d̃× d̃
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matrix which its `m-th component is equal to (G)`m = λ̂ `
ik, jλ̂

m
ik, j

(
1− Nt−1

8N2
t (1+Nt)

)2
. Hence, E{R̃ik}

can be expressed as given by Theorem 3.

A.0.4 Proof of Theorem 4

To solve the optimization problem (2.32), at first we need to calculate the statistical expectations

E
{

hH
ik hik

}
for ik ∈I . By substituting (2.30) into hH

ik hik , we obtain

E
{

hH
ik hik

}
= E

{
d

∑
`=1

d

∑
m=1

g(`)ik λ
(`)∗
Heff

ik ,i
e(`)ik,ig

(m)∗
ik λ

(m)

Heff
ik ,i

e(m)H
ik,i

}

=
d

∑
`=1

d

∑
m=1

g(`)ik g(m)∗
ik λ

(`)∗
Heff

ik ,i
λ
(m)

Heff
ik ,i
E
{

e(`)ik,ie
(m)H
ik,i

}
,

where d , min{S,Nr− S}. Then, we calculate the expectation of e(`)ik,ie
(m)H
ik,i which is given as

follows:

E
{

e(`)ik,ie
(m)H
ik,i

}
(a)
=E


√

z(`)ik,i

√
z(m)

ik,i r(`)ik,ir
(m)H
ik,i +

√
z(m)

ik,i

√
1− z(`)ik,iê

(`)
ik,ir

(m)H
ik,i +

√
z(`)ik,i

√
1− z(m)

ik,i r(`)ik,iê
(m)H
ik,i

+

√
1− z(`)ik,i

√
1− z(m)

ik,i ê(`)ik,iê
(m)H
ik,i


(b)
=


(1−δ )ê(`)ik,iê

(`)H
ik,i + δ

S IS , if `= m;

(1− S−1
2S δ − S−1

8(S+1)δ
2)2ê(`)ik,iê

(m)H
ik,i , if ` 6= m.

where (a) comes from Eq. (2.7) and (b) holds due to the fact that z(`)ik,i ⊥⊥ r(`)ik,i, z(m)
ik,i ⊥⊥ r(m)

ik,i , z(m)
ik,i ⊥⊥

r(`)ik,i, z(`)ik,i ⊥⊥ r(m)
ik,i , z(`)ik,i ⊥⊥ z(m)

ik,i , r(`)ik,i ⊥⊥ r(m)
ik,i , E{r(`)ik,i} = E{r(m)

ik,i } = 0, E{r(m)
ik,i r(m)H

ik,i } = 1/(S−1)(IS−

ê(m)
ik,i ê(m)H

ik,i ), E{r(`)ik,ir
(`)H
ik,i }= 1/(S−1)(IS− ê(`)ik,iê

(`)H
ik,i ) and E{z(`)ik,i}= E{z(m)

ik,i }= δ (S−1)/S. Hence,
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we have

E
{

hH
ik hik

}
=

d

∑
`=1
|g(`)ik |

2|λ̂ (`)

Heff
ik ,i
|2
(
(1−δ )ê(`)ik,iê

(`)H
ik,i +

δ

S
IS

)
+

d

∑
`=1

d

∑
m=1
m6=`

g(`)ik g(m)∗
ik λ̂

(`)∗
Heff

ik ,i
λ̂
(m)

Heff
ik ,i
(1− S−1

2S
δ − S−1

8(S+1)
δ

2)2ê(`)ik,iê
(m)H
ik,i . (A.15)

By substituting the equation (A.15) into (2.32), the optimization problem in (2.32) is equivalent to

arg max
‖vik‖

2=1

vH
ik

(
Ψik +

d
∑
`=1

αik,`ê
(`)
ik,iê

(`)H
ik,i

)
vik

σ̃2
ik

ρik
+vH

ik

 Ii

∑
m=1
m 6=k

(
Ψim +

d
∑
`=1

αim,`ê
(`)
im,iê

(`)H
im,i

)vik

,
(A.16)

where αik,` , |g
(`)
ik |

2|λ̂ (`)

Heff
ik ,i
|2(1−δ ), ik ∈I , and

Ψik ,
d

∑
`=1

d

∑
m=1
m6=`

g(`)ik g(m)∗
ik λ̂

(`)∗
Heff

ik ,i
λ̂
(m)

Heff
ik ,i
(1− S−1

2S
δ − S−1

8(S+1)
δ

2)2

ê(`)ik,iê
(m)H
ik,i +

d

∑
`=1

δ

S
|g(`)ik |

2|λ̂ (`)

Heff
ik ,i
|2IS. (A.17)

Since the above optimization problem is a generalized Rayleigh quotient problem, for a given

receive filters, the optimal closed-form solution for transmit beamforming vectors are available

and can be expressed as follow

vopt
ik = νmax


 σ̃2

ik
ρik

IS +
Ii

∑
m=1
m6=k

(
Ψim +

d

∑
`=1

αim,`ê
(`)
im,iê

(`)H
im,i

)
−1

(
Ψik +

d

∑
`=1

αik,`ê
(`)
ik,iê

(`)H
ik,i

). (A.18)
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A.0.5 Proof of Theorem 5

The partial Lagrangian of (3.14) is given by

Li(Pi; µi) = wi log2 det(INr +CiPi) (A.19)

−Tr((Ei +µiI)Pi)+µi pi,max

where µi is the Lagrange multiplier corresponding to the power constraint. The dual function is

Di(µi) = maximize
Pi�0

Li(Pi; µi) (A.20)

Then the optimal solution can be found by solving the dual problem: minimize
µi≥0

Di(µi). To start

with, the Lagrangian can be written as

Li(Pi; µi) =wi log2 det
(
INr + ṼH

i HH
ii R−1

i HiiṼi
)

−Tr
(
ṼH

i (Ẽi +µiI)Ṽi
)
+µi pi,max

where Ṽi = ViP
1/2
i is unnormalized transmit precoder of i-th BS. Using Theorem 2, we use the

fact that, the generalized eigenmatrix Vi has the following diagonalization properties [139]

VH
i HH

ii R−1
i HiiVi = Ci , VH

i (Ẽi +µiI)Vi = Gi (A.21)

where Ci = diag(ci) and Gi = diag(gi) are diagonal matrices. Hence, the Lagrangian can be rewrit-

ten as

Li(Pi; µi) =wi log2 det(INr +CiPi)−Tr(GiPi) (A.22)
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and the optimization problem (A.20) can be expressed as

maximize
Pi�0

wi log2 det(INr +CiPi)−Tr(GiPi) . (A.23)

Taking the lagrangian of the above problem into account we have

L (Pi;Ψ) =−wi log2 det(INr +CiPi) (A.24)

+Tr(GiPi)−Tr(ΨPi)

which by taking derivative with respect to Pi of the above equation we get

∇PiL =−wi(INr +CiPi)
−1Ci +Gi−Ψ (A.25)

Hence, the first order condition (Karush-Kuhn-Tucker (KKT) conditions) can be written as

Pi � 0, Ψ� 0, ΨPi = 0, (A.26)

wi(INr +CiPi)
−1Ci +Ψ = Gi

then, it can be seen that the optimal Pi and Ψ must be diagonal. By defining Pi = diag(pi) and

Ψ = diag(ψi), the KKT conditions are

pk ≥ 0, ψk ≥ 0, pkψk = 0,
wick

1+ ck pk
+ψk = gk (A.27)

more compactly, we can write

Pi(k,k) =
[

wiCi(k,k)−Gi(k,k)
Ci(k,k)Gi(k,k)

]+
(A.28)

where the remaining elements of Pi are zero. Note that, to solve (3.14), one needs to find the

optimal Lagrange multiplier µi by solving minimize
µi≥0

Di(µi). This can be accomplished using a
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simple bisection search.

A.0.6 Proof of Theorem 6

Our proof is inspired by the work of [140]. Using Cholesky decomposition of the matrix Ẽi+µiI=

LiLH
i and defining V̄i = LH

i Ṽi, Li(Pi; µi) is rewritten as

Li(Pi; µi) =wi log2 det
(
INr + V̄H

i L−1
i HH

ii R−1
i HiiL−H

i V̄i
)

−Tr
(
V̄H

i V̄i
)

Let R̄i = V̄iV̄H
i and L−1

i HH
ii R−1

i HiiL−H
i = UiDiUH

i be the eigenvalue/eigenvector decompo-

sition of L−1
i HH

ii R−1
i HiiL−H

i where Ui is unitary and Di is diagonal with the diagonal entries ar-

ranged in decreasing order. It is not difficult to verify that Li(Pi; µi) is equivalent to the following

equation

Li(Pi; µi) =wi log2 det
(
INr + R̃iDi

)
−Tr

(
R̃i
)

(A.29)

where R̃i = UH
i R̄iUi. By Hadamard’s inequality, it can be seen that the optimal R̃i must be diago-

nal. Hence,

R̃−1/2
i UH

i R̄iUiR̃
−1/2
i = R̃−1/2

i UH
i V̄iV̄H

i UiR̃
−1/2
i (A.30)

which that means V̄H
i UiR̃

−1/2
i is a unitary matrix and the optimal solution V̄i only depends on R̄i. It

is well known that if V̄i is an optimal solution, the product of V̄i with an arbitrary unitary matrix is

also optimal. Therefore, V̄i = UiR̃
1/2
i . It is worth mentioning that, because R̃i is a diagonal matrix

and Ui is an eigenmatrix of L−1
i HH

ii R−1
i HiiL−H

i , then V̄i is an eigenmatrix of L−1
i HH

ii R−1
i HiiL−H

i

with unnormalized columns, i.e.,

L−1
i HH

ii R−1
i HiiL−H

i V̄i = V̄iΛi (A.31)
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Substituting back V̄i = LH
i Ṽi, we have

HH
ii R−1

i HiiṼi = LiV̄iΛi = LiLH
i ṼiΛi = (Ẽi +µiI)ṼiΛi

hence, Ṽi is the generalized eigenmatrix of HH
ii R−1

i Hii and Ẽi+µiI. It is worth mentioning that Vi

is also the generalized eigenmatrix of HH
ii R−1

i Hii and Ẽi +µiI.

A.0.7 Proof of Theorem 7

Since (3.18) is convex optimization problem, we can use a general-purpose method such as an

interior point method to solve it in polynomial time. However, this problem admits a closed-form

solution as can be derived from the KKT conditions. To this purpose, the partial Lagrangian of

(3.18) is given by

Li(Pi; µi,Ψ) =−wi log2 det(HiiViPiVH
i HH

ii ) (A.32)

+Tr(AiPi)+µi(Tr(Pi)− pi,max)−Tr(ΨPi)

Hence, the gradient of the above Lagrangian can be written as

∇PiL =−wiP−1
i +Ai +µiI−Ψ (A.33)

and the KKT conditions can be expressed as

Tr(Pi)6 pi,max , Pi � 0 (A.34)

wiP−1
i +Ψ = Ai +µiI , Ψ� 0

µi (Tr(Pi)− pi,max) = 0 , ΨPi = 0 , µi > 0

To simplify the KKT conditions, let Ai = UΣUH be the eigenvalue/eigenvector decomposition of

Ai, where U is unitary and Σ is diagonal with the diagonal entries arranged in decreasing order
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(denote the eigenvalues σi). It is not difficult to verify that the KKT conditions are equivalent to

the following conditions

Tr(P̃i)6 pi,max , P̃i � 0 , (A.35)

wiP̃−1
i + Ψ̃ = Σ+µiI , Ψ̃� 0

µi
(
Tr(P̃i)− pi,max

)
= 0 , Ψ̃P̃i = 0 , µi > 0

where P̃i = UHPiU and Ψ̃ = UHΨU. Assuming the optimal P̃i and Ψ̃ are diagonal with P̃i =

diag(p̃i) and Ψ̃ = diag(ψ), the KKT conditions become

∑
k

p̃k 6 pi,max, p̃k > 0, µi > 0, ψ ≥ 0, ψ p̃k = 0, (A.36)

wi

p̃k
+ψ = σk +µi , µi

(
∑
k

p̃k− pi,max

)
= 0 .

by looking into detail at the KKT conditions we have

Pi = UH diag
[

wi

σk +µi

]
U (A.37)

For example, for a network consisting of two users Ai = w2VH
1 HH

21R−1
2 H21V1 = Udiag(σi)UH

where R2 is evaluated at P1 = P̄1.

A.0.8 Proof of Theorem 8

Instead of solving (3.21), we can also solve

maximize
Pi∈K

Tr((wiCi−Di)Pi)+ ε log2 det(Pi) (A.38)

where ε ∈ [0, ε̄) is a pre-specified constant and f (Pi) = log2 det(Pi) is the perturbation function.

Even though other perturbation functions could also be considered, the logdet function has two
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crucial benefits. First, it makes the problem strictly convex enabling us to adapt a successive

projections technique to obtain an efficient algorithm. Second, it proves indispensable in enforcing

positive definiteness without any eigenvalue computations because log2 det(Pi) is a natural barrier

function for the cone of positive definite matrices. It has shown that for an appropriate value of ε , a

solution of (3.21) is also a solution of (A.38) [141, Theorem 2.1.]. Since (A.38) is strictly convex,

solving it allows us to obtain a unique solution amongst all possible solutions of (3.21).

The partial Lagrangian of (A.38) is given by

Li(Pi; µi,Ψ) =−Tr((wiCi−Di)Pi)−Tr(ΨPi)

− ε log2 det(Pi)+µi(Tr(Pi)− pi,max)

and the gradient of the Lagrangian is

∇PiL =−wiCi +Di− εP−1
i +µiI−Ψ (A.39)

The KKT conditions are

Tr(Pi)6 pi,max , Pi � 0 , (A.40)

εP−1
i +Ψ =−wiCi +Di +µiI , Ψ� 0 ,

µi (Tr(Pi)− pi,max) = 0 , ΨPi = 0 , µi > 0.

To simplify the KKT conditions, let −wiCi +Di = VΓVH be the eigenvalue/eigenvector decom-

position of −wiCi +Di, where V is unitary and Γ is diagonal with the diagonal entries arranged

in decreasing order (denote the eigenvalues γi). It is not difficult to verify that the KKT conditions
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are equivalent to the following conditions

Tr(P̃i)6 pi,max , P̃i � 0 , (A.41)

εP̃−1
i + Ψ̃ = Γ+µiI , Ψ̃� 0

µi
(
Tr(P̃i)− pi,max

)
= 0 , Ψ̃P̃i = 0 , µi > 0 ,

where P̃i = VHPiV and Ψ̃ = VHΨV. Assuming the optimal P̃i and Ψ̃ are diagonal with P̃i =

diag(p̃i) and Ψ̃ = diag(ψ), the KKT conditions become

∑
k

p̃k 6 pi,max , p̃k ≥ 0 , µi > 0 , ψ ≥ 0 (A.42)

ε

p̃k
+ψ = γk +µi , µi

(
∑
k

p̃k− pi,max

)
= 0 , ψ p̃k = 0

by looking into detail at the KKT conditions we have

Pi = VH diag
[

ε

γk +µi

]
V (A.43)

which for a network consists of two users, γk is the eigenvalue of matrix −w1C1 +w2YH
2 χ2Y2

where Y2 is evaluated at P1 = P̄1.

A.0.9 Proof of Theorem 9

Ci < 0 can be partitioned into two blocks, its positive definite and zero parts, and Pi as:

Ci ,

Ci,11 0

0 0

 and Pi ,

Pi,11 Pi,12

Pi,21 Pi,22

 (A.44)

where Ci,11 � 0 and Pi,11 and Ci,11 have the same dimensions. Then, (3.23) can be rewritten as

(A.45).

Since Pi ∈K , by definition Pi,11 ∈K . Let P̌ = Pi,11, then,(A.45) is equivalent to (A.46). This
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maximize
Pi∈K

wi log2 det(I+Pi,11Ci,11)−Tr(EiPi)− τi‖Pi− P̄i‖2
F . (A.45)

maximize
Pi, P

wi log2 det(I+ P̌Ci,11)−Tr(EiPi)− τi‖Pi− P̄i‖2
F ,

subject to Pi ∈K , P̌ = Pi,11 ∈K
(A.46)

problem can be solved via dual decomposition [142, Lemma 2] and we have

Pi =

P̄i−
1

2τi
(µ∗I+

Z 0

0 0

)

+

(A.47)

where Z is the matrix of lagrangian multipliers associated to the linear constraints P̌ = Pi,11, [X]+

denotes the projection of X onto the cone of positive semidefinite matrices, and µ∗ is the multiplier

which can be found by bisection.

A.0.10 fi(Qi,Q−i) is a convex function of Qi for fixed Q−i for any i ∈L .

The claim will be established by using the following property of convex functions. A function is

convex if and only if it is convex when restricted to any line that intersects its domain [143, Chapter

3]. To be specific, given an arbitrary function f (x) and two different feasible points x1 and x2,

define g(t) = f (tx1 +(1− t)x2),0 ≤ t ≤ 1. Then, f (x) is a convex function of x if and only if

g(t) is a convex function of t for any feasible x1 and x2, which is equivalent to (d2g(t)/dt2) ≥ 0

for 0 ≤ t ≤ 1. Without loss of generality, we consider i = 1. Define Rs = ∑
L
i=1 wiRi for any fixed

{Qi}L
i=2. Then we get

Rs = w1 log2 det(I+R−1
1 H11Q1HH

11) (A.48)

+
L

∑
j=2

w j log2 det(I+R−1
j H j jQ jHH

j j)

Based on the aforementioned property of convex functions, by investigating the convexity of
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Rs restricted to any line, we can prove that Rs is a convex function of Q1 ∈K . Consider

Q1 = tZ1 +(1− t)X1 = X1 + tY1, 0≤ t ≤ 1 (A.49)

where X1 ∈K and Z1 ∈K . Note that Y1 /∈K but Y1 is Hermitian. Moreover, R1 and {χ j}L
j=2

do not depend on t. Recalling that d ln(det(Z)) = Tr
{

Z−1dZ
}

for all Z such that detZ 6= 0 [63,

Prop. 3.14], the first-order differential of Rs is given by (up to a constant positive factor)

dRs

dt
= Tr

{
(R1 +χ1)

−1B1

}
(A.50)

+
L

∑
j=2

Tr
{
− (R j +χ j)

−1
χ jR

−1
j B j

}

where B j = H j,1Y1HH
j,1 is Hermitian. Further, we have

d2Rs

dt2 = Tr
{
− (R1 +χ1)

−1B1(R1 +χ1)
−1B1

}
(A.51)

+
L

∑
j=2

Tr
{
(R j +χ j)

−1B j(R j +χ j)
−1

χ jR
−1
j B j

+(R j +χ j)
−1

χ jR
−1
j B jR−1

j B j

}

We define F j , (R j + χ j)
−1χ jR

−1
j = R−1

j − (R j + χ j)
−1. Since χ j is a positive semi-definite

(PSD), we have R j +χ j �R j. Then, (R j +χ j)
−1 �R−1

j which means that F j is PSD and so there

exists matrix J j such that F j = J jJH
j . So, we get

Tr
{
(R j +χ j)

−1B jF jB j

}
= Tr

{
K jKH

j B jJ jJH
j B j

}
(A.52)

= Tr
{
(KH

j B jJ j)(KH
j B jJ j)

H
}
≥ 0

where we use the fact that (R j+χ j)
−1 is a PSD and can be rewrite as K jKH

j . Moreover, (KH
j B jE j)(KH

j B jE j)
H

is PSD. Similarly, the other terms are greater than or equal to zero and so, d2Rs/dt2 ≥ 0 which

means Rs is a convex function of Q1.
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