731 research outputs found

    Numerical methods for solving ODE flow

    Get PDF

    Fifty Years of Stiffness

    Full text link
    The notion of stiffness, which originated in several applications of a different nature, has dominated the activities related to the numerical treatment of differential problems for the last fifty years. Contrary to what usually happens in Mathematics, its definition has been, for a long time, not formally precise (actually, there are too many of them). Again, the needs of applications, especially those arising in the construction of robust and general purpose codes, require nowadays a formally precise definition. In this paper, we review the evolution of such a notion and we also provide a precise definition which encompasses all the previous ones.Comment: 24 pages, 11 figure

    Recursion Schemes, Discrete Differential Equations and Characterization of Polynomial Time Computations

    Get PDF
    This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs). It presents a new framework using discrete ODEs as a central tool for computation and algorithm design. We present the general theory of discrete ODEs for computation theory, we illustrate this with various examples of algorithms, and we provide several implicit characterizations of complexity and computability classes. The proposed framework presents an original point of view on complexity and computation classes. It unifies several constructions that have been proposed for characterizing these classes including classical approaches in implicit complexity using restricted recursion schemes, as well as recent characterizations of computability and complexity by classes of continuous ordinary differential equations. It also helps understanding the relationships between analog computations and classical discrete models of computation theory. At a more technical point of view, this paper points out the fundamental role of linear (discrete) ordinary differential equations and classical ODE tools such as changes of variables to capture computability and complexity measures, or as a tool for programming many algorithms

    Black resonators and geons in AdS5_5

    Full text link
    We construct dynamical black hole solutions with a helical symmetry in AdS5_5, called black resonators, as well as their horizonless limits, called geons. We introduce a cohomogeneity-1 metric describing a class of black resonators and geons whose isometry group is R×SU(2)R\times SU(2). This allows us to study them in a wide range of parameters. We obtain the phase diagram for the black resonators, geons, and Myers-Perry-AdS5_5, where the black resonators emerge from the onset of a superradiant instability of the Myers-Perry-AdS5_5 with equal angular momenta and are connected to the geons in the small horizon limit. The angular velocities of the black resonators always satisfy Ω>1\Omega>1 in units of the AdS radius. A black resonator is shown to have higher entropy than a Myers-Perry-AdS5_5 black hole with the same asymptotic charges. This implies that the Myers-Perry-AdS5_5 can dynamically evolve into the black resonator under the exact SU(2)SU(2)-symmetry although its endpoint will be further unstable to SU(2)SU(2)-violating perturbations.Comment: 27 pages, 9 figure

    Frequency-domain algorithm for the Lorenz-gauge gravitational self-force

    Full text link
    State-of-the-art computations of the gravitational self-force (GSF) on massive particles in black hole spacetimes involve numerical evolution of the metric perturbation equations in the time-domain, which is computationally very costly. We present here a new strategy, based on a frequency-domain treatment of the perturbation equations, which offers considerable computational saving. The essential ingredients of our method are (i) a Fourier-harmonic decomposition of the Lorenz-gauge metric perturbation equations and a numerical solution of the resulting coupled set of ordinary equations with suitable boundary conditions; (ii) a generalized version of the method of extended homogeneous solutions [Phys. Rev. D {\bf 78}, 084021 (2008)] used to circumvent the Gibbs phenomenon that would otherwise hamper the convergence of the Fourier mode-sum at the particle's location; and (iii) standard mode-sum regularization, which finally yields the physical GSF as a sum over regularized modal contributions. We present a working code that implements this strategy to calculate the Lorenz-gauge GSF along eccentric geodesic orbits around a Schwarzschild black hole. The code is far more efficient than existing time-domain methods; the gain in computation speed (at a given precision) is about an order of magnitude at an eccentricity of 0.2, and up to three orders of magnitude for circular or nearly circular orbits. This increased efficiency was crucial in enabling the recently reported calculation of the long-term orbital evolution of an extreme mass ratio inspiral [Phys. Rev. D {\bf 85}, 061501(R) (2012)]. Here we provide full technical details of our method to complement the above report.Comment: 27 pages, 4 figure

    Fast derivatives of likelihood functionals for ODE based models using adjoint-state method

    Full text link
    We consider time series data modeled by ordinary differential equations (ODEs), widespread models in physics, chemistry, biology and science in general. The sensitivity analysis of such dynamical systems usually requires calculation of various derivatives with respect to the model parameters. We employ the adjoint state method (ASM) for efficient computation of the first and the second derivatives of likelihood functionals constrained by ODEs with respect to the parameters of the underlying ODE model. Essentially, the gradient can be computed with a cost (measured by model evaluations) that is independent of the number of the ODE model parameters and the Hessian with a linear cost in the number of the parameters instead of the quadratic one. The sensitivity analysis becomes feasible even if the parametric space is high-dimensional. The main contributions are derivation and rigorous analysis of the ASM in the statistical context, when the discrete data are coupled with the continuous ODE model. Further, we present a highly optimized implementation of the results and its benchmarks on a number of problems. The results are directly applicable in (e.g.) maximum-likelihood estimation or Bayesian sampling of ODE based statistical models, allowing for faster, more stable estimation of parameters of the underlying ODE model.Comment: 5 figure
    corecore