

Numerical methods for solving ODE flow

Citation for published version (APA):
Tasic, B. (2004). Numerical methods for solving ODE flow. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR581186

DOI:
10.6100/IR581186

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR581186
https://doi.org/10.6100/IR581186
https://research.tue.nl/en/publications/20f1e58a-dc7c-4107-9a71-eaa45de88013

Numerical Methods for Solving ODE Flow

Bratislav Tasić

Copyright c©2004 by Bratislav Tasić, Eindhoven, The Netherlands.

All rights are reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording or otherwise, without prior permission of the author.

Printed by Eindhoven University Press

Cover design: JWL Producties

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Tasić, Bratislav

Numerical Methods for Solving ODE Flow
by Bratislav Tasić. -
Eindhoven : Technische Universiteit Eindhoven, 2004. Proefschrift. -
ISBN 90.386.0952.3

NUR 918

Subject headings: ordinary differential equations / flow /
numerical methods / Euler methods / Runge-Kutta methods /
linear multistep methods / inverse interpolation

2000 Mathematics Subject Classification: 65L05, 65L06, 65L20, 65L70

Numerical Methods for Solving ODE Flow

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. R.A. van Santen, voor een

commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen
op maandag 13 december 2004 om 16.00 uur

door

Bratislav Tasić

geboren te Niš, Servië en Montenegro

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. R.M.M. Mattheij
en
prof.dr. M. Hermann

To my parents

Mojim roditeljima

Preface

Nature is a temple whose living colonnades La Nature est un temple oů de vivants piliers

Breathe forth a mystic speech in fitful sighs; Laissent parfois sortir de confuses paroles;

Man wanders among symbols in those glades L’homme y passe ŕ travers des foręts de symboles

Where all things watch him with familiar eyes. Qui l’observent avec des regards familiers.

Like dwindling echoes gathered far away Comme de longs échos qui de loin se confondent

Into a deep and thronging unison Dans une ténébreuse et profonde unité,

Huge as the night or as the light of day, Vaste comme la nuit et comme la clarté,

All scents and sounds and colors meet as one. Les parfums, les couleurs et les sons se répondent.

Perfumes there are as sweet as the oboe’s sound, Il est des parfums frais comme des chairs d’enfants,

Green as the prairies, fresh as a child’s caress, Doux comme les hautbois, verts comme les prairies,

- And there are others, rich, corrupt, profound Et d’autres, corrompus, riches et triomphants,

And of an infinite pervasiveness, Ayant l’expansion des choses infinies,

Like myrrh, or musk, or amber, the excite Comme l’ambre, le musc, le benjoin et l’encens

The ecstasies of sense, the soul’s delight. Qui chantent les transports de l’esprit et des sens.

Charles Baudelaire, Correspondances

Once I heard that all good things must have an end. It has been four years ago since I
was offered to perform a PhD research, as a member of Scientific Computing Group
at the Eindhoven University of Technology, on new numerical methods for solving
flows of ordinary differential equations. Having an electrical engineering and au-
tomatic control background, I was familiar with differential equations as they were
used for mathematical modelling of various physical processes. However, numerical
methods for solving them were always (in my eyes) a powerful “magical” tool, on
which you could almost always rely to obtain results you need.

During my research period I have realized that this magic is coming from amazingly
rich and profound numerical theory, accompanied by numerous practical realiza-
tions in widely used software packages. To that end I have to admit that, although
not easy at first, it was pleasant and fulfilling to find and analyse a new approach for
solving ODE problems.

viii Preface

The basic idea of the method originates from problems in fluid dynamics and it was
introduced in work of prof.dr. R.M.M. Mattheij and dr. K. Laevsky concerning a
glass production process. In this thesis the method principle and the application
area are extended. This new approach shows a lot of potential and hopefully it may
become an integral part of the family of popular numerical methods that are used
for solving differential equations. I strongly believe that there is no such a joy for
a numerical mathematician than to see his ideas implemented in various practical
applications.

Acknowledgements

According to Umberto Eco, a true virtue of a serious scientist is the ability to formu-
late the acknowledgements at the end of his work. If one does not have anyone to
thank for, the whole work becomes questionable. Hence I would like to take this op-
portunity to show my gratitude to a number of people who essentially contributed
in efforts to bring this thesis to its end.

First, it is a great pleasure to thank prof.dr. R.M.M. Mattheij for offering me the
opportunity to become involved in such an interesting topic and for all his trust,
advisory and guidance in supervising my research. Many thanks go to prof.dr. M.
Hermann and prof.dr. J.G. Verwer for their efforts for improving results obtained in
this thesis. I would especially like to thank dr. H.G. ter Morsche with whom I had
prodigious discussions about the interpolation topic and who helped to extend my
knowledge in this area.

Concerning the practical part of my research, I would like to thank several people
who shared with me their expertise in various subjects. I had many useful discus-
sions with ir. V. Vidojković and ir. D. Milošević about problems from electrical net-
works. Their help improved the practical aspects of this thesis. I would also like
to thank m.sc. B. Veselić for his assistance in the control problem, as well as dr. P.
Kagan for helping me use his software for solving FEM problems.

During the time I spent being a member of the Scientific Computing Group I enjoyed
a friendly atmosphere surrounded by many intelligent and interesting colleagues.
Some of them deserve a special attention for their help on a daily basis. In particular
I would like to thank dr.ir. B.J. van der Linden, dr.ir. M.J.H. Anthonissen, dr. W.
Drenth, dr.ir. P.C.A. de Haas, dr. J.M.L. Maubach, m.sc. I.A. Lioulina, m.sc. M.G.
Graziadei and dr. K. Laevsky.

As part of the small tradition, I would like to greet my friends and members of
the small Serbian community in The Netherlands; namely Goran, Nataša, Dragan,
Milena, Nenad, Dragana, Vojkan, Maja, Dušan, Aleksandra, Darko, Mirjana, Jelena,
Milan, Marija, Igor, Jelena and Dragan. A special greeting goes to my friends in Niš,
who are far away from here and yet still very close to me, especially kum Milan and
my dear friend Tomislav.

Finally, I would like to thank my family, my father Aleksandar, my mother Gordana,
my sister Suzana and my niece Mina, for all their love and support throughout all
these years. Their faith encouraged me to overcome problems that I encountered
through time and to become a better person.

Contents

Preface vii

Chapter 1. Introduction 1
1.1 Background . 1
1.2 Problem setting and approach 2
1.3 Outline of the thesis 3

Chapter 2. Ordinary differential equations 7
2.1 Introduction to ODEs 7
2.2 Existence, uniqueness and stability of ODE solution; Flow problems . 9
2.3 Numerical methods for solving ODEs 12
2.4 Stiff problems . 13
2.5 Linear multistep methods 15

2.5.1 BDF methods 16
2.5.2 Local error (consistency); stability 17

2.6 Runge-Kutta methods 18
2.6.1 Local error (consistency); stability 19
2.6.2 IRK methods; Gauss, Radau, Lobatto 19
2.6.3 DIRK methods 22

2.7 Implementation of the implicit numerical methods. 24
2.7.1 Existence and uniqueness of the numerical solution 24
2.7.2 Nonlinear systems of equations 25

Chapter 3. Interpolation methods 27
3.1 Introduction to approximation and interpolation 27
3.2 Characteristics of interpolation methods 29
3.3 Univariate interpolation 30

3.3.1 Polynomial interpolation. 30
3.3.2 Piece-wise interpolation 32

3.4 Multivariate interpolation 33
3.4.1 Linear interpolation on a simplex. 34
3.4.2 Piece-wise polynomial interpolation of higher order 40
3.4.3 Surface spline interpolation 41
3.4.4 Biharmonic spline interpolation 42

3.5 Inverse interpolation 43
3.5.1 Accuracy of the inverse interpolation 47

x Contents

Chapter 4. Introduction to the flow method 49
4.1 Outline of the Method 49
4.2 Interpolation . 51
4.3 Well-posedness of the Flow Method 53
4.4 Error Analysis . 55
4.5 Stability . 59
4.6 Practical Aspects . 61

Chapter 5. The flow method based on linear multistep methods 67
5.1 Method implementation 67
5.2 Well-posedness . 70
5.3 Error analysis . 75
5.4 Stability . 77

Chapter 6. The flow method based on Runge-Kutta methods 81
6.1 Method implementation 81
6.2 Well-posedness . 85

6.2.1 Topology preservation in space 85
6.2.2 Topology preservation in time 89

6.3 Error analysis . 94
6.4 Stability . 99

Chapter 7. The flow method for solving vectorial ODEs 103
7.1 Method implementation 103
7.2 Error analysis . 106
7.3 Stability . 108
7.4 Practical Aspects . 110

7.4.1 An Electrical Network. 111
7.4.2 A Boundary Problem 113
7.4.3 Harmonic oscillator synchronisation 115
7.4.4 Stokes problem 119

Chapter 8. Conclusions and recommendations 123

Bibliography 125

Index 127

Summary 129

Samenvatting 131

Curriculum vitae 133

CHAPTER 1

Introduction

1.1 Background

The history of ODEs (Ordinary Differential Equations) goes all the way back to the
XVIIth century when two great scientists Isaac Newton and Gottfried Leibniz intro-
duced calculus. Soon after, it was noticed that not all ODEs can be solved analyti-
cally. In order to overcome this problem, i.e. to find at least an approximate solution,
numerical methods for solving ODEs were born. Certainly the most famous ones are
the Euler Forward and the Euler Backward methods, named after the remarkable sci-
entist Leonhard Euler. At the end of the XIXth and the beginning of the XXth century
more advanced, complex and accurate methods appeared. Most significant contri-
butions were given by Adams and Bashforth developing linear multistep methods
(LMMs) and Runge, Kutta and Heun leading to what is now called Runge-Kutta
(RK) methods. This represented the beginning of the development of two important
classes of numerical methods. Today some of the most interesting methods are BDF
(Backward Differential Formula) methods, which are LMMs, and methods based on
Gaussian quadrature, such as Gauss, Radau and Lobatto methods. The importance
of BDF methods was first noticed in [13] and well-analysed in [21]. The aforemen-
tioned IRK methods are firstly introduced in [8,29,30]. Of course, many other numer-
ical methods for solving ODEs were developed and some nice overviews are given
in [10, 21, 23, 24, 31,33].

Practical applications of ODEs can be found in almost all technical disciplines. For
example, mathematical models of electrical circuits, mechanical systems, chemical
processes, etc. are described by systems of ODEs. Even generally more complex
problems, e.g. modelled by semidiscretised PDEs (Partial Differential Equations),
can be solved by some of the numerical methods for solving ODEs. One example
of an ODE problem, which we will analyse later, is a deforming material blob (see
e.g. [32,38,40,42,44,49]), where the velocity field is determined by a boundary value
problem. This problem typically occurs in the glass industry, where one needs to
numerically compute a boundary evolution of molten glass. The position vector sat-
isfies an ODE, where the derivative is equal to the velocity. Such ODEs actually have
a continuum of initial values rather than a single vector and we would like to track
this continuum in time. We will refer to this as a flow and to the corresponding ODE
problem as a flow problem. The blob evolution problem is of special interest here since
the velocity field (e.g. coming from the Stokes problem) is obtained numerically in

2 Introduction

general and thus not known explicitly. This causes problems in applying ODE solver
directly.

Another interesting example of such problems are electrical circuits with nonlinear
elements, where the behaviour of the circuit strongly depends on the initial values
(e.g. capacitor initial voltage values). To analyse this effect, one again needs to obtain
a flow, i.e. to solve the corresponding flow problem. Moreover, transfer functions of
some electrical components (e.g. diodes, transistors, thyristors, etc.) are not known
in general. One way to obtain them is to perform an experiment where values are
measured at some points. The result, of course, is a velocity field, which is known
discretely only.

1.2 Problem setting and approach

This thesis is concerned with solving flow problems where, as mentioned before,
the velocity field is not known explicitly. To numerically solve a flow problem one
needs to employ an appropriate numerical method, according to the nature of the
problem (e.g. dimensionality, requested accuracy, stiffness, preservation of the vol-
ume, energy etc.). Explicit numerical methods are easy to use, allowing the solution
to be computed directly from known values at previous time-levels. However, when
solving so-called stiff problems with explicit methods (cf. [13]), the numerical com-
putation poses a constraint on the time step in order to produce meaningful (stable)
results. For problems where e.g. volume preservation is required, one should use
so-called symplectic methods (cf. [46]). Many of these symplectic methods are implicit.
Hence we are again faced with a problem to use implicit methods.

Although the theory has matured significantly, in terms of variety and quality of
numerical methods, some problems are still present. One is caused by the fact that
implicit methods lead to a (non)linear system of equations to be solved at every
time-level. The “standard” way to solve such a nonlinear system, coming from an
implicit time discretisation of an ODE, is to apply Newton iteration. However, this
approach introduces some additional problems, like the convergence of the Newton
method. For our type of problems an additional concern arises as the iteration func-
tion is not known explicitly. Moreover, for iteration one not only needs the explicit
representation of the velocity field, but also the inverse Jacobian matrix. This is not
straightforward to be carried out. However, if the flow problem is autonomous or
if the explicit dependence on time is only present in the forcing term, there is an
alternative more effective way, which we propose here.

In this thesis we develop a new method, which we call the flow method. As illustrated
later, many problems in science and engineering are autonomous. This allows us to
implement our method for quite a large class of relevant problems. The method em-
ploys existing implicit methods, thereby preserving favourable properties of these
methods like A(α)-stability or symplecticness. Since all implicit methods, applied to
a nonlinear ODE, introduce a nonlinear system to be solved at every time-level and
since we would like to avoid using Newton iteration, we apply inverse interpolation.
This gives rise to a new method that is effectively explicit.

Since we assume the problem to be autonomous, we can use known values of the
velocity field at previous time-levels to approximate the solution at the following
time-level. This approximation is done by virtue of inverse interpolation. For this
we need to know the approximate velocity field at some spatial points only, which

1.3 Outline of the thesis 3

allows us to determine solution values even where the velocity field is not known
explicitly.

Interpolation represents an essential part of the flow method, which of course in-
troduces an additional error. This can be controlled separately and fairly straight-
forwardly. The theory of interpolation is extensive and a variety of methods can be
used. To keep (interpolation) computational costs small, our first choice is piece-
wise linear interpolation. This method, although being of low order, can produce
satisfactory results in many application, as illustrated later. If one chooses to em-
ploy higher order implicit methods, the appropriate interpolation method is most
likely of the higher order as well. We demonstrate this for a few. Applying the flow
method for solving multivariate problems, or use of RK methods of higher order, is
not straightforward. This problem will be addressed separately, since interpolation
is more complex there. However, problems of interest can successfully be solved also
here, as illustrated by several examples.

1.3 Outline of the thesis

In the following chapter we start with some basic ODE theory being important for
the analysis in the subsequent chapters. After a short introduction, we discuss some
useful properties of ODEs, such as existence and uniqueness conditions of the solu-
tion, as well as the stability, see Section 2.2. In Section 2.3 we introduce some (simple)
numerical methods. We give the definition and the properties of stiff problems, to-
gether with stability properties that determine which numerical methods should be
used for solving them. Section 2.5 is devoted to LMMs, among which BDF methods
in particular. In Section 2.6 we treat RK methods, in particular implicit methods,
such as Gauss, Radau and Lobatto methods and the so-called DIRK (diagonally im-
plicit Runge-Kutta) methods. We conclude this chapter with some implementation
aspects of implicit methods. We point out problems in solving nonlinear systems of
equations when employing the Newton method.

The flow method involves inverse interpolation (in contrast to an iterative process).
Since interpolation is a well-studied subject to date, we give an overview and some
important results, which will be used in the rest of the thesis, see Chapter 3. In
Section 3.1 a short introduction to approximation and interpolation is given. To de-
termine which interpolation method should be used, one can use some of the char-
acteristics shown in Section 3.2. A short overview of univariate interpolation issues
can be found in Section 3.3. A more fundamental part of this thesis is Section 3.4 on
multivariate interpolation, in particular piece-wise linear interpolation. As for esti-
mating the error, we give a new proof of an existing result and compare this result
with another important one. We also introduce a theorem that connects these two re-
sults. The rest of the section is devoted to higher order methods, such as piece-wise
cubic, surface spline and biharmonic spline interpolation. Finally, in Section 3.5 we
summarise the main aspects of inverse interpolation, that will be used later.

The flow method is discussed in Chapter 4. To start with, we first analyse a scalar
flow problem and the use of Euler Backward. In Section 4.1 we sketch the method
and some notation. Interpolation is an essential ingredient in the flow method, see
Section 4.2. Since numerical solution curves should not “intersect”, we need a notion
of well-posedness of the numerical method, as shown in Section 4.3. The above men-
tioned interpolation introduces a more complicated local error than usual. An error

4 Introduction

analysis of this is given in Section 4.4. The most interesting aspect of our method is its
stability. In Section 4.5 it is shown that the stability behaviour is similar to that of the
Euler Backward method, despite the fact that our method is explicit. We conclude
the chapter with some practical aspects and several numerical examples, see Sec-
tion 4.6. The flow method can successfully be applied for a class of non-autonomous
problems, where the time dependence is present via the forcing term of the velocity
field. This is illustrated by an example.

The flow method can also be constructed by employing higher order implicit meth-
ods, such as LMMs and RK methods. Chapter 5 shows how this can be done with
LMMs, in particular BDF methods. Section 5.1 describes this in general. For LMMs
the well-posedness introduces a time-step constraint, which is more strict than for
Euler Backward. We investigate this in Section 5.2. The last two sections of this
chapter deal with local errors and stability analyses. It is shown that the local er-
ror again depends on two components, namely the local discretisation error of the
standard LMM and the interpolation error. In the last section we show that the good
stability properties of BDF methods are inherited by the flow method based on them,
see Section 5.4.

Following the same pattern as in Chapter 5, Chapter 6 analyses the usage of IRK
methods. The main difference is coming from the fact that IRK methods are multi-
stage methods, which increase the dimensionality of the nonlinear system to be
solved. This leads to multivariate interpolation, even for scalar problems, see Sec-
tion 6.1. To employ multivariate inverse interpolation one needs to generate a multi-
dimensional grid. This is an essential part of the method and closely related to the
well-posedness property of the method. Since we are dealing with a vectorial prob-
lem, we need a double concept for well-posedness, viz. the topology preservation in
space and the topology preservation in time, see Section 6.2. The section is concluded
by an example that shows which IRK methods should be used in order to ensure a
well-posed problem. Again we give a local error analysis, where we mainly focus on
the interpolation error analysis, see Section 6.3. Finally, a stability analysis is given
in Section 6.4, where we show that favourable stability properties of RK methods are
preserved.

In the first few chapters the flow method is constructed for scalar ODEs. The ex-
tension to vectorial problems turns out not to be straightforward. In Chapter 7 we
consider the main aspects of the flow method applied to a general vectorial problem,
see Section 7.1. For simplicity we restrict ourselves to the Euler Backward method
and the implicit midpoint rule. The implementation of the latter is quite similar to
that of the Euler Backward method. Even for higher dimensional stiff problems,
the flow method can produce satisfactory results. Using results from Chapter 3, we
give a local error analysis in Section 7.2. A stability analysis shows that the flow
method again preserves the stability properties of the Euler Backward method, see
Section 7.3. To conclude this chapter, several examples of flow problems, with a
discretely given velocity field, are solved. The first one is a stiff problem coming
from an electrical network with nonlinear elements, where the “velocity field” is ob-
tained experimentally. The second example concerns a problem where the velocity
is a numerical solution of a divergence free velocity field, coming from a boundary
problem. To solve this problem we apply the flow method based on the implicit
midpoint rule and show that a sufficient accuracy can be achieved even for rela-
tively long time integration intervals. The third example deals with a problem from

1.3 Outline of the thesis 5

the control theory, in particular the amplitude synchronisation of a harmonic oscilla-
tory system. The mathematical model of an oscillator is an ODE for which we need a
symplectic method. Hence we apply the flow method based on the implicit midpoint
rule to show that computing the solution can be achieved with a sufficient accuracy.
In the last example we address a problem of the motion of a viscous axisymmetric
body, where the velocity field needs to be computed at every time-level by solving a
Stokes problem. The physical property of such a problem is the volume preservation
in time. Hence a symplectic method needs to be used and we again apply the flow
method based on the implicit midpoint rule and obtain sufficiently accurate results
even for large time scales.

In the final chapter the most important conclusions are addressed, together with
some recommendations for the future research. An idea is presented how to ex-
tend the application area of the flow method, which would include general non-
autonomous problems.

CHAPTER 2

Ordinary differential equations

In this chapter we will give an overview of the ODE theory which will be useful
in the following chapters. First, we give some definitions related to ODE problem
settings, namely IVP and the flow problem, followed by the existence, uniqueness
and stability properties of the ODE solution. The main part of this chapter is related
to the numerical methods for solving ODE problems, so they are introduced in Sec-
tion 2.3. Since we are mainly interested in stiff problems, a short overview is given
in Section 2.4. The number of numerical methods is extensive, so we introduce few
of them, namely linear multistep methods and Runge-Kutta methods in Sections 2.5
and 2.6. Finally, since implicit numerical methods involve solving systems of non-
linear equations, we address this problem in Section 2.7.

2.1 Introduction to ODEs

Coming from classical mechanics first ordinary differential equations (ODEs) were de-
veloped to model mechanical systems. For example, consider a particle with unit
mass and denote

t : time,

x(t) : vector of spatial coordinates, i.e. position,

ẋ(t) : time derivative of x, i.e. velocity.

Assuming that the velocity is prescribed by a function u(t, x) at any time t and posi-
tion x, then the relation

(2.1.1) ẋ = u(t, x),

describes the trajectories of such particle. This relation is a first order ODE, since it
involves the first derivative only. A specific trajectory of this ODE may be defined
by prescribing an initial condition for the position, at some time point t = t0, say

(2.1.2) x (t0) = x0.

Relations (2.1.1) and (2.1.2) constitute a so-called initial value problem (IVP). Often, one
assumes t0 = 0 for the initial time point and this assumption will be used throughout
this thesis.

8 Ordinary differential equations

Letting X ⊂ RN be an open, non-empty set and assuming that x represents a position
in RN, a mapping u : X → RN is called a velocity field (also a vector field) on X and has
a form

(2.1.3) u(x) :=

u1 (x1, . . . , xN)
...

uN (x1, . . . , xN)

.

The set X is called the state space. It will be assumed that u is continuous, although
not necessarily explicitly known (as shown later). If additionally u is differentiable,
the derivative of u is given by

(2.1.4) Du(x) :=
∂u
∂x

:=

∂u1

∂x1
· · · ∂u1

∂xN

...
∂uN

∂x1

∂uN

∂xN

.

This derivative is called the Jacobian matrix and its determinant det [Du(x)] the Ja-
cobian. If u is of the form (2.1.3), i.e. if it does not explicitly depend on time, the
corresponding ODE is called autonomous and the corresponding IVP is defined by

(2.1.5)

{
ẋ = u(x),

x (t0) = x0.

The velocity field may also explicitly depend on time, i.e. it may be of the form
u := u(t, x). If t takes values from an interval J, we call J× X the time-state space.

It is sometimes useful to denote the solution as

(2.1.6) x(t) = Ψ (t; t0, x0) ,

which emphasizes the dependency of the solution on its initial value. Now the useful
concept can be introduced by the following:

• The orbit or trajectory of the IVP is the curve

(2.1.7) {Ψ (t; t0, x0) | t ∈ J } ,

in the state-space. The corresponding positive orbit is obtained by taking the
part with t ≥ t0.

• The solution curve of the IVP is the curve

(2.1.8)
{[

t

Ψ (t; t0, x0)

]

| t ∈ J
}
,

in the time-state space (⊂ RN+1). For n = 1 it is simply the graph of x as a
function of t.

Points x̃ ∈ X, where

(2.1.9) u (t, x̃) = 0,

are of special importance and here referred as stationary points. A stationary point is
a solution of IVP for any t0 ∈ J and the orbit is then contracted on one point.

2.2 Existence, uniqueness and stability of ODE solution; Flow problems 9

2.2 Existence, uniqueness and stability of ODE solution; Flow
problems

To give conditions for the existence and uniqueness of the ODE solution, we intro-
duce some relevant norms. Unless explicitly stated, we shall use the Euclidean norm,
which is for x ∈ RN defined by

(2.2.1) ‖x‖ :=
√

xT · x =

(

N∑

k=1

x2
k

)1/2

.

For x with components dependent on t ∈ J, the norm of x(·) on J is defined as

(2.2.2) ‖x‖J := sup
t∈J

‖x(t)‖ .

In a similar way we may define the norm of a velocity field u(t, x) with (t, x) ∈ J×X,
as

(2.2.3) ‖u‖J := sup
t∈J
x∈X

‖u(t, x)‖ .

For matrices A ∈ RN×N we can associate a matrix norm with any norm defined in
RN as

(2.2.4) ‖A‖ := max
x6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖ .

To prove the local existence of a solution of the IVP (2.1.1)-(2.1.2), it is sufficient to
require that the velocity field is continuous on a domain J × X, containing the point
(t0, x0). This result is obtained in the Cauchy-Peano theorem (see [23]), which we
give without proof.

THEOREM 2.2.1. If J = [t0, t1] and V = {x ∈ X | ‖x − x0‖ < R } and for all x ∈ V , u
continuous and ‖u(x)‖ < M, where the numbers R and M satisfy M (t1 − t0) ≤ R, then
IVP (2.1.1)-(2.1.2) has a solution.

The uniqueness of the solution is guaranteed if the velocity field satisfies the Lipschitz
condition, i.e. if it satisfies the following.

DEFINITION 2.2.2. The velocity field u(t, x) is Lipschitz continuous on J × X if there
is a constant L, known as the Lipschitz constant, such that for all x, y ∈ X and all t ∈ J
(2.2.5) ‖u(t, y) − u(t, x)‖ ≤ L ‖y − x‖ .

The Lipschitz continuity property is stronger than continuity, but weaker than differ-
entiability. It expresses that u can be bounded by a linear function on X for all t ∈ J.
The norm present in (2.2.5) can taken as arbitrary, but in case of Euclidean norm, we
can also introduce a closely related, but weaker condition.

DEFINITION 2.2.3. The velocity field u(t, x) on J × X is said to satisfy a one-sided
Lipschitz condition if there exists a number ν, known as the one-sided Lipschitz constant
of u, such that for all x, y ∈ X
(2.2.6) 〈u(t, y) − u(t, x), y − x〉 ≤ ν ‖y − x‖2

,

where 〈·, ·〉 denotes the inner-product.

10 Ordinary differential equations

Now we can give the uniqueness properties by the following.

THEOREM 2.2.4. The IVP (2.1.1)-(2.1.2), with u Lipschitz continuous on some domain
J× X which contains (t0, x0) has at most one solution.

THEOREM 2.2.5. The solution x of IVP (2.1.1)-(2.1.2) with u Lipschitz continuous exists
globally, i.e. for all t ∈ R, if x(t) exists for some t, which implies

(2.2.7) ‖x(t) − x0‖ ≤M,
for some constantM > 0.

THEOREM 2.2.6. The solution x of IVP (2.1.1)-(2.1.2) exists globally if u is bounded, i.e. if
‖u‖

R×RN <∞

The behaviour of the ODE solution is closely related to the notion of stability of the
IVP solution. Among many stability definitions we give the most general one only,
the definition of the total stability. For that we consider the IVP

(2.2.8)

{
ẋ = u(t, x),

x (t0) = x0.

and its corresponding perturbed problem

(2.2.9)

{
ẏ = u(t, y) + v(t, y),

y (t1) = x (t1) + z1,

where t1 ≥ t0. Assuming that the solution x of (2.2.8) exists for t1 ≥ t0 the definition
reads as follows.

DEFINITION 2.2.7. The solution x of (2.2.8) is totally stable if, for every ε > 0 and
every t1 > t0, there exists δ (ε, t1) such that

(2.2.10) {‖z1‖ < δ (ε, t1) andR1 < δ (ε, t1)} ⇒ {‖y(t) − x(t)‖ < ε, for all t ≥ t1} ,

where y is the solution of (2.2.9) and R1 := sup
t≥t1

‖v (t, x(t))‖.

The stronger form of stability is the situation where δ does not depend on t1. Then,
x is called uniformly totally stable.

In this thesis the main aspect is on the so-called flow problem, where the initial value
is defined as a set of points (instead of a single point as in IVP). It will be assumed
that u : U → RN is a smooth function, defined on some subset U ⊆ RN. We say that
u generates a flow It : U → RN, where It(x) = I(x, t) is a smooth function defined
for all x ∈ U and t ∈ J = [t0, t1] ⊆ R, and I satisfies ODE (2.1.1) in the sense that

(2.2.11)
d

dt
I(x, t)|t=τ = u (I(x, τ)) ,

for all x ∈ U and τ ∈ J. Since we are mainly interested in problems where u is
autonomous, for which the corresponding autonomous system is invariant with re-
spect to translations in time, we can assume, without loss of generality, that t0 = 0.

Considering a particular initial value

(2.2.12) x(0) = x0 ∈ U.,
the corresponding solution x(t) can be expressed as

(2.2.13) x(t) = I
(

x0, t
)

,

2.2 Existence, uniqueness and stability of ODE solution; Flow problems 11

FIGURE 2.2.1. A solution curve and the flow

where

(2.2.14) I
(

x0, 0
)

= x0.

Here I
(

x0, ·
)

: J → RN defines a solution curve of the differential equation (2.1.1)
based at x0 and it represents a solution of the IVP. The behaviour of the family of
such curves in time for all x ∈ U, determines the time evolution of the flow, see
Figure 2.2.1. The set of initial values U can also be defined by the notion of the flow
as I(x, 0). The following notation will also be used in this thesis

(2.2.15) I0 := I(x, 0).

Now, we can define a flow problem as

(2.2.16)

{
ẋ = u(t, x),

x (0) ∈ I0.

Again if u does not explicitly depend on t, the flow problem is called autonomous.
The conditions for the local existence and uniqueness of the solution can be related
to those given in Section 2.2, i.e. to the property of Lipschitz continuity. Hence,
throughout this thesis, we will consider flow problems where u is Lipschitz continu-
ous. For such autonomous systems there is an important property which relates the
flow solutions to their initial conditions. Note that a similar property also holds for
the corresponding IVP.

THEOREM 2.2.8. LetU ⊆ RN be open and suppose u : U → RN has a Lipschitz constant L
and let x(t) and y(t) be solutions of ẋ = u(x) on the closed interval [t0, t1]. Then, for all
t ∈ [t0, t1],

(2.2.17) ‖y(t) − x(t)‖ ≤ eL(t−t0) ‖y0 − x0‖ .

A special class of interest in this thesis are flow problems where the velocity field is
not known explicitly, i.e. when it is given discretely only. For example, the velocity
field u may be defined by a set of pairs {(xk,uk)}

n
k=0, where xk represents the spatial

point in which u (xk) = uk value is known. However, if u is Lipschitz continuous,
the aforementioned theory holds. The major difference (or difficulty in a way) is in
the implementation of numerical methods for solving the flow problem. This is the
main topic of the last section of this chapter and indeed in the rest of this thesis.

12 Ordinary differential equations

2.3 Numerical methods for solving ODEs

In the foregoing sections we assumed that both x and t are continuous. Apply-
ing a numerical method for solving an ODE involves the time discretisation, i.e. the
use of difference quotients instead of differential ones. This leads to so-called dif-
ference equations. Here, instead of the continuous variable t we use the index set
Ji = {0, 1, . . . , ni} , ni ∈ N. Let a sequence fi(x) : X → RN be given, where i ∈ Ji
and X ∈ RN. Then a first order difference equation has the form

(2.3.1) xi+1 = fi
(

xi
)

, x ∈ X, i ∈ Ji.
By defining

(2.3.2) x0 = x0, x0 ∈ RN,

or

(2.3.3) x0 ∈ I0, I0 ⊆ RN.

we obtain a discrete analogues of an IVP and the flow problems respectively.

Before we introduce some numerical methods, we first introduce the time discreti-
sation and its relation to difference equations. For simplicity reasons we restrict our-
selves to scalar equations. Let J =

{
ti

}ni

i=0
, ni ∈ N be a set of time points, which

spans a time interval of interest, say [t0, tf]. This set determines in which points we
want to approximate the solution values x

(

ti
)

, i = 0, . . . , ni. The set J we call the
time-grid and points ti time-grid points (or time levels). Because all quantities are
calculated at the time-grid points only, we have to replace the differential operator
by a differential quotient. One (simple) way of discretising the ODE ẋ = u(t, x) reads

(2.3.4)
x
(

ti + hi
)

− x
(

ti
)

hi

.
= u

(

ti, x
(

ti
))

, hi := ti+1 − ti.

We call hi a time step at the time point ti. If the set J is equidistant, i.e. if ti+1 −

ti = const = h, we have a fixed time step integration and the superscript i will be
omitted.

Since we know x
(

t0
)

, we may use (2.3.4) to compute an approximation of the solu-
tion. An alternative way is to rewrite the ODE as an integral equation, i.e.

(2.3.5) x(t) = x (t0) +

∫t

t0

u (τ, x(τ)) dτ.

Applying this on the interval
[

ti, ti+1
]

, we have

(2.3.6) x
(

ti+1
)

= x
(

ti
)

+

∫ti+1

ti

u (τ, x(τ)) dτ.

Now, we can discretise the integral by so-called quadrature formulae. The simplest
way to approximate the integral on the right-hand side of (2.3.6) is to approximate
u (τ, x(τ))

.
= u

(

ti, x
(

ti
))

, τ ∈
[

ti, ti+1
]

, which gives

(2.3.7) x
(

ti+1
) .

= x
(

ti
)

+ hi u
(

ti, x
(

ti
))

,

which is basically the famous Euler Forward (EF) formula. We denote xi to be an
approximation (i.e. the numerical solution) of x

(

ti
)

at the time point ti.

In general, one-step methods are given by

(2.3.8) xi+1 = xi + hiΦ
(

ti, xi, xi+1, hi
)

, i = 0, . . . , nj − 1.

2.4 Stiff problems 13

If Φ does not depend on xi+1, we have an explicit one-step method. Otherwise, (2.3.8)
is called an implicit one-step method. If we use u (τ, x(τ))

.
= u

(

ti+1, x
(

ti+1
))

, τ ∈
[

ti, ti+1
]

for approximating (2.3.6), we obtain the Euler Backward (EB) method

(2.3.9) xi+1 = xi + hi u
(

ti+1, xi+1
)

, i = 0, . . . , nj − 1,

which will be of special interest in this work. Higher order methods, both one-step
and multistep ones, will be introduced is Sections 2.5 and 2.6.

2.4 Stiff problems

Numerical methods of interest in this thesis are implicit, such as e.g. the Euler Back-
ward method introduced in the previous section. Being much more involved than
explicit methods, implicit methods are typically used for solving the so-called stiff
problems only. Historically the notion of stiffness was introduced in [13], which reads:
“Stiff equations are equations where certain implicit methods perform better, usually
tremendously better, than explicit ones.” Here we will address stiffness in the sense
of multiple time scales present in the problem. We call a problem stiff if the presence
of faster time scales requires much smaller time-steps than needed for accuracy for
the relevant slower time scales; in particular for explicit methods.

One way to find out whether a method is acceptable for solving a stiff problem is by
introducing the stability function ψ. It is defined by considering the linear test problem

(2.4.1) ẋ = λ x, λ ∈ C,

and applying a numerical method. For one-step methods this directly leads to

(2.4.2) xi+1 = ψ(hλ) xi,

where ψ depends on the method and the term hλ turns out to be an invariant quan-
tity (i.e. h and λ always appear jointly). Typically, one substitutes the quantity hλ by
a single complex variable, say z := hλ. By analysing the behaviour of ψ(z) for z ∈ C,
one can determine whether or not a method will be acceptable.

The stability function of the already mentioned EF, defined by (2.3.7), reads

(2.4.3) ψ(z) = 1 + z.

On the other hand, applying the EB method (2.3.9), one can easily find

(2.4.4) ψ(z) =
1

1 − z
.

The more general result, namely for the Runge-Kutta methods (introduced later), is
given by the following theorem.

THEOREM 2.4.1. The stability function of the s−stage Runge-Kutta method satisfies

(2.4.5) ψ(z) =
det
(

Is − zA + z e bT
)

det (Is − zA)
.

where z := hλ, e :=
[

1 · · · 1
]T , Is represents identity matrix of s-th order, and A and

b are defined by the Butcher matrix.

The stability function is used for defining the so-called stability domain S, by the fol-
lowing

(2.4.6) S := {z ∈ C| |ψ(z)| ≤ 1} .

14 Ordinary differential equations

Obviously S should be as large as possible. It can be important that S includes the
whole negative (complex) half-plane, i.e. to cover the stability region of dynami-
cal systems. This property is called A-stability and formally given by the following
definition.

DEFINITION 2.4.2. A method whose stability domain satisfies

(2.4.7) C− := {z | <{z} ≤ 0} ⊂ S,
is called A-stable.

Unfortunately, all A-stable methods are implicit. Practically all explicit methods
have a relatively small stability region, making them inappropriate for solving stiff
problems. Moreover, not all implicit methods are A-stable and it can turn out that
this property can be too strong in general and discard some methods which are not
bad at all. Hence, it is useful to define a little weaker stability property, called A(α)-
stability, by the following.

DEFINITION 2.4.3. A method is said to be A(α)-stable if

(2.4.8) C(α) := {z | |arg(−z)| ≤ α, α ∈ [0, π/2] , z 6= 0} ⊂ S.

In Figure 2.4.1 domains C− and C(α) are shown as shaded areas respectively.

(a) A−stability (b) A(α)−stability

FIGURE 2.4.1. Stability domains

THEOREM 2.4.4. Explicit numerical methods cannot be A(α)-stable.

PROOF. We consider Runge-Kutta and linear multistep methods only. For ex-
plicit s−stage Runge-Kutta methods, the matrix A is lower-triangular. Hence the
denominator of (2.4.5) is

det (Is − zA) = 1.

This means that the stability function is just a polynomial of the s-th degree. Since
polynomials cannot satisfy (2.4.8), it is clear that explicit Runge-Kutta methods can-
not be A(α)-stable. A more extensive proof can be found in [19]. For the proof
concerning explicit linear multistep methods, see [53], where it is shown that these
methods cannot be A(0)-stable. �

2.5 Linear multistep methods 15

COROLLARY 2.4.5. For solving stiff problems only implicit methods can efficiently be used
(see e.g. [15] and [24]).

In some applications it may be of importance that the method should have a property
that |ψ(z)| is much smaller than 1 for z → ∞. This is basically the concept of another
stability property, called L-stability.

DEFINITION 2.4.6. A method is called L-stable if it is A-stable and if in addition

(2.4.9) lim
z→−∞

ψ(z) = 0.

Clearly, the EB method is one example of L-stable methods. In the following sections
we will introduce some of the higher order methods which also satisfy some of these
stability properties.

2.5 Linear multistep methods

In Section 2.3 we have seen that an ODE can be transformed into an integral equa-
tion (2.3.5). Applying this to the interval

[

ti, ti+1
]

, we have obtained the integral
equation (2.3.6), from which one can be obtain one-step methods (see the following
section). If we increase the integration interval to

[

ti − t̃, ti+1
]

, the corresponding
equation reads

(2.5.1) x
(

ti+1
)

= x
(

ti − t̃
)

+

∫ti+1

ti−t̃

u (τ, x(τ)) dτ.

Again, by applying some quadrature rule, one can approximate the integral on the
right-hand side of (2.5.1). We can choose t̃ such that the interpolating quadrature
involves more than two time-grid points tj, j = i + 1, i, . . . This leads to multistep
formulae, which can be used for solving IVPs and the flow problems. For example, if
we use ti+1, ti and ti−1 and the second order equispaced polynomial approximation
(i.e. Simpson’s rule), we obtain the following (implicit) formula

(2.5.2) xi+1 = xi−1 + h

(

1

3
u
(

ti+1, xi+1
)

+
4

3
u
(

ti, xi
)

+
1

3
u
(

ti−1, xi−1
)

)

.

One should note that a similar procedure for using ti, ti−1 and ti−2 would yield an
explicit formula.

A linear multistep method (LMM) is generally given by

(2.5.3)
m∑

l=0

αl x
i−l+1 = h

m∑

l=0

βlu
(

ti−l+1, xi−l+1
)

.

It is basically am-th order difference equation and for β0 = 0 it is explicit. Otherwise
the LMM method is implicit. In this thesis we will consider implicit linear multistep
methods (ILMMs) only. In particular the focus will be on the so-called BDF methods
which we address separately.

The implementation of ILMMs leads to the nonlinear system of equations, which
needs to be solved at every time level. The existence and uniqueness of the solution
is not guaranteed in the general case. A sufficient condition for the general vectorial
case, to have an unique solution is given by the following theorem, given in [24].

16 Ordinary differential equations

THEOREM 2.5.1. Let u be continuously differentiable and satisfy the one-sided Lipschitz
condition

(2.5.4) 〈u(y) − u(x), y − x〉 ≤ ν ‖y − x‖2.

If

(2.5.5) hν ≤ α0

β0

,

the nonlinear system of equations α0 xi+1 − hβ0 u
(

xi+1
)

= si, has a unique solution.

2.5.1 BDF methods

There is another important source for constructing multistep methods. The un-
derlying idea comes from interpolating x and differentiating at one of the time-
grid points. Assuming that xi−m+1, . . . , xi are known approximations of the IVP
solution, one can construct a polynomial, say q(t), which interpolates the points{(
ti+1−r, xi+1−r

)}m

r=0
. The unknown value xi+1 can now be determined in such a

way that the polynomial q(t) satisfies the differential equation at (at least) one time-
grid point, i.e.

(2.5.6)
dq

dt

(

ti+1−r
)

= u
(

ti+1−r, xi+1−r
)

.

For r = 1 the formula is explicit. Then for m = 1 and m = 2 the corresponding
formula is equivalent to the EF method and the (explicit) midpoint rule, which reads

(2.5.7)
1

h

(

1

2
xi+1 −

1

2
xi−1

)

= u
(

ti, xi
)

.

Unfortunately, for m ≥ 3 the formula is unstable and therefore useless. However, if
we choose r = 0 in (2.5.6), we find implicit formulae of the following form

(2.5.8)
m∑

l=0

αl x
i−l+1 = hu

(

ti+1, xi+1
)

.

This formula represents the so-called BDF (Backward Differences Formula) method. The
BDF methods were introduced in [13] and became frequently used methods (espe-
cially after [21] appeared) for solving stiff problems. The reason is, of course, that
they have favourable stability properties. For example, BDF1 (which is in fact the EB
method) and BDF2 methods areA-stable and BDF3-6 areA(α)-stable, see Table 2.5.1.
For m ≥ 7 these methods are unstable.

m 1 2 3 4 5 6

α 90◦ 90◦ 86.03◦ 73.35◦ 51.84◦ 17.84◦

TABLE 2.5.1. A(α)−stability of BDF methods

The coefficient values for the BDF methods are shown in Table 2.5.2.

2.5 Linear multistep methods 17

m α0 α1 α2 α3 α4 α5 α6

1 1 −1

2 3
2

−2 1
2

3 11
6

−3 3
2

−1
3

4 25
12

−4 3 −4
3

1
4

5 137
60

−5 5 −10
3

5
4

−1
5

6 147
60

−6 15
2

−20
3

15
4

−6
5

1
6

TABLE 2.5.2. BDF methods

2.5.2 Local error (consistency); stability

One of the basic requirements for every numerical method is that the difference for-
mula is consistent with the differential equation. In other words, consistency means
that the formula reproduces the ODE if h→ 0. This property is closely related to the
notion of the local discretisation error, say d. The local discretisation error is defined as
a difference between the exact value x

(

ti+1
)

and its approximation xi+1, divided by
h, and assuming exact input data given, i.e.

(2.5.9) dh

(

x
(

ti+1
))

:=
1

h

[

x
(

ti+1
)

− xi+1
]

, xi−l+1 = x
(

ti−l+1
)

, l = 1, . . . ,m.

If dh(·) = O (hp) , p ≥ 1, we call the LMM consistent of order p. For a sufficiently
smooth solution the local discretisation error for the general LMM can be expressed
as

(2.5.10) dh

(

x
(

ti+1
))

= Chp x(p+1)
(

ti+1
)

+O
(

hp+1
)

,

where C is called the error constant, which can be computed by

(2.5.11) C =
1

σ(1) (p + 1)!

[

m∑

l=0

αl l
p+1 − (p + 1)

m∑

l=0

βl l
p

]

.

In previous subsection we mentioned that BDF methods have favourable stability
properties. To determine that, one needs to find the stability function which relates
numerical solutions of the linear test problem at consecutive time levels, which is
straightforward for one-step methods. For m−step LMM the homogeneous differ-
ence equation generates m basis solutions, each having its own growth behaviour
as a function of hλ. Given hλ we can represent them all, once we have the roots
ωl(hλ), l = 0, . . . ,m of the characteristic equation

(2.5.12) ρ(ω) − hλσ(ω) :=

m∑

l=0

(αl − hλβl) ω
m−l = 0.

The stability condition of the general LMM method is related to the condition of the
polynomial ρ(ω), as given by the following definition.

DEFINITION 2.5.2. An LMM is called root stable if all roots ρ(ω) are at most 1 in
modulus and those which have modulus 1 are simple.

18 Ordinary differential equations

Now, the stability domain of an LMM can be defined by means of roots ωl, l =

0, . . . ,m, of the characteristic equation (2.5.12), as

(2.5.13) S :=

{
z ∈ C,

|ωl (z)| ≤ l, j = 0, . . . ,m

|ωl (z)| < 1, for multiple roots

}
.

In a similar way as for one-step methods, one can determine whether the LMM sat-
isfies some of the stability properties such as A-stability or A(α)-stability (see Defi-
nitions 2.4.2 and 2.4.3).

2.6 Runge-Kutta methods

The most important class of one-step methods are Runge-Kutta (RK) methods, which
were already introduced in Section 2.3. By applying some quadrature formula to
approximate the integral in (2.3.6), we can obtain

(2.6.1) x
(

ti+1
) .

= x
(

ti
)

+ h

s∑

l=1

bl u
(

til, x
(

til
))

,

where h is the time step and til := ti + clh, 0 ≤ cl ≤ 1, i.e. the nodes on
[

ti, ti+1
]

.
To find unknown x

(

til
)

one can apply another quadrature formula on the interval
[

ti, til
]

using a subset of the nodes til, l = 1, . . . , s. Hence we obtain

(2.6.2) x
(

til
) .

= x
(

ti
)

+ h

s∑

q=1

alq u
(

til, x
(

til
))

, l = 1, . . . , s,

which together with (2.6.1) defines a Runge-Kutta method with s stages. Frequently
used compact notation is the so-called Butcher matrix

c1 a11 · · · a1s

...
...

cs as1 ass

b1 bs

,

denoted for short

c A

b
.

The RK method is called explicit if alq = 0, q ≥ l. Otherwise we have an implicit
Runge-Kutta (IRK) method. A special subclass of implicit methods are diagonally im-
plicit Runge-Kutta (DIRK) methods for which alq = 0, q ≥ l + 1.

2.6 Runge-Kutta methods 19

2.6.1 Local error (consistency); stability

A one-step method, such as an RK method, can be represented by the following
formula

(2.6.3) xi+1 = xi + hΦ
(

ti, xi, xi+1, h
)

.

We may use this to define the local discretisation error, say d, as a residual divided
by h, when we substitute the exact solution in a method, i.e.

(2.6.4) dh

(

x
(

ti+1
))

:=
[

x
(

ti+1
)

− x
(

ti
)

− hΦ
(

ti, x
(

ti
)

, x
(

ti+1
)

, h
)]

/h.

Like for the LMM methods, the consistency of the method means that dh approaches
zero when h → 0. We call p the consistency order if dh

(

x
(

ti+1
))

= O (hp), for p as
large as possible.

The already mentioned stability properties (A, A(α), L) of the RK methods can be
determined by finding the stability function ψ(hλ), which was introduced in Sec-
tion 2.4. Usingψ(z), obtained by (2.4.5), one can analyse whether a particular method
satisfies certain stability properties, like A, A(α) or L-stability. As shown in [19], ex-
plicit RK methods do not have these properties and they are not of interest in this
thesis. Hence, in the following subsection, we will introduce some IRK methods
which are at least A-stable.

The aforementioned stability analysis is related to linear systems and not necessarily
appropriate for general nonlinear problems. However, there is a generalisation ofA-
stability to nonlinear problems, related to the contractivity condition of a nonlinear
ODE (see [9]), that satisfies the one-sided Lipschitz condition, see (2.2.6). Whenever
the one-sided Lipschitz constant ν is non-positive in (2.2.6), the distance between
any two solutions of (2.1.1) is a non-increasing function of t. Naturally, the numerical
solution should have the same behaviour and this property is called B-stability and
defined by the following.

DEFINITION 2.6.1. A Runge-Kutta method is called B-stable if the contractivity condi-
tion

(2.6.5) 〈u(t, y) − u(t, x), y − x〉 ≤ 0,
implies for all h ≥ 0
(2.6.6)

∥

∥yi+1 − xi+1
∥

∥ ≤
∥

∥yi − xi
∥

∥ ,

where yi+1 and xi+1 are the numerical solutions after one step starting with initial
values yi and xi respectively. In the following subsection we introduce some of the
B-stable IRK methods.

2.6.2 IRK methods; Gauss, Radau, Lobatto

The construction of IRK methods strongly relies on the simplifying assumptions

B(p) :
∑s

l=1 bl c
r−1
l = 1

r
, r = 1, . . . , p;

C(η) :
∑s

q=1 alq c
r−1
q =

cr
l

r
, l = 1, . . . , s, r = 1, . . . , η;

D(ζ) :
∑s

l=1 bl c
r−1
l alq =

bq

r

(

1 − cr
q

)

q = 1, . . . , s, r = 1, . . . , ζ;(2.6.7)

Condition B(p) simply means that the quadrature formula (bl, cl) is of order p. The
other two conditions are important for determining the consistency order of the IRK
method, as shown by the following.

20 Ordinary differential equations

THEOREM 2.6.2. If the coefficients bl, cl and alq of an RK method satisfy B(p), C(η) and
D(ζ), with p ≤ η+ ζ+ 1 and p ≤ 2q + 2, then the method is of order p.

2.6.2.1 Gauss method

This method (also known as the Kuntzmann-Butcher method) is based on the Gauss-
ian quadrature formula, where c1, . . . , cs are the zeros of the shifted Legendre poly-
nomial of degree s, defined by

(2.6.8)
ds

dxs

(

xs (x− 1)
s)
.

The Gauss method with s stages is of order 2s and it has the maximal order of all IRK
methods. Also it is A-stable. One and two-stage methods are shown in Table 2.6.1.
Higher order methods can be found in [24], which will also hold for other methods
presented here.

1
2

1
2

1

,

1
2

−
√

3
6

1
4

1
4

−
√

3
6

1
2

+
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2

.

TABLE 2.6.1. Gauss methods of order 2 and 4.

2.6.2.2 Radau IA and Radau IIA methods

These methods are obtained by using the Radau quadrature formula. Instead of
(2.6.8), the coefficients cl, l = 1, . . . , s are zeros of

I : ds−1

dxs−1

(

xs (x− 1)
s−1
)

, (Radau left),(2.6.9)

II : ds−1

dxs−1

(

xs−1 (x− 1)
s)
, (Radau right).(2.6.10)

The weights bl, l = 1, . . . , s are chosen so that the quadrature formula satisfies
B(2s− 1). There is a variety of possibilities how to choose the coefficients alq, l, q =

1, . . . , s, but not all of them are equally effective. We mention the most important
ones only. The Radau IA method is a method of type I, where alq’s are defined by
condition D(s), which is uniquely possible. One and two-stage methods are shown
in Table 2.6.2.

0 1

1

,

0 1
4

−1
4

2
3

1
4

5
12

1
4

3
4

.

TABLE 2.6.2. Radau IA methods of order 1 and 3.

By employing (2.6.10) for cl’s and imposing condition C(s), we obtain the so-called
Radau IIA method. The first two members are shown in Table 2.6.3. Both Radau IA
and Radau IIA methods are of order 2s − 1 and L-stable.

2.6 Runge-Kutta methods 21

1 1

1

,

1
3

5
12

− 1
12

1 3
4

1
4

3
4

1
4

.

TABLE 2.6.3. Radau IIA methods of order 1 and 3.

2.6.2.3 Lobatto IIIA, IIIB and IIIC methods

By choosing the Lobatto quadrature formula, we obtain the so-called type III meth-
ods, for which cl’s are zeros of the polynomial

III : ds−2

dxs−2

(

xs−1 (x − 1)
s−1
)

.(2.6.11)

Here the weights bl’s are determined by requiring the condition B(2s − s) to be
satisfied. Choosing alq’s such that C(s) hold, we obtain the Lobatto IIIA method. For
the Lobatto IIIB method we impose D(s). Finally, by letting

(2.6.12) al1 = b1, l = 1, . . . , s,

and determining the remaining alq’s by C(s− 1), we obtain the Lobatto IIIC method.
The order of all Lobatto methods is 2s − 2. They are all A-stable and, moreover,
the Lobatto IIIC method is also L-stable. Two and three-stage members of Lobatto
methods are shown in Tables 2.6.4-2.6.6.

0 0 0

1 1
2

1
2

1
2

1
2

,

0 0 0 0

1
2

5
24

1
3

− 1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

.

TABLE 2.6.4. Lobatto IIIA methods of order 2 and 4.

0 1
2

0

1 1
2

0

1
2

1
2

,

0 1
6

−1
6

0

1
2

1
6

1
3

0

1 1
6

5
6

0

1
6

2
3

1
6

.

TABLE 2.6.5. Lobatto IIIB methods of order 2 and 4.

Considering nonlinear stability properties, i.e. B-stability, one can find that not all
of the introduced IRK methods are B-stable. To find this, one can use the following
(cf. [24]).

22 Ordinary differential equations

0 1
2

−1
2

1 1
2

1
2

1
2

1
2

,

0 1
6

−1
3

1
6

1
2

1
6

5
12

− 1
12

1 1
6

2
3

1
6

1
6

2
3

1
6

.

TABLE 2.6.6. Lobatto IIIC methods of order 2 and 4.

THEOREM 2.6.3. If the coefficients of a IRK method satisfy

(i) bl ≥ 0, l = 1, . . . , s,

(ii) M = [mlq]
s

l,q=1
= [bl alq + bq aql − bl bq]

s

l,q=1
is non-negative definite,

then the method is B-stable.

Applying this for the introduced methods, we find that the Lobatto IIIA and Lo-
batto IIIB methods do not satisfy condition (ii) and therefore they are not B-stable
methods. To summarise properties of all interesting methods, the order and the sta-
bility properties are shown in Table 2.6.7.

IRK method Order Linear Stab. Property Nonlinear Stab. Property

Gauss 2s A−stability B−stability

Radau IA, IIA 2s − 1 L−stability B−stability

Lobatto IIIA, IIIB 2s − 2 A−stability -

Lobatto IIIC 2s − 2 L−stability B−stability

TABLE 2.6.7. Properties of some IRK methods.

2.6.3 DIRK methods

As we shall see in the following section, the implementation of the fully implicit
IRK can be very involved and computationally expensive. One way to (partially)
overcome this problem is the implementation of DIRK methods. An especially inter-
esting class are the so-called singly diagonally implicit RK (SDIRK) methods, defined
by the following Butcher matrix

c1 γ

c2 a21 γ
...

...
cs as1 as2 · · · γ

b1 b2 · · · bs

.

2.6 Runge-Kutta methods 23

The main reason for employing such a method is due to the easier implementation
and yet still having a method which is at least A-stable. However, the A-stability
region strongly depends on the value of γ. The value of γ can be chosen to optimise
the consistency order or the stability requirement of the method, see Table 2.6.8. For
example, if the γ value is chosen such that the order of SDIRK is p = s+ 1, there are
only few low order methods which are still A-stable, see Table 2.6.8. However, by
decreasing the order of the method it is possible to find higher order methods which
are even L-stable, see Table 2.6.9.

s A−stability A−stability and p = s+ 1

1 1/2 ≤ γ < ∞ γ = 1/2

2 1/4 ≤ γ < ∞ γ =
(

3 +
√
3
)

/6

3 1/3 ≤ γ ≤ 1.68856 γ = 1.68856

4 0.39434 ≤ γ ≤ 1.28058 -

TABLE 2.6.8. A−stability for SDIRK with p ≥ s.

s L−stability L−stability and p = s

2
(

2 −
√
2
)

/2 ≤ γ ≤
(

2 +
√
2
)

/2 γ =
(

2±
√
2
)

/2

3 0.18043 ≤ γ ≤ 2.1856 γ = 0.43587

...

8 0.15666 ≤ γ ≤ 0.23437 γ = 0.23437

TABLE 2.6.9. L−stability for SDIRK with p ≥ s − 1.

For details about constructing SDIRK methods see [24]. As an example of these
methods we introduce one three-stage SDIRK method which is A-stable and of or-
der s+ 1 = 4, see Table 2.6.10.

γ γ

1
2

1
2

− γ γ

1 − γ 2γ 1 − 4 γ γ

ω 1 − 2ω ω

,
γ = 1√

3
cos

(

π
18

)

+ 1
2
,

ω = 1

6 (2 γ−1)2 .

TABLE 2.6.10. Three-stage,A−stable SDIRK method (p = 4).

24 Ordinary differential equations

2.7 Implementation of the implicit numerical methods

As shown in previous sections, implicit numerical methods possess better stability
properties than explicit ones, which is the main reason for their usage in solving stiff
ODEs. However, all implicit methods introduce a nonlinear system of equations,
which needs to be solved at every time step. For x ∈ RN the corresponding system
of equations is N × N for LMMs and even sN × sN for IRK methods, where s is
the number of stages. One should note that the solution does not necessarily exist
in general. Hence we start with conditions for the existence and uniqueness of the
(implicit) numerical solution. We address both IRK and LMM methods.

2.7.1 Existence and uniqueness of the numerical solution

Consider an IRK method, applied to an ODE (2.1.1). Let us rewrite (2.6.2) for the
general N-dimensional ODE by replacing the exact (inner-stage) values with their
numerical approximations. The system is then

(2.7.1) xil = xi + h

s∑

q=1

alq u
(

til, xil
)

, l = 1, . . . , s,

where xil represents the approximation of x
(

til
)

. This system is clearly sN×sN and
the existence of an unique solution is guaranteed if

(2.7.2) h <
1

L maxl

∑s
q=1 |alq|

,

where L is the Lipschitz constant, see [23]. For stiff problems, where L is typically
large, this condition imposes severe constraints for the time step size and, thus, does
not give a satisfactory result. However, by using results obtained in [24], we can
obtain less severe condition.

DEFINITION 2.7.1. Consider the weighted inner product 〈v,w〉D = uT D v, where
D = diag (d1, . . . , ds) with dl > 0. We then denote by αD

(

A−1
)

the largest number
α such that

(2.7.3)
〈

v,A−1v
〉

D
≥ α 〈v, v〉D , ∀v ∈ Rs.

We also set

(2.7.4) α0

(

A−1
)

:= sup
D>0

αD

(

A−1
)

.

Then an existence and uniqueness condition are given in the following theorem.

THEOREM 2.7.2. Let u be continuously differentiable and satisfy the one-sided Lipschitz
condition (2.2.6). If the RK matrix A is invertible and

(2.7.5) hν < α0

(

A−1
)

,

then the nonlinear system (2.7.1) possesses a unique solution.

The corresponding condition for the general LMM (2.5.3) is simpler, since LMMs
do not increase the dimensionality of the nonlinear system to be solved. Here the
nonlinear system can be expressed by the following

(2.7.6) α0 xi+1 − hβ0 u
(

ti+1, xi+1
)

− si = 0,

2.7 Implementation of the implicit numerical methods 25

where

(2.7.7) si :=

m∑

l=1

[

−αl xi−l+1 + hβl u
(

ti+1, xi−l+1
)]

,

represents a vector composed of known quantities.

THEOREM 2.7.3. Let u be continuously differentiable and satisfy the one-sided Lipschitz
condition 2.2.6. If

(2.7.8) hν <
α0

β0

,

then the nonlinear system (2.7.6) has a unique solution.

Some other interesting existence and uniqueness results can be found in [17] and [54].

2.7.2 Nonlinear systems of equations

As known from the literature, solving the nonlinear system (2.7.1) or (2.7.6) is not a
trivial task and it represents (computationally) the most expensive part of an implicit
method. The main reason for this is that typically one needs to apply the Newton
method or some of its variants (see e.g. [24, 31]). The method gives an approximation
of the zero of a nonlinear system of equations

(2.7.9) f(x) = 0, x ∈ RN.

Note that (2.7.1) and (2.7.6) can be represented in this form. The Newton method is
defined by the recursion

(2.7.10) x[ν+1] = x[ν] −
[

Df
(

x[ν]
)]−1

f
(

x[ν]
)

, ν = 0, 1, . . . ,

whereDf is the Jacobian matrix of f.

Although the Newton method is a popular choice and quite efficient when success-
ful (see e.g. [37]), it may introduce serious difficulties in the implementation. We
mention a few. Firstly, the iterative process may not converge if the initial value is
not close to the solution, i.e. the convergence is only guaranteed locally. Secondly,
for ODE systems with a velocity field u not being explicitly known (implying that f
is also not known explicitly), it is not easy to implement (2.7.10). Recalling (2.7.1) and
(2.7.6), it is clear that one needs to obtain values u

(

x[ν]
)

and
[

Du
(

x[ν]
)]−1

. This can
represent a tedious task, especially considering the inverse Jacobian matrix. Finally,
it is not clear how good these approximations should be to preserve the convergence
of the Newton method in the continuous case, of course, assuming that it converges
at all.

Since in this thesis our main interest is in problems where u is only given discretely
by a set {(xk,uk)}

n
k=0, we will use another approach to solve (2.7.10) and, thus, avoid

the Newton method and its aforementioned difficulties. An alternative is inverse
interpolation, which is the main topic of the following chapter. However, both ap-
proaches may give equivalent (or even identical) results in some situations, as will
be pointed out.

CHAPTER 3

Interpolation methods

This chapter is devoted to interpolation being an essential ingredient of methods
introduced in the following chapters. We first give some elementary concepts of in-
terpolation. The univariate and multivariate interpolation aspects are given in Sec-
tions 3.3 and 3.4 respectively. We introduce some interpolation methods, which are
of importance in this thesis. The most important interpolation aspect for the up-
coming chapters is the inverse interpolation, which will be employed in numerical
methods for solving ODEs. It is given in the final section of this chapter.

3.1 Introduction to approximation and interpolation

The central question in the approximation theory is how to replace a complicated
function f, from a large space F , by a simple and yet close-by (or “good” in some
sense) function p from a small subset P ⊂ F . The literature about approximation
is very rich (see e.g. [16, 35, 36]). Usually F is a Banach space, so that the distance
between p and f by means of a norm. Functions from P are called approximation
functions.

The approximation functions depend on a set of parameters {ai}
m
i=0 ∈ A. For exam-

ple, for P being finite dimensional, p ∈ P can be represented as

(3.1.1) p(x) =

m∑

i=0

aipi(x),

where {pi}
m
i=0 represents a set of basis functions in P . There are many ways to choose

the space P . The most obvious ones are algebraic polynomials. Other important
choices of basis functions in theory are trigonometric polynomials, exponential and
rational functions, etc. We should remark that the latter two are nonlinear. These
types of basis functions are not of special interest in this thesis. However, in the fol-
lowing sections we will consider a well known generalisation of polynomial spaces,
i.e. splines.

The type of approximation depends on the way how the parameters are obtained.
One of the most important is interpolation. In the general case for a function f : RN →
RM, we can define a set of pairs

(3.1.2) Ω :=
{
(xk, fk)

∣

∣ xk ∈ S ⊂ Γ ⊆ RN, fk := f (xk) ∈ RM, k = 0, . . . , n
}
,

28 Interpolation methods

(a) Grid in 2D (b) Triangular simplex (c) Tetrahedron simplex

FIGURE 3.1.1. Examples of grid and simplices

and the following condition

(3.1.3) p (xk) := fk,

We then say that p interpolates f at x0, . . . , xn, i.e. (3.1.2)-(3.1.3) represents the inter-
polation problem. Here S is the set {xk}

n
k=0 of interpolation nodes, i.e. the points where

the function values are known, Γ is the interpolation domain, and Γ̂ the range (or co-
domain) of f. The interpolation problem can also be formulated in another way, viz.
as the answer to the following question: How to find a “good” representative of a
function that is not known explicitly, but only at some points of the domain of in-
terest. In Section 3.5 we pay special attention to the case where M = N. Here we
have a mapping between spaces with the same dimensionality, which is an essential
requirement for the inverse interpolation.

The interpolation domain Γ and the set of interpolation nodes S play an essential
role in the interpolation problem settings. We distinguish between interpolation on
regularly spaced data, where the distribution of points satisfies some particular con-
dition, and interpolation on scattered (irregularly) spaced data, where S is any subset
of Γ . Interpolation can be global or local, depending on the support of the interpo-
lation function. If all nodes are used for determining all the parameters we have a
global approach, which means that any parameter or data perturbation will affect
the solution throughout the whole interpolation domain. On the other hand, if the
same perturbation does not influence the interpolation function values outside some
(possibly small) subdomain of Γ , the method is considered to be local. Related to
this, it is useful to mention that there is also an interesting class of the interpolation
functions where the basis functions have local support only (equal to zero outside
the subdomain). In general, these methods are global, but few of them are local.
Spline interpolation functions are typical representatives of such functions.

For interpolation by splines, also called the piece-wise functions, one typically needs
to discretise the domain, i.e. to generate a grid which covers Γ . The grid is defined
by the set S and the choice of the basic elements, say Γm ∈ Γ, m = 1, . . . , nm. For ex-
ample, one can think of a discretisation of Γ where the elements are convex simplices
like triangles (in 2D space) and tetrahedrons (in 3D space), etc. As an illustration in
Figure 3.1.1 an example of the grid and an isolated simplices are shown.

3.2 Characteristics of interpolation methods 29

We assume that Γm’s covers Γ , i.e. that
⋃nm

m=1 Γm = Γ holds. To a simplex Γm there is
appointed a set of points Sm ⊂ S such that

(3.1.4) Γm := conv Sm.

The K-dimensional simplex in RN is spanned by a set of points x0, . . . , xK, such that
x0, . . . , xK do not belong to a subspace that has a dimension smaller than K. Hence
theN-dimensional simplex is defined by exactlyN+1 non-degenerate points. Meth-
ods based on such simplices are of most interest in this thesis.

Interpolation methods are well developed to date. The practical applications are nu-
merous and the underpinning theory has been essential for developing whole classes
of different methods in numerical analysis. Examples can be found in numerical in-
tegration and differentiation, numerical methods for solving ODEs and PDEs, etc. In
this thesis our main goal is to employ inverse interpolation techniques in standard
implicit numerical methods for solving ODEs and, thus, to avoid Newton iteration.
Inverse interpolation has a lot of potential in solving systems of nonlinear equations.
It combines the spatial mapping of the interpolation domain and the application of
a standard method for direct interpolation. Therefore we will firstly introduce some
interesting interpolation methods, both for scalar and vectorial problems.

Before we go into details about interpolation, we introduce some relevant norms
that will be used throughout this thesis. More detailed information can be found in
e.g. [28]. Like in the previous chapter the notation ‖·‖ is reserved for the Euclidean
norm, defined by (2.2.1). Another important norm is the Hölder norm for RN, defined
by

(3.1.5) ‖x‖p :=

(

N∑

k=1

x
p
k

)1/p

,

where p = 1, 2, . . . For p → ∞, one obtains ∞−norm

(3.1.6) ‖x‖∞ := sup
k

|xk| .

For a space of all continuous real-valued functions on a interval J = [a, b], there is a
corresponding normed space with the so-called Lp−norm, which is defined by

(3.1.7) ‖x‖Lp
:=

(∫b

a

|x(t)|dt

)1/p

.

Again, for p → ∞, we can define the L∞−norm by the following

(3.1.8) ‖x‖L∞ := sup
t∈J

|x(t)| .

Other relevant norms in this thesis are introduced later.

3.2 Characteristics of interpolation methods

Evaluating and comparing characteristics of different interpolation methods is some-
what subjective. However, some attempts were made for obtaining the list of the
most important characteristics of interpolation methods. In [20] the special case of
the two-dimensional (scattered) data interpolation is considered by performing a test
over 32 different methods. The results are evaluated by a set of characteristics, given
by the following list:

30 Interpolation methods

• Accuracy. Accuracy is expressed by the interpolation error, say r, which is a
measure of the difference between the interpolation function and the exact
values of the interpolating function f. It can be defined point-wise via the
error function

(3.2.1) r(x) := |||f(x) − p(x)|||,

or as a scalar

(3.2.2) r := |||f − p|||,

where ||| · ||| is some suitable norm. Usually the error depends on the space P
and the location of the interpolation points. If the interpolation points are
the vertices of a grid of simplices, then the the order of accuracy is related to
the maximum diameter of these simplices. There are also examples where
some additional geometrical parameters (as shown later) are used to deter-
mine (or evaluate) the accuracy, such as angles between edges, radius of the
ball containing the simplex, etc.

• Visual Aspects. Of course, the appearance of the interpolation function on
Γ is of importance only in low dimensional spaces (N = 1, 2, 3). Visual as-
pects are often in a close relationship with the accuracy, especially at mod-
erate accuracies. An example is shown in Figure 3.2.1, where the function
f (x, y) = x e−(x2+y2) is interpolated by four different methods (which will
be introduced later).

• Sensitivity to Parameters. It is desirable that a method is stable with respect
to perturbations of the parameters and that the solution value is not highly
dependent on the sampled function. In principle, as mentioned, local inter-
polation methods have an advantage, but it does not mean that all global
methods will behave badly in general.

• Computational costs. Computational efforts depends on a chosen method.
Some methods can be extremely expensive in some applications and has to
be avoided, even if all other characteristics are good. This also depends on
the implementation used.

3.3 Univariate interpolation

3.3.1 Polynomial interpolation

The theorem of Weierstrass (introduced for the first time in [52]) and its modifications
can be considered as one of the foundations of the approximation theory, despite the
fact that its original setting concerns only univariate polynomials. In the univariate
case the theorem is stated as follows:

THEOREM 3.3.1. Let f ∈ C[a, b]. For every ε > 0, there exists a polynomial p(x) such that

(3.3.1) ‖f(x) − p(x)‖ < ε, ∀x ∈ [a, b].

From (3.3.1) it follows that one can always find a polynomial that is arbitrarily close
to a given function on some finite interval. This means that the approximation error
is bounded and can be reduced by the choice of the adequate polynomial. Unfortu-
nately Theorem 3.3.1 is not a constructive one, i.e. it does not present a way how to
obtain such a polynomial. However, many proofs (there are hundreds of them, as

3.3 Univariate interpolation 31

−2
−1

0
1

2

−2
−1

0
1

2
−0.4

−0.2

0

0.2

0.4

(a) Nearest-neighbour

−2
−1

0
1

2

−2
−1

0
1

2
−0.4

−0.2

0

0.2

0.4

(b) Piece-wise linear

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

(c) Piece-wise cubic

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

(d) Biharmonic spline

FIGURE 3.2.1. Visual aspects of different interpolation methods

cited in [11]) of this theorem are constructive. One of them, given in [4], is related to
the Bernstein polynomial.

For a given function f ∈ C[0, 1] the Bernstein polynomial, which is usually denoted
by Bn(f; x) ∈ Pn (where Pn is the set of all algebraic polynomials of degree ≤ n), is
defined by

(3.3.2) Bn(f; x) :=

n∑

k=0

(

n

k

)

xk (1 − x)
n−k

f

(

k

n

)

, x ∈ [0, 1] .

It can be shown (see e.g. [35]) that

(3.3.3) lim
n→∞

‖f− Bn‖ = 0.

Moreover, the following error bound holds

|f(x) − Bn(f; x)| ≤9
4
ω

(

f;
1√
n

)

,(3.3.4)

ω(f; δ) := sup
|x−y|<δ

|f(x) − f(y)|.

If f is Lipschitz continuous, with a Lipschitz constant L, it simplifies to

(3.3.5) |f(x) − Bn(f; x)| ≤ 9L

4
√
n
.

32 Interpolation methods

Theorem 3.3.1 is often used in conjunction with the following uniqueness theorem.

THEOREM 3.3.2. Let {xk}
n
k=0 be a set of distinct points, and let {yk}

n
k=0 be an arbitrary set

of points in R. Then, there exists a unique polynomial of degree n which takes given values
at n+ 1 points.

Proofs of this theorem are numerous and often constructive, see e.g. [36]. Certainly
one of the most famous ones are related to the well-known Lagrange interpolation
method. For this method we have the following error bound.

THEOREM 3.3.3. Suppose f ∈ Cn+1 [a, b] . Let the interpolation nodes satisfy a ≤ x0 <

x1 < · · · < xn ≤ b, the polynomial p ∈ Pn interpolates f at {xk}
n
k=0 and w(x) :=∏n

k=0 (x− xk). Then there exists ξ ∈ [a, b] such that the error function r(x) satisfies

(3.3.6) r(x) := f(x) − p(x) =
f(n+1)(ξ)

(n + 1)!
w(x).

Taking Γ = [a, b] and using the Lp−norm in (3.3.6), one trivially obtain

(3.3.7) r := ‖f− p‖Lp(Γ) ≤
1

(n + 1)!
‖f(n+1)‖Lp(Γ) ‖w‖Lp(Γ).

An interesting special case is that of equidistant points where xk+1 = xk + ∆x for
all k. Then we have

(3.3.8) ‖f− p‖L∞(Γ) ≤
1

4

∆xn+1

(n + 1)
‖f(n+1)‖L∞(Γ).

3.3.2 Piece-wise interpolation

The main disadvantage of global polynomial interpolation is that the interpolation
error is related to higher derivatives of the interpolated function f. For example,
the condition f ∈ Cn+1 [a, b] met in Theorem 3.3.3 can be too strict. This is one of
the most important reasons why often another approach is used. Discretising the
interpolation domain and interpolating locally, i.e. on small subsets of {xk}

n
k=0, the

overall accuracy may be significantly improved even if the applied (local) interpo-
lation method is of the low order. Interpolation functions obtained on this principle
are piece-wise interpolation functions or splines. Here we just mention some of the
most important (most frequently used) piece-wise interpolation methods and illus-
trate their accuracy by one simple example. The accuracy is expressed in terms of
the spatial step size, defined as ∆x := maxk {xk, xk+1}.

(1) Nearest-neighbour method. By far the easiest way to interpolate interpolation
pairs {(xk, fk)}

n
k=0, by piece-wise constants. The method is O (∆x).

(2) Piece-wise linear interpolation. An improvement of the previous method,
made by constructing a linear function between two consecutive nodes.
The accuracy is O

(

∆x2
)

.
(3) Piece-wise cubic interpolation. By increasing the order of the piece-wise poly-

nomial, one can obtain further improvements in the characteristics of the
interpolation method. If the polynomial is of the third order, we have piece-
wise cubic interpolation. This method is O

(

∆x4
)

.
(4) Cubic spline interpolation. Probably the most popular choice for obtaining

the piece-wise interpolation function, which is necessarily differentiable at
interpolation nodes. This provides the interpolation function to be smooth

3.4 Multivariate interpolation 33

on the entire domain Γ = [a, b]. The spline theory is well introduced in [2]
and [14]. This method is also O

(

∆x4
)

.
(5) Biharmonic spline interpolation. Starting from the minimum curvature prop-

erty, which cubic splines satisfy, an additional strategy of constructing a
spline interpolation function can be made (see [45]). Considering the bi-
harmonic equation, which has the Green’s function as a solution, one can
construct an interpolation function. The thus obtained interpolation func-
tion is practically identical to the cubic spline.

EXAMPLE 3.3.4. To illustrate these methods we perform a test problem where the
function f(x) = sin x is sampled in 9 equidistant points over x ∈ [0, 2π] with a step
size ∆x = 0.78 and then interpolated by various methods. In Figure 3.3.1 errors over
the whole domain are shown and results are as expected. �

0 1 2 3 4 5 6 7

10−6

10−4

10−2

100

102

|

x

e (
t)

|

Nearest
Linear
Cubic
Spline

FIGURE 3.3.1. Accuracy of various interpolation methods

3.4 Multivariate interpolation

Multivariate interpolation is analogue to univariate interpolation. Now we have an
interpolation domain Γ ⊂ RN and an interpolating function as f : Γ → Γ̂ , where
Γ̂ ⊂ RM. Throughout this section we assume M = 1, i.e. f is a scalar function de-
fined on a multidimensional domain. The interpolation problem is defined by (3.1.2)
and (3.1.3), i.e. by the set of pairs {(xk, fk)}

n
k=0. Obtaining an approximation of f(x)

means constructing an interpolation function, say p(x), just as we did in the univari-
ate case. However, the problem settings are not so simple and methods are more
involved. Since uniqueness is not guaranteed, the interpolation based on algebraic
polynomials is not straightforward. The existence and uniqueness of a multivariate
polynomial that interpolates the set (S) of interpolation nodes strongly depends on
their locations. In fact, such a polynomial does not exist for any given grid. For
example, in R2, by defining Π2

N :=
{
xiyj | i + j ≤ N

}
, it can be shown that use of

the bivariate Lagrange formula on a rectangular grid yields to a polynomial which
is not in Π2

N. Actually only special grid configurations provides p ∈ Π2
N. This is

the main reason why the piece-wise methods are more popular for practical applica-
tions than those based on global algebraic polynomials. Here we introduce only few
interpolation methods.

34 Interpolation methods

3.4.1 Linear interpolation on a simplex

Following the analogy from the univariate case, one can construct an interpolation
function on a simplex by connecting interpolation nodes using multivariate linear
functions (examples of such linear functions are a plane in R2, a tetrahedron in R3

and a hyperplane in RN). To do so one needs to discretise the interpolation domain,
i.e. to form a grid which covers Γ . The best discretisation technique is to use the
simplices Γm, m = 1, . . . , nm, where Γm is defined by a set, say Sm ⊂ S, of (N + 1)

points {xmk}
N
k=0. We assume that these points are non-degenerate. On such a simplex

one can construct a linear polynomial as a function of x = [x1 · · · xN]
T , i.e.

(3.4.1) p(x) := a0 + a1x1 + · · · + aNxN.

The parameter values ak can be obtained from the known function values at inter-
polation nodes. Hence, by substituting (N+1) pairs {(xmk, fmk)}

N
k=0 and employing

the interpolation condition p (xk) := fk, one obtain the parameter set by solving a
linear system of equations. The linear polynomial can be defined in an alternative
way, i.e. in the Lagrangian form. It can be shown that p on Γm can be expressed as

(3.4.2) p(x) :=

N∑

k=0

Λk(x)

Λ
fk,

where the double index is omitted and Λ and Λk(x) are determinants defined by
(N + 1) points xk = [x1,k · · · xN,k] like

(3.4.3) Λ :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

x10 x20 · · · xN0 1

x11 x21 xN1 1
...
x1N x2N xNN 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

, Λk(y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x10 · · · xN0 1
...

x1,k−1 xN,k−1 1

y1 yN 1

x1,k+1 xN,k+1 1

x1N xNN 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Literature about the error analysis of the piece-wise linear interpolation is very ex-
tensive. Especially since this method is frequently implemented in some numerical
methods for solving PDEs (FEM in particular). A lot of attention is given to a two-
dimensional case, where the simplex is the triangle (see e.g. [25], [43]). For the gen-
eralN-dimensional case two main results are given to date, introduced via L∞−error
bounds of the interpolation error on the simplex. They are both introduced here since
they are different in general and yet related (as shown later). But before we set some
notation.

Let Γm represent the convex simplex defined by a set of (N + 1) non-degenerate
points from Sm = {xk}

N
k=0, i.e.

(3.4.4) Γm := conv Sm,

with a diameter, say ∆x, defined by

(3.4.5) ∆x := max
xk,xj∈Sm

‖xk − xj‖ ,

where ‖ · ‖ represents the Euclidean norm in RN. Further let

(3.4.6) y = [y1 · · · yN]
T ∈ RN, y 6= 0,

3.4 Multivariate interpolation 35

and let

(3.4.7) Dyf(x) :=

N∑

k=1

yk

∂f(x)

∂xk

,

be the directional derivative of f in the direction y. Furthermore we define

(3.4.8)
∥

∥D2f
∥

∥

∞,Γm
:= sup

x∈Γm

sup
y∈RN

‖y‖=1

∣

∣

∣D
2
yf(x)

∣

∣

∣ ,

as a measure of the second derivative of f on Γm. Finally, recall that p denotes the
linear polynomial that interpolates a given function f at points Sm. The first error
bound for linear interpolation represented here is given in [48] and relates the inter-
polation error with a diameter of the simplex.

THEOREM 3.4.1. (Subbotin) Let f ∈ C2(Γm) on a simplex Γm with a diameter ∆x. Then
the error of the linear interpolation r := ‖f− p‖L∞(Γm) satisfies

(3.4.9) r ≤ 1

4

N

N + 1
∆x2

∥

∥D2f
∥

∥

∞,Γm
.

Clearly, we have second order accuracy with respect to ∆x. The second important
result (see [51]), gives the error bound in terms of the radius and the position of the
center of the circumscribed sphere around Γm.

THEOREM 3.4.2. (Waldron) Let c be the center and R the radius of the unique circumscribed
sphere containing Sm. Then for each x ∈ Γm and f ∈ C2(Γm), there holds the sharp inequal-
ity

(3.4.10) r(x) := |f(x) − p(x)| ≤ 1

2

(

R2 − ‖x − c‖2
) ∥

∥D2f
∥

∥

∞,Γm
, ∀f ∈ C2(Γm).

As a consequence we have the sharp inequality

(3.4.11) r := ‖f− p‖L∞(Γm) ≤
1

2

(

R2 − ρ2
) ∥

∥D2f
∥

∥

∞,Γm
,

where ρ is the distance of c from Γm, i.e.

(3.4.12) ρ := min
x∈Γm

‖x − c‖.

Proof: Although the proof of this theorem is given in [51], another, more elementary,
proof will be introduced here. Let us define a univariate function K as follows

(3.4.13) K(θ) := f (x + θ (xk − x)) ,

where xk is an arbitrary node of Γm. Clearly, the first derivative of K(θ) is equal to
the directional derivative of f in the direction xk − x, i.e.

K ′(θ) = Dxk−xf (x + θ (xk − x)) .

Partial integration leads to the useful identity

(3.4.14) K(1) = K(0) + K ′(0) +

∫1

0

(1 − τ)K ′′(τ)dτ.

Substituting (3.4.13) into (3.4.14), it follows

(3.4.15) f (xk) = f (x) +Dxk−xf (x) +

∫1

0

(1 − τ)D2
xk−x,xk−xf (x + τ (xk − x)) dτ.

36 Interpolation methods

Let us assume that the linear interpolant p(x) is represented b the Lagrangian form,
i.e. by

p(x) :=

N∑

k=0

f (xk) lk(x),

where

lk(x) :=
Λk(x)

Λ
,

and Λ and Λm(x) are given by (3.4.3). Since p resolves the linear function f exactly,
one has

N∑

k=0

lk(x) = 1,

N∑

k=0

xk lk(x) = x.

Now by multiplying (3.4.15) by lk(x) and summing over k = 0, . . . , N, we obtain

(3.4.16) p (x) = f (x) +

∫1

0

(1 − τ)

N∑

k=0

D2
xk−x,xk−xf (x + τ (xk − x)) lk(x)dτ.

Here we used

N∑

k=0

lk(x) f (xk) =p(x),

N∑

k=0

lk(x) f (x) =f (x) ,

N∑

k=0

lk(x)Dxk−xf (x) =

N∑

k=0

lk(x) 〈∇f, xk − x〉

=

〈

∇f,
N∑

k=0

lk(x) (xk − x)

〉

= 0

From the definition (3.4.8), it can be shown that
∣

∣D2
u,v

∣

∣ ≤
∥

∥D2f
∥

∥

∞,Γm
‖u‖ ‖v‖.

Hence by substituting this into (3.4.16), we have

|f (x) − p (x)| ≤
∥

∥D2f
∥

∥

∞,Γm

∣

∣

∣

∣

∣

N∑

k=0

lk(x) ‖xk − x‖2

∫1

0

(1 − τ)dτ

∣

∣

∣

∣

∣

=
1

2

∥

∥D2f
∥

∥

∞,Γm

∣

∣

∣

∣

∣

N∑

k=0

lk(x) ‖xk − x‖2

∣

∣

∣

∣

∣

.(3.4.17)

Rearranging

‖xk − x‖2
= ‖xk − c + c − x‖2

= ‖xk − c‖2
+ ‖c − x‖2

+ 2 〈xk − c, c − x〉 ,

3.4 Multivariate interpolation 37

and substituting into (3.4.17), we obtain

|f (x) − p (x)| ≤ 1

2

∥

∥D2f
∥

∥

∞,Γm

∣

∣

∣

∣

∣

N∑

k=0

lk(x)
(

‖xk − c‖2
+ ‖c − x‖2

+ 2 〈xk − c, c − x〉
)

∣

∣

∣

∣

∣

=
1

2

∥

∥D2f
∥

∥

∞,Γm

∣

∣

∣R2 + ‖c − x‖2
+ 2 〈x − c, c − x〉

∣

∣

∣

=
1

2

(

R2 − ‖c − x‖2
)

∥

∥D2f
∥

∥

∞,Γm
.(3.4.18)

The sharp inequality (3.4.11) easily follows from (3.4.18) since

(3.4.19) max
x∈Γm

{
R2 − ‖x − c‖2

}
= R2 − min

x∈Γm

‖x − c‖2,

which completes the proof of the theorem. �

The error bounds (3.4.9) and (3.4.11) seems to be rather different at first look. How-
ever, they can be completely related as shown by the following theorem, which gen-
eralises Theorems 3.4.1 and 3.4.2.

THEOREM 3.4.3. Let R be the diameter of the unique circumscribed sphere of Γm ∈ RN with
diameter ∆x and let ρ be the distance between Γm and the center of the sphere. Then

(1) For c ∈ Γm, which implies ρ = 0,

(3.4.20) R2 ≤ 1

2

N

N + 1
∆x2.

(2) For c /∈ Γm

(3.4.21) R2 − ρ2 ≤ 1

2

N− 1

N
∆x2.

Proof:

(1) Applying the fact that all nodes of the simplex xk, k = 0, . . . , N are on the
circumscribed sphere, we clearly have

(3.4.22) ‖xk − c‖ = R, k = 0, . . . , N.

Since Γm is convex and c ∈ Γm, the following holds

N∑

k=0

αk xk = c,

where the coefficients αk satisfy

(3.4.23)
N∑

k=0

αk = 1, αk ≥ 0, k = 0, . . . , N.

Introducing the usual inner product 〈·, ·〉 in RN, we have

0 =

〈

N∑

k=0

αk (xk − c) ,
N∑

k=0

αk (xk − c)

〉

=

N∑

k=0

α2
k ‖xk − c‖2

+ 2
∑

k6=j

αkαj 〈xk − c, xj − c〉 .(3.4.24)

38 Interpolation methods

Substituting (3.4.22) and

〈xk − c, xj − c〉 =
1

2

(

‖xk − c‖2
+ ‖xj − c‖2

− ‖xk − xj‖2
)

= R2 −
1

2
‖xk − xj‖2

,

into (3.4.24), we obtain

(3.4.25) R2

N∑

k=0

α2
k + 2

∑

k6=j

αkαj

−
∑

k6=j

αkαj ‖xk − xj‖2
= 0.

Since

(3.4.26)
N∑

k=0

α2
k + 2

∑

k6=j

αkαj =

(

N∑

k=0

αk

)2

= 1,

the expression (3.4.25) becomes

R2 =
∑

k6=j

αkαj ‖xk − xj‖2
.

Applying (3.4.5), we obtain

R2 ≤ ∆x2
∑

k6=j

αkαj ≤ ∆x2 max
αk,αj

∑

k6=j

αkαj

.

Using (3.4.26) it follows

(3.4.27) max
αk,αj

∑

k6=j

αkαj

=
1

2
max
αk

{

1 −

N∑

k=0

α2
k

}

=
1

2

(

1 − min
αk

{
N∑

k=0

α2
k

})

.

It can be shown (e.g. by the Lagrange multiplier technique) that, under the
constraint (3.4.23), the minimum value of the last expression in (3.4.27) is
obtained for α0 = · · · = αN = 1�(N + 1). Hence

(3.4.28) R2 ≤ 1

2
∆x2

(

1 −
1

N+ 1

)

=
1

2

N

N + 1
∆x2.

(2) In case c /∈ Γm, we have that ρ 6= 0 and it represents the distance between c
and the closest point of the simplex, say x∗ ∈ Γm. Point x∗ lies in the interior
of ∂Γ Ñ

m , i.e. a boundary facet of dimension Ñ (Ñ ≥ 1). Moreover, we define
Ñ to be the largest dimensionality for which x∗ ∈ ∂Γ Ñ

m. For example, ∂Γ Ñ
m

can be a line, a triangle, up to an (N− 1)-dimensional facet of the simplex.
Let us start with an assumption that Ñ = N − 1. First, we show that the
longest edge (i.e. ∆x) of Γm must be at the boundary area for ρ 6= 0. Here
we have that only one node of Γm, say x0, is on the opposite side of ∂ΓN−1

m ,
observing from the side of c. A 3D-illustration is shown in Figure 3.4.1a.
Since all nodes lie at the circumscribed sphere, it is clear that every triangle
defined by points x0, xk, xq, where xk, xq ∈ ∂Γm, k, q = 1, . . . , N, is obtuse
angled. This means that the following holds

‖x0 − xk‖ < ‖xq − xk‖ , k, q = 1, . . . , N.

In other words, the diameters of Γm and ∂ΓN−1
m are identical. The same

analogy may be applied for cases where dimensionality of the boundary
area, say Ñ, is less than (N − 1). Again it can be shown that the diameter

3.4 Multivariate interpolation 39

of Γm lies at ∂Γ Ñ
m. This follows from the fact that every triangle defined by

two points from ∂Γ Ñ
m and another point which is not in ∂Γ Ñ

m is again obtuse
angled. A 3D-example is shown in Figure 3.4.1b, where the boundary is just
a line.
The boundary ∂Γ Ñ

m is also the convex simplex, defined by
(

Ñ + 1
)

points,
say xk, k = 1, . . . , Ñ+ 1. Moreover we have that x∗ ∈ ∂Γ Ñ

m and x∗ /∈ ∂Γ Ñ−1
m .

Let us now prove that x∗ is the center of circumscribed sphere around ∂Γ Ñ
m .

For arbitrary xk ∈ ∂Γ Ñ
m , we have the following

‖xk − x∗‖2
= ‖xk − c‖2

− ‖x∗ − c‖2
− 2 〈xk − x∗, x∗ − c〉

= R2 − ρ2 − 2 〈xk − x∗, x∗ − c〉 .(3.4.29)

It can be shown that the inner product on the right-hand side is equal to
zero. Define a quadratic polynomial, say ϕ(λ), by

(3.4.30) ϕ(λ) := ‖x∗ + λ (xk − x∗) − c‖2
,

where x∗ + λ (xk − x∗) ∈ ∂Γ Ñ
m, for |λ| < ε and sufficiently small ε. Since

ϕ(λ) ≥ ϕ(0), which follows from the definition of x∗ being the closest point
to c, we have

‖x∗ + λ (xk − x∗) − c‖2 ≥ ‖x∗ − c‖2
= ϕ(0).

Clearly we have that ϕ ′(0) = 0. From (3.4.30) one can obtain the following

ϕ ′(0) = 2 〈xk − x∗, x∗ − c〉 ,

which means that

(3.4.31) 〈xk − x∗, x∗ − c〉 = 0.

Substituting this into (3.4.29), it follows that the distance of an arbitrary
point xk ∈ ∂Γ Ñ

m and x∗ is constant, meaning that x∗ is the center of the
circumscribed sphere around ∂Γ Ñ

m , with a radius, say R̃, which can be found
by applying (3.4.29) and (3.4.31), as

R̃2 := ‖xk − x∗‖2
= R2 − ρ2.

Now by applying the result from the part (1) and the fact that diameters of
Γm and ∂Γ Ñ

m are the same, we obtain

R2 − ρ2 ≤ 1

2

Ñ

Ñ+ 1
∆x2.

Hence for every fixed Ñ we can find a new bound. However, since the
following holds

N− 1

N
>
N− 2

N− 1
> · · · > 3

4
>
1

2
,

it is clear that for every Ñ ∈ {1, . . . , N− 1}, we have that (3.4.21) holds. �

Since the principle and the implementation of piece-wise linear interpolation is rel-
atively simple and the second order accuracy is often good enough, the application
area of the method is wide (see e.g. [55] and [5], etc.).

40 Interpolation methods

(a) ∂Γm - triangle (b) ∂Γm - line

FIGURE 3.4.1. A 3D-simplex with the boundary area of different dimensionality

3.4.2 Piece-wise polynomial interpolation of higher order

As mentioned higher order multivariate interpolation is more involved than in the
univariate case, since the number of parameters increases dramatically if the space
dimension N and the order of the polynomial, say l, are large. In fact, for the space
of polynomials of order l, say Πl

N, the dimension is

(3.4.32) dimΠl
N =

(

N + l

N

)

.

The polynomial, say p(x), on a simplex Γm, reads

(3.4.33) p(x) :=
∑

|α|≤l

aαx
α,

where α = [α1, . . . , αN]
T ∈ ZN

+ is called the multi-index. The number of interpola-
tion nodes, say n, that is needed for obtaining the parameter set is equal to dimΠl

N.
Having n large (for l large) leads to the question how to choose an appropriate sim-
plex. For example, in R2 one needs six interpolation nodes for a quadratic poly-
nomial. If the simplex is a triangle, three additional nodes can be placed at the
middle of triangle sides. However, this means that the grid must be regular, i.e.
the method cannot be applied for general (scattered) data. Another approach is to
use three points closest to the triangle, which requires an additional effort in deter-
mining them. However, regardless all difficulties, the interpolation function can be
significantly improved, especially considering the smoothness.

The accuracy, expressed in terms of the diameter ∆x, is related to the order of poly-
nomial. In [47] it is shown that for any f ∈ Cl+1 and the higher derivative norm,
defined by

(3.4.34)
∥

∥Dlf
∥

∥

∞,Γm
:= sup

x∈Γm

sup
y∈RN

‖y‖=1

∣

∣

∣
Dl

yf(x)
∣

∣

∣
, l ≥ 1,

the interpolation error satisfies

(3.4.35) r := ‖f− p‖L∞(Γm) ≤ CN,l ∆x
l+1

∥

∥Dl+1f
∥

∥

∞,Γm
.

3.4 Multivariate interpolation 41

Here the constant CN,l does not depend on f, Γm and the chosen grid. For an inter-
esting special case l = 2 andN ≥ 2, it can be shown (see [48]) that CN,2 satisfies

(3.4.36)
√
2

48

N
√
N

(N+ 1)
√
N+ 1

≤ CN,2 ≤ 5

16

N

N + 1
.

On the other hand, for N = 2 and l ≥ 2 we have (see [47])

(3.4.37) C2,l =
1

8(l + 1)

(

3

l

)l+1

.

3.4.3 Surface spline interpolation

Being a member of a large class of so-called radial basis function methods, the surface
spline interpolation is certainly one of the most important global methods. The inter-
polation function can be found by using a minimization of some suitable seminorm,
say ||| · |||. An extensive theory is given in [18], [34], [7], [56] and [27] for the general
case of spline functions in RN with a coefficient l being the order of the smooth-
ness of the interpolation function. Although slightly different spaces are used, all
seminorms used are a Sobolev-like seminorm, given by

(3.4.38) |||f|||l,Lp(Γ) :=

∑

|α|≤l

∫

Γ

|Dαf(x)|
2
dx

1
2

,

where α = [α1, . . . , αl]
T is a multi-index and the differentiation operator is defined

byDα := ∂α1

∂x
α1
1

∂α2

∂x
α2
2

. . . ∂αN

∂x
αN
N

.

For N = l = 2 and under some simplifying assumptions, the seminorm (3.4.38) may
be physically interpreted as the bending energy of a thin plate of infinite extent. It
can be shown (see e.g. [34]) that solving the interpolation problem by minimizing
(3.4.38) leads to the interpolation function p(x), of the following form

p(x) :=
∑

xk∈S

akφk (x) + q(x),(3.4.39)

φk(x) :=φ (x − xk) ,

where S represents the set of interpolation nodes, φk is the basis function and q(x) ∈
Πl−1 is a polynomial in RN of total degree at most (l− 1). Of course, the parameters
ak and the polynomial q must be chosen to satisfy the interpolation criteria

(3.4.40) p(xk) = f(xk) = fk, ∀xk ∈ S.
However, the number of parameters exceeds the number of conditions. The standard
way of determining the remaining conditions, which are called natural boundary con-
ditions, given by

(3.4.41)
∑

xk∈S

akq (xk) = 0, ∀q ∈ Πl−1.

Of course, it is essential that S is Πl−1−unisolvent. Otherwise the polynomial term
can be adjusted by any polynomial which is zero on S. To ensure uniqueness of
the interpolation function, one possibility is to restrict φ to be strictly conditionally
positive definite of order l (see [12]). Frequently φ is a radial basis function, i.e.

(3.4.42) φ (x − xk) := φ (‖x − xk‖) ,

42 Interpolation methods

where ‖ · ‖ is the Euclidean norm. The choice of φ may differ and for the surface
spline interpolation it is given by

(3.4.43) φ (‖x‖) =

{
‖x‖2l−N

, if N is odd,
‖x‖2l−N log ‖x‖ , if N is even.

For the special case N = l = 2, where φ (‖x‖) = ‖x‖2 log ‖x‖, the interpolation
method is usually denoted as the thin-plate spline interpolation (see e.g. [39]).

The main results concerning accuracy deal with the error bounds of the interpolation
error in terms of the measure of density, i.e. the fill-distance

(3.4.44) ∆ξ := sup
x∈Γ

min
x∈Γ

‖x − xk‖ .

The Lp−error bound is given by

(3.4.45) r := ‖f− p‖Lp(Γ) ≤ C∆ξγp |||f|||l,Lp(Γ),

where

(3.4.46) γp := min
{
l, l −

N

2
+
N

p

}
.

The constant C depends on Γ and l. Clearly, for the L1 and L2−norm, the order of ac-
curacy is determined by the smoothness coefficient l. The relatively low order is due
to the fact that the interpolation data is scattered. However, it should be remarked
that in an ideal situation of equispaced nodal distribution, the Lp−approximation
order is 2l, a value at least twice γp (see [27]).

3.4.4 Biharmonic spline interpolation

For a special case l = 2 a surface spline can be found by minimizing the curvature of
the given function on the interpolation domain . The curvature is, of course, related
to the seminorm (3.4.38) and given by

(3.4.47) C(p) :=

{∫

Γ

(

∇2p(x)
)2
dx

} 1
2

.

As mentioned in the univariate case, p has a minimum curvature if it satisfies the
biharmonic equation. For a given set of interpolation data {(xk, fk)}

n
k=0 , x ∈ Γ , the

multivariate biharmonic equation reads

(3.4.48) ∇4p(x) =

n∑

j=0

ajδ (x − xj) ,

where δ(·) is a delta function. The solution of (3.4.48) is

(3.4.49) p(x) =

n∑

j=0

ajφ (‖x − xj‖) .

Functions φ are the Green’s functions and given in Table 3.4.1 together with their
gradients. One should note that φ becomes unbounded for N ≥ 4 at the origin and
the gradient for N ≥ 3. This means that an application is not straightforward and
the problem can probably be solved by shifting Green’s functions slightly away from

3.5 Inverse interpolation 43

Dimension Green’s Function Gradient of Green’s Function
N φ(‖x‖) ∇φ(x)

1 ‖x‖3 x‖x‖
2 ‖x‖2(log ‖x‖− 1) x(2 log ‖x‖− 1)

3 ‖x‖ x‖x‖−1

4 log ‖x‖ x‖x‖−2

5 ‖x‖−1 −x‖x‖−3

6 ‖x‖−2 −2x‖x‖−4

N ‖x‖4−N (4 −N) x‖x‖2−m

TABLE 3.4.1. Biharmonic Green’s Functions

the data points. Parameters of the interpolation function are determined by solving
the linear system

(3.4.50) p(xk) =

n∑

j=0

ajφ (‖xk − xj‖) , k = 0, . . . , n.

One important advantage of this method is that one can use the slopes (derivative
values) at the interpolation nodes to determine the parameter set. This is of im-
portance in applications where the values of slopes are easier to be obtain than the
values themselves. Here the system of linear equations reads

(3.4.51) wk := (∇p · n)k =

n∑

j=0

aj∇φ (xk − xj) · nk, k = 0, . . . , n,

wherewk is the slope in the direction nk.

To illustrate the accuracy of the methods introduced, we consider the following ex-
ample.

EXAMPLE 3.4.4. Consider the already mentioned (see Section 3.2) function

(3.4.52) f (x, y) = x e−(x2+y2),

on a domain

(3.4.53) Γ := {(x, y) |−2 ≤ x ≤ 2, −2 ≤ y ≤ 2 } .

Let us discretise Γ by 9 × 9 points and then interpolate by applying interpolation
methods introduced above. The solutions for various methods are shown in Fig-
ure 3.2.1. One should note that their accuracy is different and that higher order
methods (as expected) produce better results, see Figure 3.4.2. �

3.5 Inverse interpolation

For purposes to become clear in the subsequent chapters we will need an approxi-
mation of the inverse function of f, say g = f−1, assuming that f−1 exists of course.
Hence we require f to be injective, i.e. that for f : X → Y and for ∀x, y ∈ X , the
following holds

(3.5.1) x 6= y ⇒ f(x) 6= f(y).

44 Interpolation methods

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

0.15

0.2

xy

e
(x

,y
)

(a) Nearest neighbour

−2
−1

0
1

2

−2
−1

0
1

2
0

0.02

0.04

0.06

0.08

xy

e
(x

,y
)

(b) Piece-wise linear

−2
−1

0
1

2

−2
−1

0
1

2
0

0.005

0.01

0.015

0.02

xy

e
(x

,y
)

(c) Piece-wise cubic

−2
−1

0
1

2

−2
−1

0
1

2
0

0.002

0.004

0.006

0.008

0.01

0.012

xy

e
(x

,y
)

(d) Biharmonic spline

FIGURE 3.4.2. Error of different interpolation methods

Since we encounter derivatives of our function in the interpolation error, we need
suitable smoothness. The function f : RN → RN is called a Cn−diffeomorphism if f is
injective and if f and f−1 are continuous maps (i.e. f is a homeomorphism) and both f
and f−1 are Cn, where n ∈ N. If f ∈ C∞, it is simply called a diffeomorphism. By
employing this the existence conditions can be given by the inverse function theorem
(see e.g. [6] and [3])

THEOREM 3.5.1. (Inverse Function Theorem) Let Γ ⊂ RN be an open subset and f : Γ →
Γ̂ ⊂ RN aCn mapping. If x0 ∈ Γ and the Jacobian matrixDf (x0) is non-singular, then there
exists an open neighbourhood U of x0 in Γ such that V = f(U) is an open neighbourhood of
f (x0) and f : U → V is a Cn−diffeomorphism.

If x ∈ U and y = f(x), then we have the following formula for the derivatives of f−1

at y:

(3.5.2) Df−1(y) = (Df(x))
−1
.

The inverse function cannot be obtain explicitly in general. However, it can be ap-
proximated by a function, say p, obtained by inverse interpolation. The inverse inter-
polation problem can be introduced similarly to (3.1.2) and (3.1.3), i.e. by defining a set
of pairs

(3.5.3) Ω̂ :=
{
(fk, xk)

∣

∣ fk ∈ Ŝ ⊂ Γ̂ ⊆ RN, xk := g (fk) , k = 0, . . . , n
}
,

where g = f−1, and the following condition

(3.5.4) p (fk) := xk.

3.5 Inverse interpolation 45

In the inverse interpolation problem we use p(x) as an approximation of g = f−1.

Obviously the main difference between the direct and the inverse problem is that the
interpolation domain is now the range Γ̂ of f. This means that the set of “original”
data points S = {xk}

n
k=0 is mapped by f into a “new” set Ŝ = {fk}

n
k=0, where clearly

fk := f (xk). The new set of interpolation data Ŝmay be used as a set of interpolation
nodes that covers Γ̂ . By employing (3.5.4) and some additional conditions, one can
construct the interpolation function. Of course, the main problem is the mapping
of the grid, since f is non-linear in general. In other words, Ŝ is irregular regardless
how regular S may be. This means that the interpolation methods to be used here
are certainly methods for scattered data. As shown, some of these methods involve
the interpolation on a simplex Γm. Since the simplex represents an area in general,
it has a certain orientation in the original grid. To preserve this orientation it can be
shown (see [6]) that f must satisfy

(3.5.5) det [Df(x)] > 0, x ∈ Γm.

We call the condition (3.5.5) the topology preservation in space of the function f. In
general, if we have the grid (as a set of simplices) which covers Γ , (3.5.5) should hold
on the entire Γ or the grid must be regularized in such a way that (3.5.5) holds on
every particular simplex Γm, m = 1, . . . , nm.

There are two main problems involved in the use of inverse interpolation. The first
one deals with a situation where f is known explicitly and the second where f is given
discretely, i.e. by the set of interpolation pairs only. In the first case one needs to
discretise Γ by some set S = {xk}

n
k=0 and sample f in S to obtain the function data set

Ŝ = {fk}
n
k=0. The set Ŝ is then used as a set of interpolation nodes. In the second case

we can only use points for which the function is known. Although these two cases
look rather similar, there is an important difference. By knowing f explicitly, it allows
us to choose S in a way which suits best for the particular application. For example,
we can easily add or discard some points. In the other case we cannot change much
given S (except discarding some points). Examples where such problems occur, are
coming from numerical methods, where f represents the numerical (thus discrete)
solution. Other examples are coming from empirical applications, where f is the
experimental (measured) data.

One typical example of inverse interpolation occurs in solving a nonlinear system of
equation

(3.5.6) f(x) = 0.

Finding a zero of (3.5.6), say x∗ ∈ Γ , can be formulated in the following way. Let
g = f−1 be the inverse of f on Γ . Then

(3.5.7) x∗ = g(0).

We now try to find an approximation of g, say p, to obtain an approximation by
means of data {(fk, xk)}

n
k=0. Then the solution simply follows from

(3.5.8) x̄∗ = p(0).

How close x̄∗ is to x∗ depends on the way how the interpolation domain is chosen
(or given), how dense is S in Γ and on the type of the interpolation. This is illustrated
by the following two examples.

46 Interpolation methods

EXAMPLE 3.5.2. Consider

(3.5.9) f(x) = x5 − x4 + 2 x3 − 2 x2 + 2 x− 2 = 0.

It can be verified that f is a diffeomorphism on R, which means that we can choose
Γ freely. In this special case we know that the only zero is x∗ = 1, which allows us to
compute the errors of different interpolation methods. Let us discretise x ∈ [0, 2] by
using n = 20 equidistant points xk = k∆x, k = 0, . . . , 19, where ∆x = 0.105. For all
xk we can obtain corresponding fk = f(xk). By using the set of pairs {(fk, xk)}

19
k=0 we

construct different interpolation functions by applying the methods introduced in
the previous section. The results are shown in Table 3.5.1. One should note that the
accuracy of the various interpolation methods is not necessarily related to the results
one would obtain in case of the direct interpolation (as shown later). In particular,
the worst result is obtained by Lagrange interpolation, regardless of the fact that a
high-order polynomial is constructed.

Interpolation
method

Piece-wise
linear

Piece-wise
cubic

Cubic
spline

Lagrange
method

|x̄∗ − x∗| 4.42 10−3 1.59 10−5 6.3 10−5 4.17 10−2

TABLE 3.5.1. The interpolation error of different interpolation methods.

EXAMPLE 3.5.3. Consider the system of nonlinear equations

f1(x, y) =x3y − 4 = 0,

f2(x, y) =(x2 − 2) (y2 − 2) = 0,(3.5.10)

assuming f = [f1, f2]
T and x = [x, y]

T . In this special case we see that a (non-unique)
solution is given by x∗ = [x∗, y∗]T = [

√
2,
√
2]T . Let us choose

(3.5.11) Γ := {(x, y) | 1 ≤ x, y ≤ 1.5 } .

Discretising Γ by 10× 10 equispaced points xk = (k∆x, k∆y) , k = 0, ..., 9, we obtain
fk = f (xk). Now, constructing an interpolation function p on pairs {(fk, xk)}

99
k=0, one

can obtain an approximation of the zero of f as

(3.5.12) x̄∗ = p(0, 0).

Employing different interpolation methods, one would expect larger differences in
results (as it would be the case if the interpolation is direct). However, in this partic-
ular case it is not necessarily true, see Table 3.5.2. This leads to the conclusion that
the error of inverse interpolation is not directly proportional to the corresponding
error of direct interpolation, as shown hereafter.

Interpolation
method

Nearest-
neighbour

Piece-wise
linear

Piece-wise
cubic

Biharmonic
spline

‖x̄∗ − x∗‖2 8.7 10−2 2.95 10−2 5.36 10−2 4.98 10−2

TABLE 3.5.2. The L2−interpolation error of different interpolation methods

3.5 Inverse interpolation 47

3.5.1 Accuracy of the inverse interpolation

To estimate the error of the inverse interpolation one can use the error bounds in-
troduced in the previous section for direct interpolation. However, the error bounds
depend on derivatives of the interpolating function and the geometrical properties
of the data set S. Since the interpolating function is the (generally) unknown inverse
function g, the derivatives cannot be assumed to be known and the geometrical prop-
erties correspond to the new grid defined by the set Ŝ. Hence, the derivatives of g
need to be related to the derivatives of f and the geometry of Ŝ to the geometry of S.

Let us first consider the univariate case. Starting from

(3.5.13) g (f(x)) = x,

it easy to show that the following holds

(3.5.14) g ′ (f(x)) =
1

f ′(x)
.

Now the higher derivatives can be obtained by differentiation of (3.5.14) arbitrarily
many times with substituting intermediate results. It can be shown that

(3.5.15) g ′′ = −
f ′′

(f ′)3
, g ′′′ = −

f ′′′ f ′ − 3 (f ′′)2

(f ′)5
, . . .

Expressions are becoming more complex as the order of differentiation increases, but
one should note that in all denominators there is a power of f ′. This is important in
situations where f ′ is large, which can lead to a poor accuracy of the direct interpo-
lation. For example, for linear interpolation and a function satisfying |f ′| ≤ M and
|f ′′| ≤M, where M1 ≤M ≤M2 and M1 and M2 are large numbers of the same or-
der, the error of direct interpolation is of order M2. On the other hand, by applying
(3.5.15), the error of the inverse interpolation is of order 1/M2. This means that the
inverse of the function, which has large derivatives, can be accurately approximated
by the inverse interpolation.

In the general vectorial case, the principle remains the same, although obtaining the
relation between derivatives is slightly more difficult. From

(3.5.16) g (f(x)) = x,

it follows that

(3.5.17) DgDf = IN,

which is equivalent to (3.5.2), where IN is the identity matrix of order N. Further
differentiation gives

D2g = − [Df]−2D2f [Df]−1,

D3g =[Df]−3D2f [Df]−1D2f [Df]−1 + 2[Df]−2D2f [Df]−2D2f [Df]−1−

−[Df]−3D3f [Df]−1.(3.5.18)

Again one should note that the Jacobian matrixDf is present only via its inverse and
similar arguments can be made as in the univariate case, considering the fact that
now we have the error bounds related to tensor norms.

Geometrical properties of the new set of the interpolation nodes are highly depen-
dent on the mapping f. For example, in the univariate case any given interval [xa, xb]

48 Interpolation methods

of length ∆x := |xb − xa| is mapped to a new interval, say [x̂a, x̂b] with length
∆x̂ := |x̂b − x̂a| . Since x̂a and x̂b are the maps of xa and xb, we have

(3.5.19) ∆x̂ = |x̂b − x̂a| = |f (xb) − f (xa)| .

By applying the mean value theorem

(3.5.20) f (xb) − f (xa) = (xb − xa) f ′ (x̃) , x̃ ∈ [xa, xb] ,

it follows that

(3.5.21) ∆x̂ = |(xb − xa) f ′ (x̃)| = |xb − xa| |f ′ (x̃)| = ∆x |f ′ (x̃)| ,

i.e.

(3.5.22) ∆x̂ ≤ ∆x sup
x∈[xa,xb]

|f ′ (x)| .

Similar results can also be obtained in the general vectorial case. Here the distance
between two points should be related to the diameter of the simplex, introduced in
piece-wise interpolation methods, or the fill-distance present in the surface spline
interpolation. For two points xa, xb ∈ S ⊂ Γ , with a distance ∆x := ‖xb − xa‖ and
corresponding maps x̂a, x̂b ∈ Ŝ ⊂ Γ̂ , we have that the related distance in Γ̂ is

(3.5.23) ∆x̂ := ‖x̂b − x̂a‖ = ‖f (xb) − f (xa)‖ .
Applying the multivariate mean value theorem (see e.g. [3])

(3.5.24) f (xb) − f (xa) = Df(x̃) (xb − xa) ,

where x̃ ∈ Γ lies on the line connecting xa and xb, we have

(3.5.25) ∆x̂ = ‖(xb − xa) Df(x̃)‖ ≤ ‖xb − xa‖ ‖Df(x̃)‖ = ∆x ‖Df(x̃)‖ .
If ∆x is the diameter of a necessarily convex simplex Γm, we have x̃ ∈ Γm and ∆x̂
satisfies

(3.5.26) ∆x̂ ≤ ∆x sup
x∈Γm

‖Df(x)‖ .

Clearly the simplex of the new grid can be significantly larger than the original sim-
plex. This can, of course, decrease the accuracy if ‖Df(x)‖ is large.

The error bounds given in previous section are obtained for a scalar function f :

RN → R. For inverse interpolation we necessarily have a vectorial map f : RN →
RN, i.e. to use the error bounds, the involved norms need to be modified. However,
since the interpolation function g = [g1, . . . , gN]

T is defined on the same domain Γ̂
element-wise, the interpolation error can be defined simply by taking ∞−norm over
all gl, l = 1, . . . , N. Here we have

(3.5.27) r := ‖g − p‖∞ = max
l

|||gl − pl|||,

where ||| · ||| represents any given norm introduced previously.

CHAPTER 4

Introduction to the flow method

In this chapter we introduce our method for solving autonomous (stiff) flow prob-
lems. The fact that the flow is autonomous, a common situation in many physical
applications, is crucial. It implies that the velocity field is known in a certain spatial
domain, once it is known at a given time-level. In order to find it at other (spatial)
points, we use inverse interpolation. These two aspects (employing autonomy and
interpolation) make that we can use implicit methods to discretise the ODE. In this
chapter we will concentrate on the Euler Backward method, as it is the simplest one
to demonstrate our algorithmic approach and the error analysis is not too complex.
Moreover, we will restrict ourselves to scalar problems, which is more accessible to
analysis. Most of the ideas can be generalised to higher order methods and to vecto-
rial problems as well. This will be done in the subsequent chapters.

In Section 4.1 we first give an outline of the mathematical problem. In this section
we also describe the basic idea behind the method. Since inverse interpolation is
an essential ingredient we briefly discuss this in Section 4.2. The numerical solution
curves found at the various time points should, of course, not "intersect" in any rea-
sonable setting (as is e.g. implied by Lipschitz continuity). This leads to a condition
which we will call well-posedness, see Section 4.3. The above-mentioned interpolation
introduces a more complicated local error than usual. Therefore an error analysis is
given in Section 4.4, where the local error is estimated. The most interesting aspect of
our method is its stability. In Section 4.5 it is shown that we obtain stability behaviour
similar to that of the Euler Backward method, despite the fact that our method is de
facto explicit. Practical aspects of the method are given in Section 4.6. There is a
variety of possibilities to generalize the ideas on which this method is based and can
be applied in other cases, hence we consider a few. In this section we finally also
give a number of numerical examples showing the quality of the method.

4.1 Outline of the Method

Consider the autonomous ODE

(4.1.1) ẋ = u(x),

where ẋ represents the time derivative of x. We assume that u is known at a discrete
set of points only. Let S = {xk}

n
k=0 be such a set of points for which u values are given

by the set {uk}
n
k=0. It is assumed that u is Lipschitz continuous. As in Section 2.2, we

50 Introduction to the flow method

call I(x, t) ⊂ R a flow of (4.1.1), if it represents a continuum of solutions x of (4.1.1),
such that at time t each x(t) = I(x(0), t). In particular, we assume I(x, t) to be finite;
so there are boundary points, say m(t) andM(t), such that

(4.1.2) m(t) ≤ x(t) ≤M(t).

The full system is then formally described by

(4.1.3)

{
ẋ = u(x),

x(0) = x0 ∈ [m(0),M(0)].

To find an approximate solution of (4.1.3) and thus have an approximation of I(x, t),
one can use any existing numerical method. In this chapter, as an introduction, we
will restrict ourselves to the Euler Backward (EB) method, with a fixed step size h,
for ease of argument. However, in the following chapters higher order methods will
also be introduced. We denote by xi the approximation of x

(

ti
)

, at ti := i h. Then
the EB method reads

(4.1.4) xi+1 = xi + hu
(

xi+1
)

.

Let us define

(4.1.5) f
(

xi+1
)

:= xi+1 − hu
(

xi+1
)

= xi.

Since the solution at ti+1 cannot be found directly, at least when f (i.e. u) is nonlinear,
one needs to solve (4.1.4) by iteration. As already mentioned (see Chapter 2) this is
typically done by the Newton iterative method (or its modifications). However, due
to the fact that u is not explicitly known, the Newton method cannot be directly
applied. Instead of solving xi+1 by an iterative method, we do the following. At
time-level ti+1, define the point

(4.1.6) x̂i+1 := xi.

Since (4.1.1) is autonomous, we clearly have

(4.1.7) u
(

x̂i+1
)

= u
(

xi
)

.

Now we can view x̂i+1 as the point that would have been obtained by the EB method
if we would have started at x̂i, defined by

(4.1.8) x̂i := x̂i+1 − hu
(

x̂i+1
)

= xi − hu
(

xi
)

.

For a general point at time-level ti+1 the functional dependence with respect to its
corresponding solution value at ti is unknown analytically, so we have to use ap-
proximate values.

The flow represents the time evolution of a continuum of the solution points. Hence,
in order to find a numerical solution, one needs to spatially discretise I

(

x, ti
)

, of
course only at time discretisation points ti, i = 0, 1, . . . This discretisation should
provide a “good enough” representation of the flow, meaning that the set of the flow
points, say Ii =

{
xi

j

}µ

j=0
, should be sufficiently dense. In the scalar case this looks

unimportant, since all flow points should lie between boundary points. However,
in some applications the time evolution of the inner points may be of interest and,
moreover, the method can also be applied for higher dimensional problems, where
the boundary is not so simple anymore. Hence we assume that the flow at time point
ti is represented by the set Ii. Considering the initial condition, we let

{
x0

j

}µ

j=0
be

4.2 Interpolation 51

FIGURE 4.1.1. The principle of the flow method.

a set of µ ordered points in I(x, 0), such that x0
1 = m(0) and x0

n = M(0). Then we
expect

{
xi

j

}µ

j=0
to be a similarly ordered set of points, approximately in Ii, i.e.

(4.1.9) m
(

ti
) .

= xi
1 < x

i
2 < . . . < x

i
µ

.
= M

(

ti
)

.

Note that this is a consequence of well-posedness of u (following from Lipschitz
continuity) and can be achieved because of consistency of the EB method (i.e. errors
small enough for h small enough).

Points {xk}
n
k=0 for which u values are known may or may not be related to the flow

points, depending on the problem under consideration. To keep things simple, in
this (introductory) chapter, we will assume that the set S at ti is equal to Ii, i.e. we
can write xi

k = xi
j, j, k = 0, . . . , n. However, some examples will be shown later,

where the set of interpolation points is not directly related to the set of the flow
points.

Assuming S = Ii and by applying (4.1.8) to the set
{
xi

k

}n

k=0
, we obtain a set of points

Ŝ :=
{
x̂i

k

}n

k=0
, which can be used to find solutions at time-level ti+1, see Figure 4.1.1.

A particular value in I
(

x, ti+1
)

, can be found by interpolation. Note that we need
to know the velocity field only at this discrete set of points

{
xi

k

}n

k=0
, i.e. it is not

necessary to know u(x) everywhere in I
(

x, ti
)

.

We will refer to the above-described method as the flow method. There is no specific
preference for the interpolation method, apart from the requirement that the result-
ing approximation errors should be commensurate with the discretisation error. Of
course, to keep the method effective, it makes sense to apply this interpolation to
some sufficiently dense subset of

{
x̂i

k

}n

k=0
. The interpolation issue is the main topic

of the following section.

4.2 Interpolation

If we assume that f(x), defined by (4.1.5) satisfies the conditions of the inverse-
function theorem (see e.g. [3]), i.e. in particular if f ′(x) 6= 0, then

(4.2.1) g(x) := f−1(x),

52 Introduction to the flow method

exists and we may write

(4.2.2) xi+1 = g
(

xi
)

.

Of course, the function g is not known in general. Instead of trying to find xi+1 by
(Newton) iteration on f, we do the following: Since we can at least find some values
at time-level ti, for which the EB values are known, we can use inverse interpolation
to obtain an approximation of g, say p, by defining

Ω̂ :=
{(
x̂i

k, x
i
k

) ∣

∣x̂i
k ∈ Ŝ, g

(

x̂i
k

)

= xi
k, k = 0, . . . , n

}
,

(4.2.3) p
(

x̂i
k

)

= g
(

x̂i
k

)

= xi
k,

Then the solution of a particular flow point at the next time-level follows from

(4.2.4) xi+1
k := p

(

xi
k

) .
= g

(

xi
k

)

.

The interpolation should preferably be done locally. For example, for obtaining xi+1
k

(k fixed) we can use the point x̂i
k plus (m − 1) additional points (m ≤ n) closest to

x̂i
k, i.e. x̂i

k+1, x̂i
k−1, x̂i

k+2,. . . as defined by (4.1.8). If the interpolation is linear, this
approach (as shown later) gives results identical to one obtained by applying one
step of the discrete Newton method with xi

k and xi
k+1 as starting values.

The interpolation error, say r(x), depends, of course, on the type and the order of
the interpolation technique involved, as well as on how I

(

ti
)

is discretised. For
example, Lagrangian interpolation of orderm gives

(4.2.5) r(x) :=
g(m)(c)

m!

m∏

j=0

(x − x̂i
k−dm

2
e+j).

Since interpolation is inverse, the interpolation error depends on the derivatives of
g. However, by substituting (4.1.5) into (3.5.14) and (3.5.15), one can obtain higher
order derivatives of g in terms of the higher order derivatives of u. For example
(4.2.6)

g ′ =
1

(1 − hu ′)
, g ′′ = h

u ′′

(1 − hu ′)3
, g ′′′ = h

u ′′′ (1 − hu ′) + 3 h (u ′′)2

(1 − hu ′)5
, . . . ,

where

(4.2.7) u ′ :=
du

dx
, u ′′ :=

d2u

dx2
, . . .

Although expressions for higher derivatives of g are becoming more complex, one
should note that powers of (1 − hu ′) are present in all denominators in (4.2.6). Hence
we can conclude that if

(4.2.8) |1 − hu ′(x)| � 1,

and u has bounded higher derivatives for x(t) ∈ I(t), the interpolation error tends
to zero. The condition (4.2.8) is typically fulfilled for stiff problems, meaning that it
is reasonable to expect small interpolation errors.

EXAMPLE 4.2.1. To show how this interpolation works out for a simple situation,
consider a problem where (4.1.3) is linear, u is known at the flow points and the
interpolation is linear. So, let

(4.2.9)

{
ẋ = λ x,

x(0) ∈ I(0) = [m(0),M(0)].

4.3 Well-posedness of the Flow Method 53

The set
{
x̂i

k

}n

k=1
is then defined by

(4.2.10) x̂i
k := x̂i+1

k − hu
(

x̂i+1
k

)

= (1 − hλ) xi
k.

By linear interpolation we have

(4.2.11) xi+1
k = p(xi

k) =
xi

k − x̂i
k+1

x̂i
k − x̂i

k+1

x̂i+1
k +

xi
k − x̂i

k

x̂i
k+1 − x̂i

k

x̂i+1
k+1.

After substituting (4.1.6) and (4.2.10) into (4.2.11), we find

(4.2.12) xi+1
k =

(xi
k − xi

k+1 + hλ xi
k+1) xi

k − hλ xi
k x

i
k+1

(1 − hλ) (xi
k − xi

k+1)
,

leading to

(4.2.13) xi+1
k =

xi
k

1 − hλ
.

This is exactly the same expression as one would have obtained from directly apply-
ing the EB method. This result is no surprise, of course, since linear interpolation
should be exact for a linear function. �

4.3 Well-posedness of the Flow Method

As stated in Section 4.1 we assume Lipschitz continuity of the function u. Consid-
ering the flow problem (4.1.3), this means that integral curves of the exact solutions
will not intersect (cf. [26]). We will call this the well-posedness. This property should
be inherited by the numerical method, i.e. it should be such that the elements in

the set
{
xi+1

j

}µ

j=0
have the same ordering as in

{
xi

j

}µ

j=0
. In this section we will seek

a condition for well-posedness of the flow method, i.e. for the topology preserva-
tion in time of points in the flow. However, before we analyse the well-posedness
property of the EB method, we first need to find a condition for the topology preser-
vation in space, which is necessary for correct interpolation. This condition is related
to the requirement that the topology of the set

{
x̂i

k

}n

k=0
should be preserved from the

topology of the set
{
x̂i+1

k

}n

k=0
. So let (4.1.9) hold and again let xi

j = xi
k and µ = n,

then from (4.1.6) we have

(4.3.1) x̂i+1
0 < x̂i+1

1 < . . . < x̂i+1
n .

Having a proper ordering of the corresponding solution points at ti, i.e. topology
preservation in space, means

(4.3.2) x̂i
k < x̂

i
k+1, k = 0, . . . , n− 1.

Recalling (4.1.8) we see that inequality (4.3.2) is equivalent to

(4.3.3) x̂i+1
k − hu(x̂i+1

k) < x̂i+1
k+1 − hu(x̂i+1

k+1),

i.e.

(4.3.4) xi
k − hu(xi

k) < xi
k+1 − hu(xi

k+1).

Since xi
k+1 − xi

k > 0, this reduces to

(4.3.5) 1 − h
u(xi

k+1) − u(xi
k)

xi
k+1 − xi

k

> 0.

54 Introduction to the flow method

If u(x) is monotone and smooth enough for xi ∈
[

xi
k, x

i
k+1

]

, we can approximate the
second term on the left of (4.3.5) by the first derivative hu ′ (xi

k

)

. For well-posedness
we thus require

(4.3.6) 1 − hu ′ (xi
k

)

> 0, xi ∈ Ii.
The term (1 − hu ′) in (4.3.6) was also encountered in the denominators of (4.2.6).
Clearly, one should not expect inverse interpolation to provide accurate results when
this expression is close to zero. This means that, for a divergent flow, the constraint
(4.3.6) might be strict. However, this constraint is always fulfilled for a convergent
flow, i.e. for all monotonically non-increasing u(x). This is important for stiff prob-
lems, i.e. for problems where hu ′ (xi

)

� −1.

Condition (4.3.6), obtained for the employed EB method, will also ensure that nu-
merically obtained solutions of the flow do not intersect. This can be seen e.g. for
linear interpolation, where the flow points are the interpolation points as well. If we
subtract two neighbouring solutions, say

xi+1
k+1 = xi

k+1 − h
u
(

xi
k+1

)

1 − h
u(xi

k+1)−u(xi
k)

xi
k+1

−xi
k

,

xi+1
k = xi

k − h
u
(

xi
k

)

1− h
u(xi

k+1)−u(xi
k)

xi
k+1

−xi
k

,(4.3.7)

then

xi+1
k+1 − xi+1

k = xi
k+1 − xi

k − h
u
(

xi
k+1

)

− u
(

xi
k

)

1 − h
u(xi

k+1)−u(xi
k)

xi
k+1

−xi
k

,

=
xi

k+1 − xi
k

1 − h
u(xi

k+1)−u(xi
k)

xi
k+1

−xi
k

,(4.3.8)

which is positive as xi
k+1 −xi

k > 0 and assuming (4.3.5) is satisfied. This is illustrated
by the following example.

EXAMPLE 4.3.1. Consider

(4.3.9)

{
ẋ = x (x− 1) (x + 1),

I0 = [−1, 1].

The right-hand side of (4.3.9) is a third order polynomial in x, which changes sign
on [−1, 1]. Note that u is increasing for x ∈

(

−1,− 1√
3

)

∪
(

1√
3
, 1
)

and decreasing

for x ∈
(

− 1√
3
, 1√

3

)

. Since maxx∈I0 u ′(x) = 2 we find that the condition for the
well-posedness of the flow method (4.3.6) requires the time step size h to be smaller
then 0.5. For larger h, we may expect the numerical integral curves to intersect for
points where u ′(x) > 0, see Figure 4.3.1a. Note that for points where u ′(x) < 0,
intersections will not occur no matter how large is h. If we use a step size h < 0.5,
integral curves do not intersect, see Figure 4.3.1b. �

For problems where the set of interpolation points is not directly related to the flow
points, the conclusion is similar. First, let xi

j and xi
j+1 be two arbitrary neighbouring

flow points that satisfy

(4.3.10) xi
j < x

i
j+1.

4.4 Error Analysis 55

(a) h = 1.0 (b) h = 0.4

FIGURE 4.3.1. Well-posedness of the flow method

Let the topology preservation in space condition (4.3.5) be satisfied and xi
j, x

i
j+1 ∈

[x̂k, x̂k+1], i.e. both flow points be in the same subinterval. Then similar to (4.3.8) one
can obtain

(4.3.11) xi+1
j+1 − xi+1

j =
xi

j+1 − xi
j

1 − h
u(xk+1)−u(xk)

xk+1−xk

,

which is again positive since (4.3.10) and (4.3.5) hold. If xi
j ∈ [x̂k, x̂k+1] and xi

j+1 ∈
[x̂l, x̂l+1] , and

(4.3.12) x̂k < x̂k+1 < x̂l < x̂l+1,

we have from the topology preservation in space property

(4.3.13) xk < xk+1 < xl < xl+1.

Using (4.6.2) we then find

(4.3.14) xi+1
j < xi+1

j+1.

Hence we may conclude that in any case, the flow method is well-posed if the topol-
ogy in space is preserved.

4.4 Error Analysis

Clearly, the local error of the flow method consists of two components. The first one
is the local discretisation error arising from the time discretisation. The second one
comes from the inverse interpolation. We will assume well-posedness, as defined
in the previous section. Recall that the local discretisation error of the EB method
applied to (4.1.1) is given by (cf. e.g. [33])

(4.4.1) dh

(

xk

(

ti
))

:= −
h

2
ẍk

(

ti
)

+O
(

h2
)

.

We restrict ourselves to linear interpolation, for the sake of simplicity.

The local error is found from substituting an exact solution into a numerical scheme,
assuming the solution to be known exactly at t = ti. So take

(4.4.2) x̂k

(

ti+1
)

:= x̂i+1
k = xk

(

ti
)

:= xi
k, k = 0, . . . , n.

56 Introduction to the flow method

Let us first assume that S = Ii and that interpolation is linear (m = 2). Then one
finds that the interpolation polynomial, as a function of the exact solution xk(t), is
given by

p
(

xk

(

ti
))

=
xk(ti)−x̂i

k

x̂i
k+1

−x̂i
k

x̂i+1
k+1 +

xk(ti)−x̂i
k+1

x̂i
k

−x̂i
k+1

x̂i+1
k(4.4.3)

=
h ẋk(ti) xk+1(ti)−[xk(ti)−xk+1(ti)+h ẋk+1(ti)] xk(ti)

xk+1(ti)−xk(ti)−h [ẋk+1(ti)−ẋk(ti)]

=
xk(ti)[xk+1(ti)−xk(ti)]+h[ẋk(ti)xk+1(ti)−xk(ti)ẋk+1(ti)]

xk+1(ti)−xk(ti)−h [ẋk+1(ti)−ẋk(ti)]
.

After adding and subtracting ẋk

(

ti
)

xk

(

ti
)

in the numerator of the last equality of
(4.4.3), the second term can be rewritten as

h
[

ẋk

(

ti
)

xk+1

(

ti
)

− xk

(

ti
)

ẋk+1

(

ti
)]

=(4.4.4)

h
[

ẋk

(

ti
) (

xk+1

(

ti
)

− xk

(

ti
))

− xk

(

ti
) (

ẋk+1

(

ti
)

− ẋk

(

ti
))]

.

Using (4.4.4) and the well-posedness, i.e. xk+1

(

ti
)

− xk

(

ti
)

6= 0, (4.4.3) becomes

(4.4.5) p
(

xk

(

ti
))

=

xk

(

ti
)

+ h

[

ẋk

(

ti
)

− xk

(

ti
) ẋk+1(ti)−ẋk(ti)

xk+1(ti)−xk(ti)

]

1 − h
ẋk+1(ti)−ẋk(ti)

xk+1(ti)−xk(ti)

.

We introduce the following simpler notation (note that ẋk

(

ti
)

= u
(

xk

(

ti
))

)

(4.4.6)
ẋk+1

(

ti
)

− ẋk

(

ti
)

xk+1 (ti) − xk (ti)
=
u
(

xk+1

(

ti
))

− u
(

xk

(

ti
))

xk+1 (ti) − xk (ti)
=:
∆uk

(

ti
)

∆xk (ti)
.

This leads to

p
(

xk

(

ti
))

=

xk

(

ti
)

+ h

[

ẋk

(

ti
)

− xk

(

ti
) ∆uk(ti)

∆xk(ti)

]

1 − h
∆uk(ti)

∆xk(ti)

= xk

(

ti
)

+ h
ẋk

(

ti
)

1 − h
∆uk(ti)

∆xk(ti)

.(4.4.7)

One should note that the expression (4.4.7), under assumption (4.4.2) is identical to
the expression for obtaining the numerical solution of the EB method by employing
one step of the discrete Newton iterative method, with starting values xi

k and xi
k+1.

Now the local error of the flow method, say δ
(

xk

(

ti+1
)

, h
)

, is found as the residual,
i.e. from substituting the exact solution in xi+1

k = p
(

xi
k

)

. We then find

(4.4.8) δ
(

xk

(

ti+1
)

, h
)

=

xk

(

ti+1
)

− xk

(

ti
)

− h
ẋk

(

ti
)

1 − h
∆uk(ti)

∆xk(ti)

 /h.

Assuming
∣

∣

∣

∣

h
∆uk(ti)
∆xk(ti)

∣

∣

∣

∣

to be small enough for h sufficiently small, we may use the

approximation

(4.4.9)
1

1 − h
∆uk(ti)

∆xk(ti)

= 1+ h
∆uk

(

ti
)

∆xk (ti)
+O

(

h2
)

.

4.4 Error Analysis 57

This gives

δ
(

xk

(

ti+1
)

, h
)

=
[

xk

(

ti+1
)

− xk

(

ti
)

− h ẋk

(

ti
)

[

1 + h
∆uk

(

ti
)

∆xk (ti)
+O

(

h2
)

]]

/h.(4.4.10)

For a sufficiently smooth solution, one can expand the solution at the time-level ti+1

as

(4.4.11) xk

(

ti+1
)

= xk

(

ti
)

+ h ẋk

(

ti
)

+
h2

2
ẍk

(

ti
)

+O
(

h3
)

.

If we substitute this in (4.4.10), we have

(4.4.12) δ
(

xk

(

ti+1
)

, h
)

=
h

2
ẍk

(

ti
)

− h
∆uk

(

ti
)

∆xk (ti)
ẋk

(

ti
)

+O
(

h2
)

.

Since u
(

xk+1

(

ti
))

= u
(

xk

(

ti
)

+ ∆xk

(

ti
))

, expansion around xk

(

ti
)

leads to

(4.4.13)
∆uk

(

ti
)

∆xk (ti)
= u ′ (xk

(

ti
))

+
∆xk

(

ti
)

2
u ′′ (xk

(

ti
))

+O
(

∆x2
k

(

ti
))

.

Now the local error is found to be

δ
(

xk

(

ti+1
)

, h
)

=
h

2
ẍk

(

ti
)

− hu ′ (xk

(

ti
))

ẋk

(

ti
)

−
h

2
∆xk

(

ti
)

u ′′ (xk

(

ti
))

ẋk

(

ti
)

+ O(h)O
(

∆x2
k

(

ti
))

+O
(

h2
)

,(4.4.14)

i.e.

δ
(

xk

(

ti+1
)

, h
)

= −
h

2
ẍk

(

ti
)

−
h

2
∆xk

(

ti
)

u ′′ (xk

(

ti
))

ẋk

(

ti
)

+ O(h)O
(

∆x2
k

(

ti
))

+O
(

h2
)

.(4.4.15)

Comparing right-hand sides of (4.4.15) and (4.4.1), we see that the expression of the
local error of the flow method, contains two additional terms, coming from the inter-
polation. However, it is clear that the consistency order 1 is preserved. The second
term on the right-hand side of (4.4.15), contains the second derivative of the func-
tion u(x) with respect to the variable x. This is a consequence of the linear inverse
Lagrangian interpolation, as shown in Section 4.2. Clearly, if the order of the inter-
polation is higher, higher derivatives u(m)(x),m = 3, 4, . . . are coming into play and
their influence in the local error can become dominant. The expression (4.4.15) can be
seen as a sum of the local discretisation error of the EB method and the interpolation
error, viz.

(4.4.16) δ
(

xk

(

ti+1
)

, h
)

= dh

(

xk

(

ti
))

+ rh
(

xk

(

ti
))

.

By neglecting higher order terms and recalling (4.4.2), the interpolation error can be
estimated as

(4.4.17) rih,k = −
h

2
∆xi

k u
′′ (xi

k

)

u
(

xi
k

)

,

which means that we take rih,k

.
= rh(xi

k), which is defined by (4.2.5) for m = 2. We
can conclude from (4.4.15) that the local error is O(h)

(

1 +O
(

∆xk

(

ti
)))

. From this
it appears that interpolation error is not extremely important, as long as it is not too
large as compared to 1 rather than to h.

58 Introduction to the flow method

The accuracy strongly depends on the interpolation method used. For example if we
apply piece-wise linear interpolation we can obtain a somewhat different, yet useful
error estimate. Let us also assume that the set S = {xk}

n
k=0, is time invariant, i.e. used

at every time-level. Repeating the similar procedure as (4.4.3)-(4.4.7), we now have

(4.4.18) p
(

xj

(

ti
))

=
xj

(

ti
)

+ h
[

u (xk) − xk
∆uk

∆xk

]

1 − h ∆uk

∆xk

.

Here xj

(

ti
)

represents the flow point and xk and xk+1 are the points determined so
that the numerical solution satisfies

x̂k ≤ xi
j ≤ x̂k+1,

xk ≤ xi+1
j ≤ xk+1.(4.4.19)

Hence the local error is now

δ
(

xj

(

ti+1
)

, h
)

=

xj

(

ti+1
)

−
xj

(

ti
)

+ h
[

u (xk) − xk
∆uk

∆xk

]

1 − h ∆uk

∆xk

 /h

=

[

xj

(

ti+1
)

− xj

(

ti
)

− hu (xk) + h
(

xj

(

ti+1
)

− xk

)

∆uk

∆xk

1 − h ∆uk

∆xk

]

/h.(4.4.20)

Using

(4.4.21) xj

(

ti+1
)

= xi+1
j + hδ(·),

we have

(4.4.22) xj

(

ti+1
)

− xk = xi+1
j − xk + hδ(·) ≤ ∆xk + hδ(·).

Assuming that h is small enough, i.e. that xj

(

ti+1
)

belongs to the same subinterval
as xi+1

j , we can can use the approximation

(4.4.23) xj

(

ti+1
)

− xk ≤ ∆xk.

On the other hand, if we expand u (xk) around u
(

xj

(

ti+1
))

, we find

u (xk) = u
(

xj

(

ti+1
))

+
(

xj

(

ti+1
)

− xk

)

u ′ (xj

(

ti+1
))

+

(

xj

(

ti+1
)

− xk

)2

2
u ′′ (xj

(

ti+1
))

+O
(

(

xj

(

ti+1
)

− xk

)3
)

.(4.4.24)

Assuming that (4.4.23) holds and that ∆xk is sufficiently small, we have

(4.4.25) u (xk)
.
= u

(

xj

(

ti+1
))

+∆xk u
′ (xj

(

ti+1
))

+
∆x2

k

2
u ′′ (xj

(

ti+1
))

+O
(

∆x3
k

)

.

Substituting (4.4.25) into (4.4.20) and performing some reordering, the local error
becomes

(4.4.26) δ
(

xj

(

ti+1
)

, h
)

= −
h

2

ẍj

(

ti+1
)

1 − h ∆uk

∆xk

−
∆x2

k

2

u ′′ (xj

(

ti+1
))

1 − h ∆uk

∆xk

+O
(

h2
)

+O
(

∆x3
k

)

.

Again the second term on the right-hand side is due to the interpolation and closely
related to the error estimate which one would obtain by applying the inverse piece-
wise linear interpolation. Also note that for sufficiently small h and ∆xk the local
error is now O (h) + O

(

∆x2
k

)

. This means that there is a constraint for ∆xk so that
the interpolation error is commensurate with the local discretisation error of the EB

4.5 Stability 59

method. Of course, for ∆xk = O
(

h1/2
)

, both errors are of the same order and the
consistency order of the EB method is preserved.

4.5 Stability

In Example 3.1 it was shown that the flow method, applied to a (linear) test problem,
produces the same results as the EB method if the interpolation error is equal to
zero. This means that the stability domain, defined as the subset of the complex
plane where the stability function (see Section 2.4)

(4.5.1) ψ(hλ) :=
1

1 − hλ
,

is in modulus bounded by 1, is identical to that of the EB method. Of course, in
the general (nonlinear) case we cannot say that the stability properties of the flow
method are the same as those of the EB method. Hence, we will investigate its sta-
bility now.

We can view our method as finding the solution via

(4.5.2) xi+1
k = pi,k

(

xi
k

)

, k fixed, i = 0, 1, . . .

Here we used the indices i and k to denote its dependence on the time level ti and
the interpolation point xi

k. If the interpolation linear polynomial is obtained as in
(4.4.7), we have

(4.5.3) pi,k(x) = x+ h
u(x)

1 − h
u(xi

k+1)−u(x)

xi
k+1

−x

.

In order to find out about the stability of the recursion (4.5.2), we look for the first
variation. Let

{
zik

}
k fixed

denote a small perturbation of the solution
{
xi

k

}
k fixed

of
(4.5.2), such that

{
xi

k + zik
}

k fixed
also satisfies (4.5.2) to first order. Then we have

(4.5.4) xi+1
k + zi+1

k = pi,k

(

xi
k + zik

) .
= pi,k

(

xi
k

)

+ p ′
i,k

(

xi
k

)

zik.

By neglecting second and higher order terms we have

(4.5.5) zi+1
k = p ′

i,k

(

xi
k

)

zik.

For stability in a nonlinear situation it is sufficient to prove contractivity of the dis-
crete equation (4.5.5), i.e.

(4.5.6)
∣

∣p ′
i,k

(

xi
k

)∣

∣ < 1.

Carrying out the differentiation of pi,k(x) explicitly gives
(4.5.7)

p ′
i,k(x) = 1 + h

u ′(x)

(

1 − h
u(xi

k+1)−u(x)

xi
k+1

−x

)

+ hu(x)
u(xi

k+1)−u(x)−u ′(x)(xi
k+1−x)

(xi
k+1

−x)
2

(

1 − h
u(xi

k+1)−u(x)

xi
k+1

−x

)2
.

After substituting xi
k and some reordering, (4.5.7) becomes

(4.5.8) p ′
i,k

(

xi
k

)

=
1− h

(

∆ui
k

∆xi
k

− u ′ (xi
k

)

)

1 − h
∆ui

k

∆xi
k

+ h2 f(xi
k)

∆ui
k

∆xi
k

−u ′(xi
k)

∆xi
k

(

1 − h
∆ui

k

∆xi
k

)2
.

60 Introduction to the flow method

For further analysis of (4.5.8), we first make an expansion

(4.5.9)
∆ui

k

∆xi
k

= u ′ (xi
k

)

+
∆xi

k

2
u ′′ (xi

k

)

+

(

∆xi
k

)2

6
u ′′′ (xi

k

)

+O
(

(

∆xi
k

)3
)

.

Substituting (4.5.9) in (4.5.7), we find

∣

∣p ′
i,k

(

xi
k

)∣

∣ =

∣

∣

∣

∣

∣

∣

1− h
∆xi

k

2
u ′′ (xi

k

)

+O
(

(

∆xi
k

)2
)

1 − hu ′ (xi
k

)

+O
(

∆xi
k

) +

+ h2 u
(

xi
k

)

1
2
u ′′ (xi

k

)

+
∆xi

k

6
u ′′′ (xi

k

)

+O
(

(

∆xi
k

)2
)

(

1 − hu ′
(

xi
k

)

+O
(

∆xi
k

))2

∣

∣

∣

∣

∣

∣

.(4.5.10)

The expression (4.5.10) can be assessed as follows. It is clear that interpolation in-
fluences the stability. If Ii is "well-sampled", i.e. if ∆xi

k is sufficiently small so as to
make the last terms negligible, the condition (4.5.6) can be simplified to give

(4.5.11)

∣

∣

∣

∣

∣

1

1 − hu ′ (xi
k

) +
h2

2

u
(

xi
k

)

u ′′ (xi
k

)

(

1− hu ′ (xi
k

))2

∣

∣

∣

∣

∣

< 1.

Note that a similar condition for the EB method would read

(4.5.12)

∣

∣

∣

∣

∣

1

1− hu ′ (xi+1
k

)

∣

∣

∣

∣

∣

< 1.

The additional term in (4.5.11) does not necessarily tend to zero for stiff problems,
where

∣

∣hu ′ (xi
k

)∣

∣� 1. Indeed, in this latter case (4.5.11) becomes approximately

(4.5.13)

∣

∣

∣

∣

∣

1

2

u
(

xi
k

)

u ′′ (xi
k

)

(

u ′ (xi
k

))2

∣

∣

∣

∣

∣

< 1.

However, the latter constraint is not very severe, certainly compared to those found
for explicit methods. We illustrate this in Section 4.6.

If the interpolation linear polynomial is obtain by the piece-wise linear interpolation,
i.e. by (4.4.18), we have

(4.5.14) pi,k (x) =
x+ h

[

u (xk) − xk
∆uk

∆xk

]

1− h ∆uk

∆xk

,

which, together with (4.5.6), simply gives the contractivity condition

(4.5.15)

∣

∣

∣

∣

∣

1

1 − h ∆uk

∆xk

∣

∣

∣

∣

∣

< 1.

Comparing (4.5.12) and (4.5.15), we clearly have that the stability condition of the
flow method based on piece-wise linear interpolation is very close to the one of the
EB method and better than the one obtained by the previous interpolation approach.
The reason for this is, of course, that interpolation points are now not related to the
solution points.

4.6 Practical Aspects 61

4.6 Practical Aspects

In the previous sections we showed the basic idea and gave some properties and
error estimates of the flow method. We restricted ourselves basically to the simplest
implementation, namely linear interpolation with an equidistantly sampled initial
interval I0. Another approach is to interpolate points u

(

x̂i+1
k

)

instead of x̂i+1
k , using

the corresponding x̂i
k. As before, this results in an approximation obtained by the in-

terpolation polynomial, say p̃
(

xi
k

)

, which represents the approximation of u
(

xi+1
k

)

,
i.e. we have

(4.6.1) p̃
(

xi
k

) .
= u

(

xi+1
k

)

.

It can easily be shown that linear interpolation by (4.6.1) instead of (4.2.4), yields an
identical result.

As mentioned, interpolation should preferably be done locally. In principal there are
two approaches that one can use to ensure this. We introduce both by the following:

(1) To obtain xi+1
k (k fixed) we can use the point x̂i

k plus (m− 1) additional
points (m ≤ n) closest to x̂i

k, i.e. x̂i
k+1, x̂i

k−1, x̂i
k+2,. . . as defined by (4.1.8).

This approach gives an algorithm that is faster than the following one, since
we do not search in which subinterval

[

x̂i
k, x̂

i
k+1

]

, the point xi
k is. However,

for stiff problems the point xi
k may be relatively far from the subinterval

[

x̂i
k, x̂

i
k+1

]

, which can introduce large interpolation error due to the extrap-
olation.

(2) A more accurate (but also computationally more expensive) approach is to
use all the points for interpolation. For example, one can apply piece-wise
linear interpolation for constructing p that satisfies (4.2.3). To distinguish
this approach from the previous one, we will attach it to problems where
S 6= Ii, i.e. we omit the superscript i for the interpolation points. The
main difference with the first approach is that we now first look for a subin-
terval, in which a particular flow point, say xi

j is located, i.e. for which
xi

j ∈ [x̂k, x̂k+1]. Now by using points x̂k and x̂k+1, one can construct a
linear function and obtain xi+1

j which satisfies

(4.6.2) xk ≤ xi+1
j ≤ xk+1.

As pointed out before, one of the most important aspects of the flow method is that
it can be used for stiff problems where the velocity field is not known explicitly, i.e.
it is known at some discrete values {(xk, uk)}

n
k=0 only. In the following example we

will show how we can solve such a problem rather easily and yet being efficient.

EXAMPLE 4.6.1. Consider the flow problem (4.1.3) where the velocity field u(x) is to
be found from the two-point boundary value problem (BVP)

(4.6.3)

u ′′(x) + 2µxu ′(x) = 0, µ > 0,

m(0) ≤ x ≤M(0),

u (m(0)) = 0,

u (M(0)) + u ′ (M(0)) = c, c ∈ R.

To solve the BVP (4.6.3) numerically, we need to discretise [m(0),M(0)]. Of course,
the number of grid points, say n, depends on the required accuracy. The numerical
solution is a discrete set of points {(xk, uk)}

n
k=0. If we would choose the (obviously

hassle free) Euler Forward method for the time integration we only would have to

62 Introduction to the flow method

employ interpolation to obtain u at intermediate points. However, if the problem is
stiff, this approach requires a rather small time-step. In particular one should note
that when µ is large, u(x) is changing more rapidly around x = 0, see Figure 4.6.1a.
Then the Euler Forward method clearly requires a small step-size, if only to ensure
the solution to remain positive. Let us take m(0) = 0, M(0) = 2, n = 51, c = −2

and µ = 100. Euler Forward then requires h ≤ 0.0225. In Figure 4.6.1b, the results
obtained by the flow method with h = 0.1 are shown. Clearly, the behaviour of the
solution indicates that the method does not have problems with the stiffness, in a
similar way as one would have for EB method. �

(a) Discrete velocity field (b) Flow in time

FIGURE 4.6.1. The solution of the two-point BVP (n = 51, µ = 100,
h = 0.1).

The error analysis in Section 4.4 showed that the interpolation error depends not
only on the time step size h, but also on the spatial step size ∆xi

k. The latter should
control the interpolation error appropriately.

EXAMPLE 4.6.2. Consider the ODE

(4.6.4)

{
ẋ = − arctan(10 x),

x(0) ∈ [−1, 1].

As can be seen the second derivative of the velocity field is (absolutely) large for x
close to zero. This means that we can expect larger interpolation errors there. Let us
take h = 0.01. In the first experiment we take ∆x0

k = 1.0 (n = 3). The global errors
of the upper boundary solution, obtained by the flow method and EB are shown in
Table 4.6.1, columns 2 and 4 respectively. Note that the accuracy of the flow method
is slightly less than the one obtained by EB, showing that the interpolation error is
dominant here. This also follows from an estimate of the interpolation error, see
column 3, derived from (4.4.17). If we take ∆x0

k = 0.01 (n = 201), the interpolation
error becomes of order smaller then the local discretisation error (see column 6),
making the accuracy of the flow method almost the same as one obtained by EB, see
columns 4 and 5. �

In a practical setting, if possible, one would like to make the computation more effec-
tive, by adapting the number of points in the flow at every time-level. Let us denote
this number of points at ti by ni. Given an interpolation tolerance, say INTTOL, we
require the interpolation error of the boundary points to be approximately equal to

4.6 Practical Aspects 63

Flow method Flow method

Global Interpolation Euler Global Interpolation

Time error error Backward error error

∆x0
k = 1.0 (n = 3) ∆x0

k = 0.01 (n = 201)

ti |ei
n| |ri

n| |ei
n| |ei

n| |ri
n |

0.1 2.1651e-03 1.9325e-03 8.4558e-05 8.3723e-05 2.2478e-05

0.2 4.5909e-03 2.7015e-03 1.9997e-04 1.9781e-04 3.7453e-05

0.3 7.3125e-03 3.9829e-03 3.6517e-04 3.6073e-04 6.8000e-05

0.4 1.0324e-02 6.2680e-03 6.1608e-04 6.0736e-04 1.3768e-04

0.5 1.3440e-02 1.0551e-02 1.0230e-03 1.0056e-03 3.1492e-04

0.6 1.5813e-02 1.7761e-02 1.6985e-03 1.6608e-03 7.4473e-04

0.7 1.4959e-02 2.0338e-02 2.5251e-03 2.4609e-03 1.0332e-03

0.8 9.6363e-03 6.5075e-03 2.5258e-03 2.4642e-03 2.9339e-04

0.9 4.6815e-03 6.0262e-04 1.6611e-03 1.6330e-03 2.4763e-05

1.0 2.0696e-03 3.7538e-05 8.8604e-04 8.7792e-04 1.5129e-06

TABLE 4.6.1. The global errors for h = 0.01.

INTTOL. Let ∆xi denote the spatial step such that max(
∣

∣ri1
∣

∣ ,
∣

∣rin
∣

∣) ≈ INTTOL. Then
ni is given by

(4.6.5) ni :=

⌊
∣

∣xi
n − xi

0

∣

∣

∆xi

⌋

+ 1.

EXAMPLE 4.6.3. Consider the problem in Example 4.6.2 again and apply regridding
as described above. From Table 4.6.1 one should note that the absolute discretisation
error (the error of the EB method) for h = 0.01 is about 10−3. Hence we choose
INTTOL = 10−3 which should ensure that the interpolation error be commensurate
with the discretisation error. The results are shown in Table 4.6.2. Note that the
number of points ni is varying in time, ensuring the interpolation error to be bellow
INTTOL. �

The flow method can be also used for non-autonomous problems of the following
type

(4.6.6) ẋ = u(x) +w(t).

The principle remains the same, i.e. we first determine a set of points

(4.6.7) x̂i
k = x̂i+1

k − hu
(

x̂i+1
k

)

− hw
(

ti+1
)

= xi
k − hu

(

xi
k

)

− hw
(

ti+1
)

,

and then interpolate points x̂i+1
k with corresponding x̂i

k, in order to obtain the inter-
polation polynomial p

(

xi
)

. Since w does not depend on the spatial variable x, the
additional source terms are cancelling in all denominators of p

(

xi
)

(for arbitrarym),
making w appearing only as an additional term of the interpolation polynomial. To
illustrate this, we can reformulate Example 4.2.1 by adding a source termw(t) on the
right-hand side of (4.2.9). The analogue of (4.2.12) then reads
(4.6.8)

xi+1
k =

(

xi
k − xi

k+1 + h
(

λ xi
k+1 +w

(

ti+1
)))

xi
k − h

(

λ xi
k +w

(

ti+1
))

xi
k+1

(1 − hλ)
(

xi
k − xi

k+1

) .

64 Introduction to the flow method

Flow method

Flow Interpolation Global Euler

Time points error error Backward

ti ni |ri
n| |ei

n| |ei
n |

0.1 5 9.6143e-04 2.6942e-04 8.4558e-05

0.2 7 9.8869e-04 5.2216e-04 1.9997e-04

0.3 10 7.6281e-04 7.9990e-04 3.6517e-04

0.4 14 7.8502e-04 1.1326e-03 6.1608e-04

0.5 24 8.0818e-04 1.5783e-03 1.0230e-03

0.6 39 8.3235e-04 2.2013e-03 1.6985e-03

0.7 39 8.5756e-04 2.8430e-03 2.5251e-03

0.8 11 8.8390e-04 2.6857e-03 2.5258e-03

0.9 2 9.1142e-04 1.7548e-03 1.6611e-03

1.0 2 9.4019e-04 9.2635e-04 8.8604e-04

TABLE 4.6.2. The global errors for h = 0.01 and INTTOL = 10−3.

This leads to

(4.6.9) xi+1
k =

xi
k

1 − hλ
+
hw

(

ti+1
)

1 − hλ
,

as would have been obtained from applying EB directly. In the following example
we will consider one non-autonomous problem, where moreover, u is not known
explicitly.

EXAMPLE 4.6.4. Consider an electrical circuit with nonlinear elements, such as non-
linear resistors (varistors), diodes, transistors, etc. (see e.g. [22]). Here the transfer
function (voltage-current dependence) is nonlinear and can only be obtained exper-
imentally, i.e. it is defined by a discrete set of points {(ik, vk)}

n
k=0. A particular such

a system is a DC motor with a nonlinear resistor as a protection element, see Fig-
ure 4.6.2a. The nonlinear resistor ensures the current not to increase dramatically,
even for very large voltages on the motor stator side. The most dangerous situation
is when the rotor is blocked (i.e. the motor is not spinning); when this happens the
current is maximal. The equivalent electrical scheme of the motor is then defined as
a serial connection of a resistor (R) and an inductance (L), see Figure 4.6.2b.

The motor is driven by a generator vg. For a time varying generator voltage, i.e.
vg = vg(t), we have a non-autonomous problem defined by (4.6.6). Here we choose
vg(t) = V cosωt.

The mathematical model of this system follows from Kirchhoff’s second law, i.e.

(4.6.10) L
di

dt
= −v(i) − Ri+ vg(t),

where i = i(t) is the current in the loop and v(i) is the voltage on the nonlinear
resistor defined only at some discrete points {ik}

n
k=0. This can be rewritten as

x(t) = i(t),

u(x) = −
1

L
v(x) −

R

L
x,

w(t) =
V

L
cosωt.(4.6.11)

4.6 Practical Aspects 65

(a) Stator side (b) Equivalent electrical scheme

FIGURE 4.6.2. DC motor circuit

Since we would like to observe the behaviour of the system for a range of initial
conditions (the inductance current value at t = 0, we take x(0) = i(0) ∈ [Imin, Imax].
We discretise the interval using as many points as required to monitor the evolution
of the flow. However, for this application the number of points of the flow does not
influence the accuracy of the method (in particular the interpolation part). This is
related only to a number of experimentally obtained points {(ik, vk)}

n
k=0 to be used

for interpolation. We take 201 points, spanning the interval [−10, 10], see Table 4.6.3
and Figure 4.6.4a. Of course, this interval should be large enough to cover entire flow
in time to avoid large errors coming from extrapolation. Typical parameter values
are R = 2Ω, L = 0.01H, V = 220V andω = 1rad/s.

i -10.0 -9.9 . . . -0.1 0.0 0.1 . . . 10.0

v(i) 1.0e+9 9.3e+8 . . . 20.0 0.0 -20.0 . . . -1.0e+9

TABLE 4.6.3. The discrete voltage-current characteristics.

FIGURE 4.6.3. The flow (current) in time compared with the source
term w(t).

The problem is stiff since the transfer function of the nonlinear resistor is very steep,
making the flow highly convergent, see Figure 4.6.3. However, the flow method
shows proper accuracy (see Figure 4.6.4b) and stability properties, despite the fact
that problem is non-autonomous. �

66 Introduction to the flow method

(a) Discrete voltage-current characteristics
(n = 201)

(b) The global error (h = 0.5)

FIGURE 4.6.4. Numerical results

CHAPTER 5

The flow method based on linear
multistep methods

In this chapter we extend our analysis of the flow method by employing LMMs.
Following the same problem settings as in the previous chapter, we first discuss the
implementation of the method based on LMMs. In Section 5.2 we give a condition
for the flow method to be well-posed. Since we also use interpolation in this im-
plementation, the error involved is given in Section 5.3, where we obtain the local
error estimate. We conclude this chapter with stability properties of the method, see
Section 5.4.

5.1 Method implementation

Consider again the autonomous (scalar) flow problem

(5.1.1)

{
ẋ = u(x),

x(0) ∈ I(x, 0),
which was already introduced in the previous chapter. Again we also assume that
we have a problem of a finite flow, denoted by I(x, t) and that the velocity field u(x)

is Lipschitz continuous and unknown explicitly. We let S = {xk}
n
k=0 to be a set of

points for which u values are given by the set {uk}
n
k=0. We now investigate how to

solve (5.1.1) by the flow method which employs some LMM. Again let xi represent
the approximation of x

(

ti
)

at ti = i h, with h fixed, then the solution point satisfies

(5.1.2)
m∑

l=0

αl x
i−l+1 = h

m∑

l=0

βlu
(

xi−l+1
)

.

Since we are interested in implicit methods only, we assume that β0 6= 0. A par-
ticularly interesting class of methods are BDF methods of various order (m ≤ 6),
which were introduced in 2.5.1. They have good stability properties, which makes
them especially suitable for stiff problems. Moreover, as shown later, they have a
significant advantage over other LMMs, when employed in the flow method. Their
general form is given by

(5.1.3)
m∑

l=0

αl x
i−l+1 = hu

(

xi+1
)

.

68 The flow method based on linear multistep methods

The general LMM (5.1.2) can be reformulated as

(5.1.4) α0 x
i+1 − hβ0 u

(

xi+1
)

=

m∑

l=1

[

−αl x
i−l+1 + hβl u

(

xi−l+1
)]

.

By defining

(5.1.5) si :=

m∑

l=1

[

−αl x
i−l+1 + hβl u

(

xi−l+1
)]

,

we can write (5.1.4) as

(5.1.6) α0 x
i+1 − hβ0 u

(

xi+1
)

= si,

where si is assumed to be known. The expression (5.1.6) represents a nonlinear
equation (a system in the general vectorial case). For the existence and uniqueness
condition of the LMM solution see Theorem 2.5.1. In the reminder of this chapter we
simply assume

(5.1.7) u ′(x) ≤ ν, x ∈ I(x, t),
where u ′(x) represents the first derivative of u w.r.t. x and ν is the scalar analogue
of the one-sided Lipschitz constant in Theorem 2.5.1.

To avoid confusion with the notation we define

(5.1.8) f
(

xi+1
)

:= α0 x
i+1 − hβ0 u

(

xi+1
)

.

Assuming that (5.1.7) holds, the solution of (5.1.6) can formally be obtained by find-
ing the inverse function of f, say g

(

g = f−1
)

. The exact solution of (5.1.6), which we
denote by x̃i+1, is then

(5.1.9) x̃i+1 = g
(

si
)

.

Since obtaining g explicitly is impossible in general, one often computes the approx-
imative solution by employing some iterative method. In particular, for stiff prob-
lems, the iteration needs to be done by the Newton method (see Section 2.7), which is
not straightforward due to the discrete nature of u. Another way is to apply the flow
method, i.e. the inverse interpolation technique similarly as already shown for the
EB method. Again let Ii =

{
xi

j

}µ

j=0
be a sufficiently dense set, obtained by spatially

discretising the flow I
(

x, ti
)

at ti. We let the set S = {xk}
n
k=0 to be time-invariant.

Construction of the flow method based on LMMs is similar to the one introduced for
the Euler Backward method. Hence, let us define

(5.1.10) x̂i+1
k := xi

k = xk.

Since u in (5.1.1) is autonomous, we clearly have

(5.1.11) u
(

x̂i+1
k

)

= u (xk) = uk.

Substituting (5.1.10) into (5.1.8) and using (5.1.11), we have

(5.1.12) fk := f
(

x̂i+1
k

)

= α0 x̂
i+1
k − hβ0 u

(

x̂i+1
k

)

= α0 xk − hβ0 uk.

Since the uk values are known, the set Ŝ = {fk}
n
k=0 can be obtained. This can be used

for defining the inverse interpolation problem, which can be solved by constructing
the interpolation function, say p. The interpolation function is then the approxima-
tion of the inverse function g = f−1. Hence, by defining

Ω̂ :=
{
(fk, xk) | fk ∈ Ŝ, g (fk) = xk, k = 0, . . . , n

}
,

5.1 Method implementation 69

(5.1.13) p (fk) = g (fk) = xk,

and constructing p by some interpolation method, one may obtain the approxima-
tion of the LMM solution x̃i+1. For an arbitrary flow point, the solution at the next
time level follows from

(5.1.14) xi+1
j = p

(

sij
)

,

where sij is given by (5.1.5) for xi = xi
j. For general LMMs computing sij can represent

a problem if u is not given at flow points at previous time levels. This problem can
be overcome by additional (in this case direct) interpolation of points {(xk, uk)}

n
k=0.

Thus obtained approximations of u
(

xi−l+1
j

)

, l = 1, . . . ,m, can be used to deter-

mine sij. Note that the same argument holds for standard LMMs as well. However,
in case of BDF methods, which are of special interest here, there is no need for addi-
tional interpolation. Indeed, now we have

(5.1.15) sij = −

m∑

l=1

αl x
i−l+1
j ,

and since xi−l+1
j values are known, the application of the method is straightforward.

An illustration of the method principle is shown in Figure 5.1.1, where the interpo-
lation function is based on piece-wise linear interpolation. Here the solution at the
next time level reads

(5.1.16) xi+1
j = p

(

sij
)

=
sij − fk

fk+1 − fk
xk+1 +

sij − fk+1

fk − fk+1

xk.

We choose points fk so that fk ≤ sij ≤ fk+1. Assuming that integral curves do not
intersect between time levels ti and ti+1, this yields

(5.1.17) xk ≤ xi+1
j ≤ xk+1.

After substituting (5.1.12) and some reordering, the expression (5.1.16) becomes

(5.1.18) xi+1
j = xk −

α0 xk − sij − hβ0 uk

α0 − hβ0
uk+1−uk

xk+1−xk

,

which is exactly one step of the discrete Newton method with initial values xk and
xk+1. According to (5.1.17), these values are already close to the solution, meaning
that a good accuracy result could be expected. This will be discussed later.

EXAMPLE 5.1.1. To illustrate the efficiency of the flow method, we apply it to the
linear test problem, as we did in the previous chapter. Consider

(5.1.19)

{
ẋ = λ x,

x(0) ∈ I(x, 0),
Since the problem is linear, linear piece-wise interpolation, as defined by (5.1.16),
will yield the full accuracy of the latter. After substituting values for uk into (5.1.18)
and (5.1.5) we have

(5.1.20) xi+1
j =

∑m
l=1 (−αl + hλβl) x

i−l+1
j

α0 − hλβ0

,

which is exactly the same result as one would have obtained by applying standard
LMM. Again the result is as expected since linear interpolation is exact for linear
functions. �

70 The flow method based on linear multistep methods

FIGURE 5.1.1. Inverse interpolation principle

As for the one-step case, the flow method can also be efficiently applied for a class
of non-autonomous problems of the following type

(5.1.21) ẋ = u(x) +w(t).

The method principle remains the same and the solution at the next time point fol-
lows from

(5.1.22) xi+1
j = p

(

sij + hw
(

ti+1
))

.

5.2 Well-posedness

As already mentioned, exact solution curves will not intersect if the velocity field u is
Lipschitz continuous. This property we call well-posedness (cf. 4.3.6). The situation
for LMMs is more complex than for the EB method, since the solution depends also
on values at previous time levels. Hence, starting from any two flow points, say xj

and xj+1, and assuming that the following holds

(5.2.1) xi−l+1
j+1 − xi−l+1

j > 0, l = 1, . . . ,m,

i.e. that intersections did not occur before time level ti, we seek the condition under
which we have

(5.2.2) xi+1
j+1 − xi+1

j > 0.

Applying (5.1.6) for these two flow points, we have

(5.2.3) xi+1
j+1 − xi+1

j =

α0 − hβ0

u
(

xi+1
j+1

)

− u
(

xi+1
j

)

xi+1
j+1 − xi+1

j

−1

(

sij+1 − sij
)

,

where sij and sij+1 are defined by (5.1.5). By using the mean value theorem, we find

(5.2.4)
u
(

xi+1
j+1

)

− u
(

xi+1
j

)

xi+1
j+1 − xi+1

j

= u ′ (η) , η ∈
[

xi+1
j+1, x

i+1
j

]

,

5.2 Well-posedness 71

and (5.2.3) becomes

(5.2.5) xi+1
j+1 − xi+1

j = (α0 − hβ0 u
′(η))

−1 (
sij+1 − sij

)

.

Under the Lipschitz condition and assuming that the existence and uniqueness con-
dition (5.1.7) is satisfied, it is clear that

(5.2.6) α0 − hβ0 u
′(η) > 0.

This means that the condition of the LMM to be well-posed is

(5.2.7) sij+1 − sij > 0.

Substituting (5.1.5) into (5.2.7), this means

(5.2.8)
m∑

l=1

[

−αl

(

xi−l+1
j+1 − xi−l+1

j

)

+ hβl

(

u
(

xi−l+1
j+1

)

− u
(

xi−l+1
j

))]

> 0.

The latter expression can be simplified by using the mean value theorem and by
defining the differences

(5.2.9) ∆xi−l+1
j := xi−l+1

j+1 − xi−l+1
j , l = 1, . . . ,m,

which are all positive under the assumption (5.2.1). Hence (5.2.8) becomes

(5.2.10)
m∑

l=1

(−αl + hβl u
′ (ξl))∆x

i−l+1
j > 0,

where ξl ∈
[

xi−l+1
j , xi−l+1

j+1

]

, l = 1, . . . ,m.

The well-posedness condition may imply constraints on the time step size h (as
shown in the Example below). Since coefficients αl’s and βl’s are having alternating
signs in standard LMMs, it is not easy to judge which methods are more suitable
for solving flow problems. Moreover, in this (general) case the behaviour of u ′(x)
over the flow domain is also playing an important role. The special case of inter-
est, i.e. BDF methods do not have this additional problem. Here the well-posedness
condition is simply

(5.2.11)
m∑

l=1

αl∆x
i−l+1
j < 0.

Since for all BDF methods we have

(5.2.12)

{
αl < 0, for l odd,
αl > 0 for l even,

and since ∆xi−l+1
j > 0, l = 1, . . . ,m, it is clear that BDF methods of odd order (m

odd) have an advantage over BDF methods of even order. This will be illustrated by
the following example.

EXAMPLE 5.2.1. Consider a simple test problem

(5.2.13)

{
ẋ = λ x, λ < 0,

x(0) ∈ I0 = [−0.5, 0.5], I0 =
{
x0

j

}µ

j=0
.

Since λ < 0, the existence and uniqueness conditions are satisfied for ∀x ∈ R and for
every BDF method. If the method of choice is the BDF2 method, (5.2.11) reads

(5.2.14) −2∆xi +
1

2
∆xi−1

j < 0,

72 The flow method based on linear multistep methods

i.e.

(5.2.15) ∆xi
j >

1

4
∆xi−1

j .

For stiff problems the convergent flow may rapidly collapse over a single time step.
This means that the actual factor relating ∆xi

j and ∆xi−1
j can be much smaller than 1

4

and the application of BDF2 with larger time steps will introduce intersections of the
integral curves. Let us now solve (5.2.13) by using BDF2 over a single time step only.
This method requires initial conditions for first two time levels. In this particular
case we know the exact solution, which reads

(5.2.16) xj(t) = x0
j e

λt, j = 0, . . . , µ.

Thus, we will take x1
j = x0

j e
λh. Now, from (5.2.15) we have

(5.2.17) eλh >
1

4
,

i.e.

(5.2.18) h <
log 4
|λ|

.

One should note that (5.2.18) is rather restrictive for |λ| large, which is typically the
case for stiff problems. Hence, if h does not satisfy this condition, the intersections
will occur already after one time step. Surprisingly, the distance of the flow points
does not influence the condition (5.2.18). In other words, no matter how far x0

j and
x0

j+1 are from each other, the intersections will occur if h is not sufficiently small.
On the other hand, by applying BDF3 and exact initial conditions, the condition
equivalent to (5.2.17) after one time step, reads

(5.2.19) 3 e2λh −
3

2
eλh +

1

4
> 0.

It is not difficult to check that (5.2.19) holds for every hλ, implying that intersections
after a single step will not occur no matter how large is h. This, of course, does not
guarantee that intersection will be avoided after several time steps, but clearly shows
why BDF methods of odd order have the advantage over ones of even order. In
Table 5.2.1 the time step constraints for a single computational step is shown for the
whole BDF family. Time step constraints for higher order BDF methods are obtained
numerically.

BDF1 BDF2 BDF3 BDF4 BDF5 BDF6

- h < 1.3863
|λ|

- h < 1.1421
|λ|

- h < 1.0314
|λ|

TABLE 5.2.1. The well-posedness time step constraint of BDF meth-
ods over a single computational step

The numerical solutions obtained BDF2 and BDF3 for λ = −20 and h = 0.1 are
shown in Figure 5.2.1. Since for the BDF2 method the well-posedness condition is
not satisfied (h is not sufficiently small), intersections occur already after one step.
On the other hand, this is not the case for the BDF3 method. �

5.2 Well-posedness 73

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

t

x(t)

(a) BDF2

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

t

x(t)

(b) BDF3

FIGURE 5.2.1. Flow obtained by BDF methods

The flow method based on LMMs should follow the same pattern as described above.
However, the influence of the interpolation involved may be significant, especially
for stiff problems. To illustrate this, a special case of the flow method based on the
piece-wise linear interpolation will be analysed. Starting from (5.1.18) and introduc-
ing the notation

∆xk :=xk+1 − xk,

∆uk :=uk+1 − uk,(5.2.20)

we find that the solution at the next time point satisfies

(5.2.21)
(

α0 − hβ0

∆uk

∆xk

)

xi+1
j = sij + hβ0

(

uk − xk

∆uk

∆xk

)

.

Clearly (5.1.17) also holds (from the interpolation principle). Now, let the following
flow point be between different two points, i.e. let xi+1

j+1 ∈ [xq, xq+1]. Then xi+1
j+1

satisfies

(5.2.22)
(

α0 − hβ0

∆uq

∆xq

)

xi+1
j+1 = sij+1 + hβ0

(

uq − xq

∆uq

∆xq

)

.

Subtracting the left-hand sides of (5.2.21) and (5.2.22) yields
(

α0 − hβ0

∆uq

∆xq

)

xi+1
j+1−

(

α0 − hβ0

∆uk

∆xk

)

xi+1
j

= α0

(

xi+1
j+1 − xi+1

j

)

−hβ0

(

xi+1
j+1

∆uq

∆xq

− xi+1
j

∆uk

∆xk

)

.(5.2.23)

We may simplify (5.2.23) by assuming that the set S is sufficiently dense, i.e. that∆xk

and ∆xq are relatively small, such that

∆uk

∆xk

.
=u ′

(

xi+1
j

)

,

∆uq

∆xq

.
=u ′

(

xi+1
j+1

)

.(5.2.24)

Although this approximation seems a little bit crude, it does not influence the anal-
ysis about the well-posedness problem. Especially since (5.1.17) holds. Substituting

74 The flow method based on linear multistep methods

(5.2.24) into (5.2.23), we have

α0

(

xi+1
j+1 − xi+1

j

)

−hβ0

(

xi+1
j+1 u

′
(

xi+1
j+1

)

− xi+1
j u ′

(

xi+1
j

))

=
(

xi+1
j+1 − xi+1

j

)

α0 − hβ0

G
(

xi+1
j+1

)

−G
(

xi+1
j

)

xi+1
j+1 − xi+1

j

 ,(5.2.25)

where the function G(x) is defined by

(5.2.26) G(x) := xu ′(x),

with the first derivative

(5.2.27) G ′(x) = u ′(x) + xu ′′(x).

From (5.2.25), (5.2.26) and (5.2.27) and by applying the mean value theorem, we have
(

xi+1
j+1 − xi+1

j

)

(α0 − hβ0G
′(η))

=
(

xi+1
j+1 − xi+1

j

)

(α0 − hβ0 u
′(η) − hβ0 ηu

′′(η)) ,(5.2.28)

where η ∈
[

xi+1
j , xi+1

j+1

]

. Now from (5.2.21), (5.2.22) and (5.2.28) it follows

xi+1
j+1 − xi+1

j = (α0 − hβ0 u
′(η) − hβ0 ηu

′′(η))
−1 [

sij+1 − sij

+hβ0

(

uq − uk −

(

xq

∆uq

∆xq

− xk

∆uk

∆xk

))]

.(5.2.29)

Defining the function H(x) as

(5.2.30) H(x) := u(x) − xu ′(x),

which has the first derivative

(5.2.31) H ′(x) = −xu ′′(x),

we may write

(5.2.32) H (xq) −H (xk) = u (xq) − u (xk) − (xq u
′ (xq) − xk u (xk)) .

Again we assume that ∆xk and ∆xq are relatively small, such that we may use the
approximation

∆uk

∆xk

.
=u ′ (xk) ,

∆uq

∆xq

.
=u ′ (xq) .(5.2.33)

Substituting (5.2.31), (5.2.32) and (5.2.33) into (5.2.29), the well-posedness condition
of the flow method reads

xi+1
j+1 − xi+1

j = (α0 − hβ0 u
′(η) − hβ0 ηu

′′(η))
−1 [

sij+1 − sij
]

− hβ0 (xq − xk) (α0 − hβ0 u
′(η) − hβ0 ηu

′′(η))
−1
ξu ′′(ξ),(5.2.34)

where

(5.2.35) xk ≤ xi+1
j ≤ ξ, η ≤ xi+1

j+1 ≤ xq+1.

Comparing (5.2.34) and (5.2.5), it is clear that the well-posedness condition of the
flow method is close to one of the related LMM. Basically the flow method will most
likely behave like the standard LMM and, thus, similar arguments hold. However,
in (5.2.34) some additional terms are present, which are related to the derivatives of

5.3 Error analysis 75

u. This means that for stiff problems, where these derivatives are typically large,
the additional terms may come into play and, thus significantly change the well-
posedness condition. From (5.2.6) and assuming

(5.2.36) α0 − hβ0 u
′(η) − hβ0 ηu

′′(η) > 0,

the first part on the right-hand side of (5.2.34) is actually equivalent to (5.2.5). Hence,
observing the second part, assuming (5.2.36) and β0 > 0, one should note that the
well-posedness condition of the flow method is less severe than the related one of
LMM if

(5.2.37) xu ′′(x) < 0, x ∈ [xk, xq+1] .

On the other hand, for xu ′′(x) > 0, the right-hand side of (5.2.34) becomes smaller
than (5.2.5), i.e. (5.2.34) is more severe than (5.2.5).

5.3 Error analysis

Naturally the accuracy of the flow method depends on the accuracy of standard
LMMs. However, since (5.1.6) is basically solved by the interpolation technique,
there is an additional error coming from interpolation, as shown in the previous
chapter. Again to show this we analyse the local error, say δ. The local error of a
particular flow point xj is defined as

(5.3.1) δ
(

xj

(

ti+1
)

, h
)

:=
1

h

∣

∣

∣xj

(

ti+1
)

− xi+1
j

∣

∣

∣ .

Here xj

(

ti+1
)

represents the value of the exact solution curve and xi+1
j is the nu-

merical solution obtained by the flow method assuming xj

(

ti−l+1
)

= xi−l+1
j , l =

1, . . . ,m. The numerical solution of the standard LMM is assumed to be the ex-
act solution of the nonlinear equation (5.1.6), which we denote by x̃i+1

j . Hence by
adding and subtracting x̃i+1

j in (5.3.1), we have
(5.3.2)

δ (·, h) ≤ 1

h

∣

∣

∣
xj

(

ti+1
)

− x̃i+1
j

∣

∣

∣
+
1

h

∣

∣

∣
x̃i+1

j − xi+1
j

∣

∣

∣
=: dh

(

xj

(

ti+1
))

+ rh
(

xj

(

ti+1
))

.

Here dh(·) represents the local discretisation error of the standard LMM and r(·) is
the interpolation error. As shown in Section 2.5, we have

(5.3.3) dh

(

xj

(

ti+1
))

= Chp x(p+1)
(

ti+1
)

+O
(

hp+1
)

,

where C is the error constant that depends on the method and p is the consistency
order of the LMM. For example, for BDF methods p = m, i.e. we have dh = O (hm).
The more interesting part of the local error is the interpolation error. It depends on
the available data, the nature of the velocity field u and on the interpolation method
involved. To illustrate this, let us find the local error of the flow method based on
piece-wise linear interpolation.

Starting from (5.3.1) and substituting (5.1.18), with notation (5.2.20), we have

hδ (·, h) =

∣

∣

∣

∣

∣

∣

xj

(

ti+1
)

−
sij + hβ0

(

uk − xk
∆uk

∆xk

)

α0 − hβ0
∆uk

∆xk

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

α0 xj

(

ti+1
)

− sij − hβ0 uk − hβ0

(

xj

(

ti+1
)

− xk

)

∆uk

∆xk

α0 − hβ0
∆uk

∆xk

∣

∣

∣

∣

∣

.(5.3.4)

76 The flow method based on linear multistep methods

Adding and subtracting the term hβ0 u
(

xj

(

ti+1
))

in the numerator, the local error
satisfies

δ (·, h) ≤ 1

h

∣

∣

∣

∣

∣

α0 xj

(

ti+1
)

− hβ0 u
(

xj

(

ti+1
))

− sij

α0 − hβ0
∆uk

∆xk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

β0

[

u
(

xj

(

ti+1
))

− uk −
(

xj

(

ti+1
)

− xk

)

∆uk

∆xk

]

α0 − hβ0
∆uk

∆xk

∣

∣

∣

∣

∣

∣

.(5.3.5)

Recalling that sij is defined by (5.1.5) and that xj

(

ti−l+1
)

= xi−l+1
j , l = 1, . . . ,m, the

first expression on the right-hand side of (5.3.5) is actually very close to dh(·), i.e. the
local discretisation error of LMM. The only (small) difference is in the denominator.
However, since

(5.3.6) xk ≤ xi+1
j ≤ xk+1,

and by applying the mean value theorem, we have

(5.3.7) α0 − hβ0

∆uk

∆xk

= α0 − hβ0 u
′(η), xk ≤ η ≤ xk+1.

Hence by assuming that ∆xk is relatively small, we may adopt that the first expres-
sion on the right-hand side of (5.3.5) is O (hp). The second expression is, of course,
the interpolation error for which we have
(5.3.8)

rh(·) =
∣

∣

∣β0 (α0 − hβ0 u
′(η))

−1
∣

∣

∣

∣

∣

∣

∣

u
(

xj

(

ti+1
))

− uk −
(

xj

(

ti+1
)

− xk

) ∆uk

∆xk

∣

∣

∣

∣

.

Let us denote the second term on the right-hand side of (5.3.8) by r̃(·), i.e.

(5.3.9) r̃(·) := u
(

xj

(

ti+1
))

− uk −
(

xj

(

ti+1
)

− xk

) ∆uk

∆xk

.

Taylor expansions of ∆uk

∆xk
and u

(

xj

(

ti+1
))

around xk read

(5.3.10)
∆uk

∆xk

= u ′ (xk) +
∆xk

2
u ′′ (xk) +O

(

∆x2
k

)

,

and

u
(

xj

(

ti+1
))

=u (xk) +
(

xj

(

ti+1
)

− xk

)

u ′ (xk)

+
1

2

(

xj

(

ti+1
)

− xk

)2
u ′′ (xk) +O

(

(

xj

(

ti+1
)

− xk

)3
)

.(5.3.11)

The order of
(

xj

(

ti+1
)

− xk

)

can be related to ∆xk by the following

(5.3.12) xj

(

ti+1
)

− xk = xi+1
j − xk + hδ(·, h) ≤ ∆xk + hδ(·, h).

Assuming that ∆xk > hδ(·, h), which can always be achieved for h small enough,
we have

(5.3.13) O
((

xj

(

ti+1
)

− xk

))

= O (∆xk) .

Hence, by substituting (5.3.10) and (5.3.11) into (5.3.9), and neglecting higher order
terms, we obtain

(5.3.14) r̃(·) =
1

2

(

xj

(

ti+1
)

− xk

) (

xj

(

ti+1
)

− xk+1

)

u ′′ (xk) .

5.4 Stability 77

Substituting this into (5.3.8), the interpolation error reads
(5.3.15)

rh(·) =

∣

∣

∣

∣

β0

2
(α0 − hβ0 u

′(η))
−1

∣

∣

∣

∣

∣

∣

(

xj

(

ti+1
)

− xk

) (

xj

(

ti+1
)

− xk+1

)

u ′′ (xk)
∣

∣ .

If xj

(

ti+1
)

∈ [xk, xk+1], we find the error bound of inverse linear interpolation

(5.3.16) rh(·) ≤ ∆x2
k

8

∣

∣

∣β0 (α0 − hβ0 u
′(η))

−1
u ′′ (xk)

∣

∣

∣ .

According to (5.3.2), (5.3.3) and (5.3.16), the local error of the flow method isO (hp)+

O
(

∆x2
k

)

. If both errors are of the same order, the flow method has the same accuracy
as standard LMM. To achieve this, the spatial step size ∆xk should beO

(

h
p
2

)

. Hence
for higher order LMMs, i.e. p large, and h relatively small, we need larger numbers
of data points. Of course, higher order interpolation would do a better job and, thus,
overcome this problem. To illustrate this let us solve the following example.

EXAMPLE 5.3.1. Consider the flow problem

(5.3.17)

{
ẋ = − arctan(10 x) + cos t,
x(0) ∈ I0 = [−1, 1].

Let us solve this problem by applying the flow method, based on BDF methods of
various orderm = 1, . . . , 5 and various types of interpolation. We denote these meth-
ods by FBDFm. Instead of using (in this particular case) the known autonomous
part u of the velocity field, we first discretise I0 by n equidistant points and obtain
a set of pairs {(xk, uk)}

n
k=0, which then we use in our implementation. In the first

experiment we choose piece-wise linear interpolation. For n = 200, i.e. ∆x = 0.01,
the results are shown in Figure 5.3.1a. Since ∆x is not sufficiently small (for higher
order BDF methods), the interpolation error is dominant and the accuracy cannot be
increased by employing a BDF method of the higher order. The situation is some-
what better if we decrease the spatial step, say by a factor of 10, see Figure 5.3.1b.
However, for h relatively small and m ≥ 4, we encounter the same accuracy prob-
lem. Clearly, the interpolation error represents a sort of accuracy threshold. Only if
we take a sufficiently small spatial step, e.g. ∆x = 0.0001, we can obtain the full ac-
curacy of all BDF methods, see Figure 5.3.1c. Rather than decreasing ∆x, we clearly
achieve better accuracy by employing higher order interpolation. For example, if
we choose piece-wise cubic interpolation, errors are almost identical to ones of the
standard BDF methods even for relatively large spatial steps, see Figure 5.3.1d. �

5.4 Stability

The stability of the general LMM is usually addressed by computing the stability
domain of the method. Once obtained (see 2.5.2), it can be used to determine does
the method satisfy some of the stability properties, such as A, A(α) or L-stability.
In the Example 5.1.1 it was shown that the flow method (based on piece-wise linear
interpolation) gives exactly the same result as the standard LMM. This leads to a
conclusion that the flow method has the same stability domain as the standard LMM
on which the flow method is based. Hence, the flow method isA-stable if the related
LMM is A−stable. The same analogy can be made for A(α)-stable LMMs.

As mentioned before, the most popular choice of LMMs for solving stiff problems
are BDF methods. Hence, it is natural to believe that the flow method based on BDF

78 The flow method based on linear multistep methods

0 0.02 0.04 0.06 0.08 0.1
10−5

10−4

10−3

10−2

h

||
e|

|

FBDF1
FBDF2
FBDF3
FBDF4
FBDF5

(a) Piece-wise linear (∆x = 0.01)

0 0.02 0.04 0.06 0.08 0.1
10−7

10−6

10−5

10−4

10−3

10−2

h

||
e|

|

FBDF1
FBDF2
FBDF3
FBDF4
FBDF5

(b) Piece-wise linear (∆x = 0.001)

0 0.02 0.04 0.06 0.08 0.1
10−7

10−6

10−5

10−4

10−3

10−2

||
e|

|

h

FBDF1
FBDF2
FBDF3
FBDF4
FBDF5

(c) Piece-wise linear (∆x = 0.0001)

0 0.02 0.04 0.06 0.08 0.1
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

h

||
e|

|

FBDF1
FBDF2
FBDF3
FBDF4
FBDF5

(d) Piece-wise cubic (∆x = 0.01)

FIGURE 5.3.1. The error of the flow method

methods will have similar stability properties, also in the general nonlinear case. Let
us first analyse how the numerical solution of the flow method behaves for a stiff
problem. From (5.1.18) and (5.1.15) we have

(5.4.1) xi+1
j =

−
∑m

l=1 αl x
i−l+1
j + h

(

uk − xk
∆uk

∆xk

)

α0 − h ∆uk

∆xk

.

Supposing that |hu ′(x)| is very large for x ∈ I(x, t), which is typically true for stiff
problems, the expression (5.4.1) becomes

(5.4.2) xi+1
j = xk −

uk

∆uk

∆xk

.

This is actually one step of the discrete Newton method applied to the equation

(5.4.3) u(x) = 0,

with initial values xk and xk+1. Hence, assuming the Newton method to be conver-
gent, all solution points rapidly move toward stationary points of the ODE (5.1.1),
as they should. In particular, for a convergent flow, where u ′(x) < 0, x ∈ I(x, t),
the flow of numerical solutions converges quickly and the numerical solutions are
stable. One should note that this argument does not hold for the general LMM.
Here one should replace (5.1.15) by (5.1.5), introducing u-values in the numerator of
(5.4.1). Hence (5.4.1) is not necessarily equivalent to (5.4.2) for a stiff problem. This

5.4 Stability 79

means that the solution of the flow method based on an LMM that is not (at least)
A(α)-stable (e.g. Adams method) would most likely be unstable.

The global error of the particular flow point is defined by

(5.4.4) ei :=
∣

∣xj

(

ti
)

− xi
j

∣

∣ .

For problems where u satisfies a Lipschitz condition, it is known (see e.g. [24]) that
the global error of the numerical solution can be related to the local error. In the
previous section it was shown that the local error of the flow method consists of two
components: the local discretisation error and the interpolation error. Hence we can
obtain the global error bound as
(5.4.5)

ei ≤ K1

(

max
0≤ν<m

∣

∣xj (tν) − xν
j

∣

∣+ h max
0≤ν<m

∣

∣ẋj (tν) − u
(

xν
j

)∣

∣

)

+ K2 h
p + K3 ∆x

q
k ,

where p represents the consistency order of the LMM involved and q the order of
accuracy of the applied interpolation method. The constant K1 depends on the type
of LMM involved, K2 on bounds for x(p+1)

j (t) and K3 on bounds for u(q)(x). Clearly
by controlling the interpolation error, the flow method convergence behaviour is
similar to that of the related LMM.

CHAPTER 6

The flow method based on
Runge-Kutta methods

This chapter is devoted to the implementation of implicit Runge-Kutta (IRK) schemes
in the flow method. Like in the previous two chapters we consider the same problem
settings. Since IRK schemes are more involved than LMMs, we first discuss how to
implement IRK methods in the flow method. In Section 6.2 we give conditions for
the method to be well-posed. We conclude this chapter by an error analysis and
discuss stability properties of the method in Section 6.3 and Section 6.4 respectively.

6.1 Method implementation

Again we consider the flow problem

(6.1.1)

{
ẋ = u(x),

x(0) ∈ I(x, 0),

with a discrete velocity field u(x), given by a set of pairs {(xk, uk)}
n
k=0. For simplicity,

we assume points xk, k = 0, . . . , n to be equidistant, i.e. for some given step-size ∆x
we have

(6.1.2) xk = x0 + k∆x, k = 0, . . . , n.

Now we discuss how can we employ IRK (Implicit Runge-Kutta) methods in the
flow method. To this end consider the Butcher matrix

c1 a11 · · · a1s

...
...

cs as1 ass

b1 bs

,

which corresponds to the system of equations

(6.1.3) xi+1 = xi + h

s∑

l=1

bl u
(

yil
)

,

82 The flow method based on Runge-Kutta methods

(6.1.4) yil = xi + h

s∑

q=1

alq u
(

yil
)

.

Here yil, l = 1, . . . , s, denote inner-stages of the IRK method. Basically they repre-
sent numerical approximations of the solution at time points ti + cl h, l = 1, . . . , s.
Rewriting (6.1.4) in vector form, we have the s−dimensional system

(6.1.5)

yi1

...
yis

− h

a11 · · · a1s

...
as1 ass

u
(

yi1
)

...
u
(

yis
)

= xi

1
...
1

.

By defining yi :=
[

yi1 · · · yis
]T

, A := {aij}s×s
, e :=

[

1 · · · 1
]T and

(6.1.6) u
(

yi
)

:=
[

u
(

yi1
)

· · · u
(

yis
)]T

,

the system (6.1.5) can be written as

(6.1.7) yi − hA u
(

yi
)

= xi e.

This system needs to be solved at every time level and for all flow points. Defining
a vectorial function f by

(6.1.8) f
(

yi
)

:= yi − hA u
(

yi
)

,

it is clear that the value of yi follows from the inverse function of f, say g, at point
xi e, i.e.

(6.1.9) yi = g
(

xi e
)

:= f−1
(

xi e
)

.

Since g cannot be found explicitly in general and since u (and thus consequently u)
is only known discretely, the implementation of IRK methods is not straightforward.
However, we can employ the main idea of the flow method, i.e. inverse interpola-
tion, in order to find an approximation of the inverse function. The main difference
with preceding chapters is that the interpolation function, say p, is now a vectorial
and multivariate function, i.e. the solution of inner-stage values is obtained from

(6.1.10) yi = p
(

xi e
)

.

This vectorial function problem can be simplified if the employed IRK method has
cs = 1, i.e. if the following holds

(6.1.11) xi+1 = yis.

In this case one needs to obtain only a scalar multivariate function ps(x) and the
solution at the next time level follows from

(6.1.12) xi+1 = ps

(

xi e
)

.

There is another important advantage of methods which have cs = 1. If cs 6= 1, one
needs to compute xi+1 by using (6.1.3), for which the values of u

(

yil
)

, l = 1, . . . , s

are required. Since u(x) is not known explicitly, this implies that these values need to
be approximated as well, which will introduce additional errors and computational
costs.

There is also an alternative approach, i.e. to reformulate the method by increasing
the number of stages and setting cs+1 = 1. The reformulated method is then

6.1 Method implementation 83

c1 a11 · · · a1s 0
...

...
cs as1 ass 0

1 b1 bs 0

b1 bs 0

Although the implementation problem is overcome this way, one should note that
the matrix A is now significantly changed. Fortunately there exists a number of
methods which have cs = 1 such as Radau IIA, Lobatto IIIA, Lobatto IIIB and Lo-
batto IIIC (see Section 2.6). In this chapter we pay special attention to them, since
they are frequently used for solving stiff problems (see e.g. [24], [10], etc.).

The flow method based on the standard IRK method can be constructed as follows.
Since the nonlinear system to be solved is s−dimensional, we first need to create
an s−dimensional grid, which has function values known at all nodes. By letting
yil, l = 1, . . . , s to be independent variables in Rs, we can define a point, say y, of
such a space by the vector

(6.1.13) y :=
[

y1 · · · ys
]T
.

According to (6.1.8) we need to find a set of points, say {yK}K, for which f (yK) can
be computed. Hence we employ the known scalar data set, i.e. the set {(xk, uk)}

n
k=0

and create a set of s−dimensional points {yK}
s (n+1)

K=1 , as follows

y1 =
[

x0 x0 · · · x0

]T
,

y2 =
[

x0 x0 · · · x1

]T
,

...

ys (n+1) =
[

xn xn · · · xn

]T
.(6.1.14)

Thus obtained points can be used for creating a grid (e.g. by triangulation). The
convex hull of such a grid is denoted by Γ and we naturally have yK ∈ Γ ⊂ Rs. A
two-dimensional example is illustrated in Figure 6.1.1a.

Clearly from (6.1.5) and (6.1.8) it follows that we can compute f (yK) for every yK

defined by (6.1.14). This means that we can map the original grid onto a new grid,
defined by points

(6.1.15) fK := yK − hA u (yK) .

Of course, we now have a new convex hull, say Γ̂ , defined by points fK. In Fig-
ure 6.1.1b a two-dimensional example is shown, where the original grid (shown
in Figure 6.1.1a) is mapped by (6.1.15), where A is determined by the chosen IRK
method.

The approximation function p can be found by interpolating points {(fK, yK)}
s (n+1)

k=1

and requiring p (fK) = yK, K = 1, . . . , s (n + 1), i.e. ps (fK) = ys
K for methods where

cs = 1. Obviously the interpolation problem which arises here for the scalar problem
(6.1.1) is closely related to general vectorial problems, which we analyse in the fol-
lowing chapter. However, there is one important difference. The vectorial function
u, defined by (6.1.6), has univariate functions as elements instead of multivariate
ones as in general vectorial problems. This is of importance (as shown later) for the
analysis of the method properties.

84 The flow method based on Runge-Kutta methods

y i1

y i2

Γ

x
0
 x

1
 x

n

x
0

x
1

x
n

(a) Original grid

f i1

f i2

Γ

(b) Mapped grid

FIGURE 6.1.1. Mapping of the grid for two-stage IRK method

An important class of IRK methods are so-called DIRK (Diagonally Implicit Runge-
Kutta) methods, which were introduced in Chapter 2 and defined by

c1 a11 0 · · · 0

c2 a21 a22 0
...

...
cs as1 as2 ass

b1 b2 bs

There are two possible ways for solving (6.1.7). The first one, of course, is to apply
the algorithm for the general IRK method, introduced above. An alternative way is
to apply the univariate interpolation s−times, i.e. to find approximations of inverse
scalar functions for each inner-stage. Rewriting the equation for the first inner-stage,
we have

(6.1.16) yi1 − ha11 u
(

yi1
)

= xi.

One should note that this is almost identical (with a modified time-step h̃ = a11 h) to
the Euler Backward method and it can be employed as shown in Chapter 4. Hence
we can obtain p1(x) and compute yi1 by

(6.1.17) yi1 = p1

(

xi
)

.

The second inner-stage value then follows from

(6.1.18) yi2 − ha22 u
(

yi2
)

= xi + ha21 u
(

yi1
)

,

and the solution is obtained by

(6.1.19) yi2 = p2

(

xi + ha21 u
(

yi1
))

.

Obviously an additional problem arises here. Since we do not know u explicitly, we
cannot compute the value of u

(

yi1
)

directly. Hence it needs to be approximated
(e.g. by direct interpolation). The same problem is present in computing values of
all following stages, where we have one extra evaluation to perform per each inner-
stage. Finally, for the last stage we have

(6.1.20) yis − hass u
(

yis
)

= xi + h

s−1∑

q=1

asq u
(

yiq
)

.

6.2 Well-posedness 85

Clearly to obtain the solution one needs s−times additional direct interpolation eval-
uations (in case cs 6= 1, otherwise s−1), plus s−times univariate inverse interpolation
evaluation.

As seen in previous chapters, the flow method can also be efficiently applied to a
class of non-autonomous ODEs of the following type

(6.1.21) ẋ = u(x) +w(t).

The same holds for the flow method that employs IRK methods. Here the interpo-
lation principle remains the same, but since t is explicitly present on the right-hand
side of (6.1.21), coefficients cl, l = 1, . . . , s are coming into play. Now one needs to
modify the nonlinear system (6.1.7) to

(6.1.22) yi − hA u
(

yi
)

= xi e + hA w
(

ti
)

,

where

(6.1.23) w
(

ti
)

:=
[

w
(

ti + c1 h
)

. . . w
(

ti + cs h
)]

.

The solution at the next time level then follows from

(6.1.24) xi+1 = ps

(

xi e + hA w
(

ti
))

.

6.2 Well-posedness

As shown in previous chapters, the well-posedness is an important issue in solving
flow problems. Some methods, in particular BDF methods of even order, posed
severe constraints for the time-step in order to avoid intersections of integral curves.
In this section we analyse the behaviour of the flow method employing IRK methods.
Since the approach, introduced in the previous section, uses interpolation in higher
dimensional space, we distinguish two aspects, namely:

(1) Topology preservation in space, i.e. conditions for the preservation of the
grid orientation.

(2) Topology preservation in time, i.e. the absence of the intersections of the
integral curves. We keep the name well-posedness associated to this aspect
like in previous chapters.

Both aspects are analysed in following two subsections.

6.2.1 Topology preservation in space

The property is closely related to the nonlinear mapping of the original (generated)
grid, defined by (6.1.14), into the new grid. Starting from the linear test problem

(6.2.1) ẋ = λ x, λ < 0,

and recalling (6.1.15), the new grid points are defined by

(6.2.2) fK := f (xK) = (Is − hλA) xK,

where Is is the identity matrix of order s. As shown in Chapter 6, the grid orientation
is preserved if

(6.2.3) detDf > 0.

Here, we have

(6.2.4) detDf = det (Is − hλA) .

86 The flow method based on Runge-Kutta methods

The determinant of Df is equal to the product of its eigenvalues, say ξl, l = 1, . . . , s.
Assuming that all ξl are real, the determinant detDf is necessarily positive if the real
eigenvalues of A, say ηl, l = 1, . . . , s, are positive. Indeed, starting from

(6.2.5) A x = ηl x,

it is easy to show that

(6.2.6) (Is − hλA) x = x − hλA x = (1− hληl) x.

This means that the eigenvalues of Df are defined by ξl = 1 − hληl, l = 1, . . . , s.
Obviously, since λ < 0 and ηl > 0, all real eigenvalues ofDf are positive, i.e. we have
1 − hληl > 0 and consequently detDf > 0. The same conclusion also holds if some
eigenvalues are complex. Since A is a real matrix, clearly all complex eigenvalues
ηl are present as complex conjugate pairs, which means that their product is always
positive. For example, for arbitrary ηl ∈ C we have another eigenvalue (conjugate
pair), say ηl+1 = η∗l and their product is then

(6.2.7) ηl ηl+1 = |ηl|
2
> 0.

Of course, the same also holds for the corresponding pair ξl, ξl+1. Hence one should
note that complex eigenvalues do not change sign of detDf.

In the general nonlinear case, where Du cannot be expressed as a constant times the
identity matrix, the positivity of detDf is not guaranteed, not even by employing
certain properties of the matrix A, coming from the principles of creating standard
IRK methods. The eigenvalues of Df are now related to the eigenvalues, say µl, l =

1, . . . , s, of the matrix, say

(6.2.8) M := −ADu.

The corresponding Jacobian matrix of f is then

(6.2.9) Df = Is + hM,

and we can draw similar conclusions concerning relations between ξl and corre-
sponding µl, as we did in the linear case. Hence, the topology is necessarily pre-
served if all real eigenvalues µl are non-negative. To show the relation between this
condition and the properties of the matrix A, we will now analyse the implemen-
tation of IRK methods with a relatively small number of stages (s = 2, 3, 4) and
assume that

(6.2.10) u ′(x) < 0,

holds on the entire domain of interest.

Let us start with two-stage IRK methods, for which the matrix M is

(6.2.11) M =

[

a11 a12

a21 a22

] [

d1 0

0 d2

]

,

where d1 and d2 are the eigenvalues of the matrix [−Du]. Since we assume that
(6.2.10) holds, they are both positive, i.e. d1, d2 > 0.

THEOREM 6.2.1. Let the IRK method have 2 stages and let d1, d2 > 0. If

all ≥ 0, l = 1, 2,

det A ≥ 0,(6.2.12)

the real eigenvalues of the matrix M are non-negative.

6.2 Well-posedness 87

PROOF. By obtaining the characteristic polynomial of M, say P (µ), by

(6.2.13) P (µ) := det (µ Is − M) ,

and comparing with

(6.2.14) P (µ) = (µ − µ1) (µ − µ2) ,

one can obtain the following system of equation

µ1 + µ2 = d1 a11 + d2 a22,

µ1 µ2 = d1 d2 det A.(6.2.15)

Applying the assumption (6.2.12), we have that the eigenvalues µ1 and µ2, defined
by the system (6.2.15), satisfy

µ1 + µ2 ≥ 0,
µ1 µ2 ≥ 0.(6.2.16)

Since we assumed that µ1 and µ2 are real, it is obvious that they are non-negative.
�

In order to obtain conditions for the eigenvalues µl to be non-negative for the three-
stage IRK method, we may use the same approach.

THEOREM 6.2.2. Let the IRK method have 3 stages and let the eigenvalues of Du satisfy
d1, d2, d3 > 0. If

all ≥ 0,
All ≥ 0, l = 1, 2, 3,

det A ≥ 0,(6.2.17)

where All, l = 1, 2, 3, are two-by-two minors of A related to diagonal elements all, l =

1, 2, 3, respectively, the real eigenvalues of the matrix M are non-negative.

PROOF. Repeating the procedure from the previous proof, one can obtain the
system which corresponds to (6.2.15) as

µ1 + µ2 + µ3 = d1 a11 + d2 a22 + d3 a33,

µ1 µ2 + µ1 µ3 + µ2 µ3 = d1 d2A33 + d1 d3A22 + d2 d3A11,

µ1 µ2 µ3 = d1 d2 d3 det A,(6.2.18)

Assuming (6.2.17) the left-hand side of the system (6.2.18) satisfy

µ1 + µ2 + µ3 ≥ 0,(6.2.19)

µ1 µ2 + µ1 µ3 + µ2 µ3 ≥ 0,(6.2.20)
µ1 µ2 µ3 ≥ 0.(6.2.21)

Since all eigenvalues are assumed to be real, it can be shown that (6.2.19-6.2.21) holds
if and only if µ1, µ2, µ3 ≥ 0. Let us suppose the opposite, i.e. assume that some
eigenvalues are negative. Clearly, from (6.2.21) it follows that at least one eigen-
value, say µ1, needs to be non-negative. One should note that a situation where one
eigenvalue is equal to zero, reduces the system to the form (6.2.16), for which we saw
that holds only if both remaining eigenvalues are non-negative. Hence we take the
other two to be strictly negative. From (6.2.19) we have

(6.2.22) µ1 ≥ −µ2 − µ3.

88 The flow method based on Runge-Kutta methods

Rewriting (6.2.20) and employing (6.2.22) gives

(6.2.23) µ2 µ3 ≥ µ1 (−µ2 − µ3) ≥ (−µ2 − µ3)
2
.

This finally leads to a condition

(6.2.24) µ2
2 + µ2 µ3 + µ2

3 ≤ 0,
which holds only if µ2 = µ3 = 0 and it is a contradiction to the assumption that
µ2 and µ3 are strictly negative. Hence the system (6.2.18) has a solution only if all
eigenvalues are non-negative. �

Following the same approach, it can shown that the similar result can be found for
the four-stage IRK methods, as shown by the following theorem which we give with-
out proof.

THEOREM 6.2.3. Let the IRK method have 4 stages and let the eigenvalues of Du satisfy
d1, d2, d3, d4 > 0. If

all ≥ 0,
All ≥ 0, l = 1, 2, 3, 4

αlm ≥ 0, l = 1, 2, 3, m = l + 1, . . . , 4,

det A ≥ 0,(6.2.25)

where All, l = 1, 2, 3, 4, are 3-by-3 minors of A related to diagonal elements all, l =

1, 2, 3, 4, respectively, and αlm are 2-by-2 minors of A defined by

(6.2.26) αlm =

∣

∣

∣

∣

all alm

aml amm

∣

∣

∣

∣

,

then the real eigenvalues of the matrix M are non-negative.

The condition for the topology preservation in space, given by (6.2.3) is equivalent
to the condition that the real eigenvalues of M are non-negative, as shown by the
following.

COROLLARY 6.2.4. If the real eigenvalues of the matrix M are non-negative, then the Jaco-
bian of the matrixDf is strictly positive.

PROOF. From (6.2.9) we clearly have

(6.2.27) ξl = 1 + hµl,

and since the real µl is non-negative, the corresponding ξl is strictly positive. Of
course, since all real ξl are positive, it follows that Df > 0. �

Conditions (6.2.12), (6.2.17) and (6.2.25) hold for a number of important IRK meth-
ods, such as Gauss and the whole Radau and Lobatto families, making all of them
suitable candidates concerning the topology preserving property. To illustrate this,
we consider these three-stage IRK methods and show the values of determinants
and relevant minors present in (6.2.17), see Table 6.2.1. One should note that all
determinants and relevant minors are non-negative.

6.2 Well-posedness 89

Method Gauss Rad. IA Rad. IIA Lob. IIIA Lob. IIIB Lob. IIIC

det A 0.0083 0.0167 0.0167 0 0 0.0417

A11 0.0417 0.0833 0.0537 0.0833 0 0.1250

A22 0.0167 0.0129 0.0129 0 0 0

A33 0.0417 0.0537 0.0833 0 0.0833 0.1250

TABLE 6.2.1. Determinants and minors of three-stage IRK methods

If the method of choice is a DIRK method, the condition for topology preservation
is simpler for multivariate interpolation. Here we have that the eigenvalues ξl, l =

1, . . . , s, that correspond to the matrixDf are determined by

(6.2.28) ξl = 1 + hall dl, l = 1, . . . , s.

This follows from the fact that the eigenvalues of M are µl = all dl, which is a
consequence of A being triangular matrix. Assuming (6.2.10) again, it is clear that
ξl > 0 if

(6.2.29) all > 0, l =, . . . , s.

Hence the condition (6.2.29) represents the topology preservation condition for DIRK
methods. Typically this holds for all DIRK methods of interest, implying that one
should not expect problems in their implementation.

6.2.2 Topology preservation in time

As before the well-posedness property of the method can be formulated as the con-
dition that guarantees the absence of intersections between integral curves of flow
points during the integration time whenever u is Lipschitz continuous. It can be sim-
plified by observing the behaviour of the solution points over a single time-step and
then generalised by requiring that it holds for the whole integration interval, i.e. for
each time-step. As shown below, the well-posedness condition is related to proper-
ties of the employed IRK method. Moreover the choice of the interpolation method
may also be of importance. However, we will restrict ourselves to piece-wise linear
interpolation and analyse results for different IRK methods of interest.

Let us start by assuming that there are no intersections between flow points solutions
up to the time-level ti. This can be expressed by relating arbitrary flow points, say
xi

j and xi
j+1, by

(6.2.30) xi
j+1 − xi

j > 0,

and, of course, assuming that the same holds at every previous time level. The well-
posedness property is then a requirement that the same holds at the next time level
ti+1. Since employing an IRK method introduces inner-stage solutions, this prop-
erty may also be generalised to include similar conditions for every inner-stage.
However, we are mainly interested in the condition for the last inner-stage, which
is closest to solutions at ti+1 or even identical for methods where cs = 1. Starting
from (6.1.10) and employing linear interpolation, we have

(6.2.31) yi
j = xi

j Bj e + dj,

90 The flow method based on Runge-Kutta methods

where yi
j :=

[

yi1
j · · · yis

j

]T is the vector containing inner-stage values which corre-
spond to the flow point xj. The matrix Bj and the vector dj are defined by inverse
piece-wise linear interpolation, i.e. by the set {(fK, yK)}

M+s
K=M. Here the index M is re-

lated to theM−th element, say Γ̂M, of the new grid which contains the point y = xi
j e.

Similarly the inner-stage vector of the point xj+1 is

(6.2.32) yi
j+1 = xi

j+1‘ Bj+1 e + dj+1.

Subtracting (6.2.31) from (6.2.32), we have

(6.2.33) yi
j+1 − yi

j =
[

xi
j+1‘ Bj+1 − xi

j Bj

]

e + dj+1 − dj.

For the well-posedness requirement the vector yi
j+1 − yi

j should clearly be positive
element-wise. Considering the last stage only, the condition reads

(6.2.34) yis
j+1 − yis

j = xi
j+1‘ bΣ,j+1 − xi

j bΣ,j + ds,j+1 − ds,j,

where bΣ,j :=
[∑s

l+1 b1l, . . . ,
∑s

l+1 bsl

]T
=
[

b1
Σ,j, . . . , b

s
Σ,j

]T
.

The expressions (6.2.33) and (6.2.34) are not easily assessable for the analysis due to
the complexity of the inverse interpolation used for determining Bj and dj. How-
ever, if we assume that points xi

j e and xi
j+1 e are in the same element Γ̂M of the new

grid, the expression (6.2.33) is significantly simplified, i.e.

(6.2.35) yi
j+1 − yi

j =
(

xi
j+1‘ − xi

j

)

Bj e =
(

xi
j+1‘ − xi

j

) [

b1
Σ,j, . . . , b

s
Σ,j

]T
.

Taking only the last stage into account and recalling (6.2.30), we obtain the well-
posedness condition as

(6.2.36)
s∑

l=1

bsl > 0.

However, the condition is still related to the coefficients of the unknown interpola-
tion matrix Bj. Obtaining bsl, l = 1, . . . , s, present in (6.2.36), from the interpolation
method we have the following result.

THEOREM 6.2.5. Let xi
j e, xi

j+1 e ∈ Γ̂M and let the employed IRK method satisfies the
property of the topology preservation in space (i.e. Df > 0). Further let the matrix FM be
defined element-wise by

(6.2.37) flK := ∆x

[

δl,K − halK

∆u
(

yK
M

)

∆x

]

, l, k = 1, . . . , s,

where δ represents the Kronecker delta and ∆u
(

yK
M

)

:= u
(

yK
M + ∆x

)

− u
(

yK
M

)

. Then the
flow method is well-posed if

(6.2.38)
s∑

l=1

FM,l,s > 0.

where FM,l,s is the (s − 1)-dimensional minor which corresponds to the element fls of the
matrix FM.

PROOF. The elements of Bj are determined by the interpolation, i.e. by requiring
yK = p (fK) , K = M, . . . ,M + s and the fact that xi

j e ∈ Γ̂M. Hence we can obtain Bj

from the linear system

(6.2.39) Bj fK + dj = yK, K =M, . . . ,M+ s,

6.2 Well-posedness 91

which can be reformulated as

(6.2.40) Bj (fK − fM) = yK − yM, K = M, . . . ,M+ s.

By writing the complete matrix form of (6.2.40), we have

(6.2.41) Bj FM = YK,

where the matrices FM and YM are defined as

FM := [fM+1 − fM, . . . , fM+s − fM] ,

YM := [yM+1 − yM, . . . , yM+s − yM] .(6.2.42)

The matrix Bj now follows from (6.2.41), i.e.

(6.2.43) Bj = YK F−1
M .

By defining vectors, say bs
j and ys

M, which contain elements of the s−th row of Bj

and YM respectively, i.e.

bs
j := [bs1, . . . , bss]

T
,

ys
M :=

[

ys
M+1 − ys

M, . . . , y
s
M+s − ys

M

]

,(6.2.44)

we obtain

(6.2.45) bs
j = F−T

M ys
M.

Obviously the right-hand side of the condition (6.2.36) is actually the sum of ele-
ments of bs

j . Since yM, . . . , yM+s ∈ {yK}
s(n+1)

K=0 , defined by (6.1.14), and assuming,
without loss of generality, the following ordering of points

yM+K := yM + ∆x eK, K = 1, . . . , s,

eK := [0, . . . , 0, 1, 0, . . . 0]
T
,(6.2.46)

we have

(6.2.47) ys
M = [0, . . . , 0, ∆x]

T
.

Defining

(6.2.48) C = F−T
M ,

and employing (6.2.47), we obtain

(6.2.49) bs
j = ∆x [c1s, . . . , css]

T
.

Hence the condition (6.2.36) is equivalent to

(6.2.50)
s∑

l=1

cls > 0,

which is actually

(6.2.51)
1

det FM

s∑

l=1

FM,l,s > 0.

92 The flow method based on Runge-Kutta methods

According to (6.2.42), (6.2.46) and (6.1.15), we may express the element of FM by the
following

flK := flM+K − flM = yl
M+K − yl

M − h

s∑

q=1

alq

[

u
(

y
q
M+K

)

− u (y
q
M)
]

= ∆x

[

δK,l − halK

u
(

yK
M + ∆x

)

− u
(

yK
M

)

∆x

]

= ∆x

[

δK,l − halK

∆u
(

yK
M

)

∆x

]

.(6.2.52)

Clearly the matrix FM represents the first order approximation of Df, i.e. we may
write

(6.2.53) det FM
.
= ∆xs detDf.

Recalling results from the previous subsection, where it was shown that for IRK
methods of interest detDf > 0 holds, i.e. that the topology in space is preserved,
we find det FM to be positive as well. This means that the well-posedness condition
follows from (6.2.38). �

Due to the complexity of the matrix FM, in the analysis that follows we restrict our-
selves to two- and three-stage IRK methods.

COROLLARY 6.2.6. For the flow method that employs a two-stage IRK method, which satisfy
the property of the topology preserving in space, the well-posedness condition reads

(6.2.54) 1 + h (a21 − a11)
∆u
(

y1
M

)

∆x
> 0.

Additionally if u ′(x) < 0 on the whole domain of interest, the well-posedness condition reads

(6.2.55) a21 − a11 ≤ 0.

Unfortunately (6.2.55) does not hold for IRK methods in general. For the linear test
problem (6.2.1), the well-posedness conditions for several IRK methods are shown
in Table 6.2.2. One should note that some methods introduce severe constraints for
the time step (assuming of course that |λ| is large). On the other hand, some methods
do not have any constraints, which makes them appropriate candidates for imple-
mentation into the flow method.

Method Gauss Rad. IA Rad. IIA Lob. IIIA Lob. IIIB Lob. IIIC

h |λ| h |λ| < 3.46 - h |λ| < 3 h |λ| < 2 - -

TABLE 6.2.2. Time-step constraints for different two-stage IRK methods

If one repeats the same procedure the first inner-stage, then the condition similar to
(6.2.55) reads

(6.2.56) a12 − a22 ≤ 0,
which holds for all methods introduced in Table 6.2.2.

6.2 Well-posedness 93

EXAMPLE 6.2.7. Consider

(6.2.57)

{
ẋ = − arctan(10 x) + cos t,
x0 ∈ I0 = [−0.5, 0.5].

The solution of this problem can be obtained by discretising I0 and applying the
flow method that employs different two-stage IRK methods. In Figure 6.2.1 results
obtained by employing Radau IIA and Lobatto IIIC methods are shown. One should
note that intersections occur if the IRK method is Radau IIA and the time-step is
relatively large. This is, of course, due to the well-posedness constraint of Radau IIA
method, as shown in Table 6.2.2. On the other hand, a similar problem is not present
if the method of choice is Lobatto IIIC, regardless of the size of the time-step. �

0 0.5 1 1.5 2−0.5

0

0.5

t

x(t)

(a) Radau IIA

0 0.5 1 1.5 2−0.5

0

0.5

t

x(t)

(b) Lobatto IIIC

FIGURE 6.2.1. Flow in time (h = 0.5)

COROLLARY 6.2.8. The well-posedness condition of the flow method which employs a three-
stage IRK method reads

1 + h

[

(a13 + a23)
∆u
(

y3
M

)

∆x
− a11

∆u
(

y1
M

)

∆x
− a22

∆u
(

y2
M

)

∆x

]

+ h2

[

(a11a22 − a12a21)
∆u
(

y1
M

)

∆x

∆u
(

y2
M

)

∆x

+ (a21a13 − a11a23)
∆u
(

y1
M

)

∆x

∆u
(

y3
M

)

∆x

+ (a12a23 − a22a13)
∆u
(

y2
M

)

∆x

∆u
(

y3
M

)

∆x

]

> 0.(6.2.58)

Consider again the linear test problem. We can define a quadratic polynomial, say
q(µ), by

q(µ) := (a11a22 + a21a13 + a12a23 − a12a21 − a11a23 − a22a13) µ2

+ (a13 + a23 − a11 − a22) µ + 1,(6.2.59)

94 The flow method based on Runge-Kutta methods

where µ := hλ. Now we can analyse the sign of q for various IRK methods. Clearly
if

(6.2.60) q(µ) > 0, µ ∈ R,

the well-posedness property does not introduce constraints on time-step. Comput-
ing coefficients of q for various IRK methods, one should note that all IRK methods
introduced in Table 6.2.2 satisfy (6.2.60) except Lobatto IIIA. For this method the
polynomial reads

(6.2.61) q(µ) = −
3

8
µ+ 1,

and we have a time-step constraint

(6.2.62) h |λ| <
8

3
.

This leads to the conclusion that most of the three-stage IRK methods of interest are
appropriate candidates (concerning the well-posedness property) to be employed
into the flow method.

The analysis of the well-posedness property is given under the assumption that the
points xi

j e and xi
j+1 e belong to the same simplex of the new grid. In a more general

case, we should consider the linear test problem, for which Bj and dj (respectively
Bj+1 and dj+1) are constant matrices for all simplices of the new grid, i.e.

Bj = Bj+1 = B,
dj = dj+1 = d,(6.2.63)

where B and d does not depend on Γ̂M. This means that the analysis is similar and
the conditions (6.2.55) and (6.2.58) are the same.

6.3 Error analysis

In the previous two chapters, it was shown that the error of the flow method consists
of two components: the local discretisation error and the interpolation error. The lo-
cal discretisation error is related to the method employed, here the IRK method, and
the interpolation error depends on the choice of the interpolation method involved.
The easiest way to show this is by studying the behaviour of the local error, say δ,
for the scalar case. Assuming xj

(

ti
)

= xi
j, the local error of the flow method at

time-level ti+1 is defined by

(6.3.1) δ
(

xj

(

ti+1
)

, h
)

:=
1

h

∣

∣

∣xj

(

ti+1
)

− xi+1
j

∣

∣

∣ ,

where xj

(

ti+1
)

is the exact solution of the flow point xj (t) at ti+1 and xi+1
j is the

numerical solution obtained by the flow method. Denoting x̃i+1
j to be the IRK nu-

merical solution obtained exactly (i.e. without any additional error), it is clear that
the local error satisfies

δ (·, h) =
1

h

∣

∣

∣xj

(

ti+1
)

− x̃i+1
j + x̃i+1

j − xi+1
j

∣

∣

∣

≤ 1

h

∣

∣

∣xj

(

ti+1
)

− x̃i+1
j

∣

∣

∣ +
1

h

∣

∣

∣x̃
i+1
j − xi+1

j

∣

∣

∣

=: dh(·) + rh(·).(6.3.2)

6.3 Error analysis 95

Clearly dh(·) represents the local discretisation error and rh(·) the interpolation er-
ror. As known from the literature (see e.g. [33]), the accuracy of the IRK method is
related to the consistency order, say p, for which the following holds

(6.3.3) dh

(

xj

(

ti+1
))

= O (hp) ,

for p as large as possible. The value of p depends on the IRK method employed. For
example, IRK methods of interest satisfy

(6.3.4) p =

2 s, Gauss,
2 s− 1, Radau,
2 s− 2, Lobatto.

The more interesting part is the interpolation error. Since the problem here is vecto-
rial and multivariate, we need to use error bounds for vectorial functions obtained
in 3.4. For simplicity we will restrict ourselves to piece-wise linear interpolation.
From Theorem 3.4.1, (6.1.9) and (6.1.10), we have the following

(6.3.5) ‖rh(·)‖L∞ ≤ 1

2 h

s

s+ 1
∆f2M

∥

∥D2g
∥

∥

∞,Γ̂M
,

where ∆fM is the diameter of the new grid simplex Γ̂M, which is defined by the set
ŜM = {fK}

M+s
K=M. The norm of D2g, present on the right-hand side, is defined by

(6.3.6)
∥

∥D2g
∥

∥

∞,Γ̂M
:= max

l
sup
f∈Γ̂M

sup
z∈Rs

‖z‖=1

∣

∣D2
zgl(f)

∣

∣ ,

where Dzg is the directional derivative of g in the direction z. Let us now relate
derivatives of g to derivatives of f, i.e. u, as well as the diameter ∆fM to the corre-
sponding original grid diameter, say ∆yM. From

(6.3.7) ∆fM = max
K,J

‖fM+K − fM+J‖ := ‖fM1 − fM2‖ ,

where fM1, fM2 ∈ ŜM, using (6.1.15) and the mean value theorem, we can find

∆fM = ‖yM1 − yM2 − hA (u (yM1) − u (yM2))‖
= ‖[Is − hADu (ỹM)] [yM1 − yM2]‖
≤ ‖yM1 − yM2‖ ‖Is − hADu (ỹM)‖
= ∆yM ‖Is − hADu (ỹM)‖ .(6.3.8)

The point ỹM is on the line between points yM1 and yM2, which means that ỹM ∈
ΓM. Assuming that the set of points {xk}

n
k=0 (for which u−values are known) is

equidistant, it is clear that ∆yM (for arbitrary s) is

(6.3.9) ∆yM =
√
2∆x,

where∆x is the spatial-step size present in (6.1.2). Substituting (6.3.8) and (6.3.9) into
(6.3.5), we see that the interpolation error satisfies

(6.3.10) ‖rh(·)‖L∞ ≤ 1

h

s

s+ 1
∆x2 ‖Is − hADu (ỹM)‖2

∥

∥D2g
∥

∥

∞,Γ̂M
.

As it turns out in Chapter 3 the norm of the second derivative of g, defined by (6.3.6),
can be related to the corresponding norm that introduces the derivatives of u by the

96 The flow method based on Runge-Kutta methods

following. Since g = f−1, we clearly have

Dg = [Df]−1
,

D2g = − [Df]−1
D2f [Df]−2

,(6.3.11)

and since Df = Is − hADu and D2f = −hAD2u, we find

(6.3.12) D2g = h [Is − hADu]
−1 AD2u [Is − hADu]

−2
.

Substituting this into (6.3.10), we finally obtain the interpolation bound
(6.3.13)

‖rh(·)‖L∞ ≤ s∆x2

s+1
‖Is − hADu (ỹM)‖2

∥

∥

∥[Is − hADu]
−1AD2u [Is − hADu]

−2
∥

∥

∥

∞,ΓM

.

Note that the matrix [Is − hADu] is present only by its inverse, implying that the
∞−norm on the right hand side of (6.3.13) is not necessarily large even if the norm
‖Is − hADu‖∞,ΓM

is very large. For methods which satisfy cs = 1, the norm defined
by (6.3.6) for the vectorial function should be replaced by

(6.3.14)
∥

∥D2gs

∥

∥

∞,Γ̂M
:= sup

f∈Γ̂M

sup
z∈Rs

‖z‖=1

∣

∣D2
zgs(f)

∣

∣ ,

whereD2gs follows from (6.3.12).

From (6.3.2), (6.3.3) and (6.3.13) one should note that the local error of the flow
method is O (hp) + O

(

∆x2
)

. The interpolation error can become dominant if the
IRK method has many stages, especially since the order p is twice the number of
stages, see (6.3.4). To avoid this, the spatial step-size ∆x needs to be chosen very
small, e.g. O (hs) for the Gauss method or O

(

hs−1
)

for Lobatto methods. The other
option, of course, is to use different interpolation methods which are more accurate,
but also computationally more expensive.

Although obtaining the numerical solution by employing methods for which cs 6= 1

is much more expensive, these methods can give more accurate results. This fol-
lows from the fact that the solution at the next time-level is now obtained by ap-
plying (6.1.3), i.e. its modification where unknown u

(

yil
j

)

values (related to the
flow point xj) are approximated by v

(

yil
j

)

say, obtained by interpolating points
{(xk, uk)}

n
k=0. Denoting

(6.3.15) yil
j := ỹil

j + rlj , l = 1, . . . , s,

where ỹil
j , l = 1, . . . , s represent exact solutions of the nonlinear system (6.1.7) and

rlj the interpolation error related to lth inner-stage. Substituting this into (6.1.3), the
solution at the next time-level follows from

(6.3.16) xi+1
j = xi

j + h

s∑

l=1

bl v
(

yil
j

)

.

Since v
(

yil
j

)

is the approximation of u
(

yil
j

)

, we may write

(6.3.17) v
(

yil
j

)

= u
(

yil
j

)

+ ρl
j ,

where ρl
j represents the error of the univariate direct interpolation. Substituting

(6.3.17) into (6.3.16) we have

(6.3.18) xi+1
j = xi

j + h

s∑

l=1

bl u
(

yil
j

)

+ h

s∑

l=1

bl ρ
l
j .

6.3 Error analysis 97

Assuming that interpolation errors rlj are sufficiently small, we can use the approxi-
mation

(6.3.19) u
(

yil
j

)

= u
(

ỹil
j + rlj

) .
= u

(

ỹil
j

)

+ rlj u
′ (ỹil

j

)

.

Applying this into (6.3.18), we have

(6.3.20) xi+1
j = xi

j + h

s∑

l=1

bl u
(

ỹil
j

)

+ h

s∑

l=1

bl r
l
j u (ỹ) + h

s∑

l=1

bl ρ
l
j .

Obviously the local error, which can be obtained from (6.3.20), consists of three parts.
Of course, the first one is the local discretisation error of the employed IRK method,
the second one is related to the interpolation error of the inverse (multivariate) in-
terpolation, and the third one is related to the interpolation errors of the direct (uni-
variate) interpolation. Now, let us assume that the inverse interpolation is linear and
that ρl

j is O (∆xq), where q represents the order of the direct interpolation involved.
Then from (6.3.1), (6.3.3) and (6.3.13) and assuming that the solution is sufficiently
smooth, we have

(6.3.21) δ(·, h) ≤ O (hp) +O (h) O
(

∆x2
)

+O (∆xq) .

Hence, if direct interpolation does not represent the dominant error source, it is clear
that the inverse interpolation error is reduced by the order of h, which can improve
the overall accuracy of the flow method. This is illustrated by the following example.

EXAMPLE 6.3.1. Consider Example 6.2.7 once again. Let us discretise the initial flow
I0 = [0.5, 0.5] by µ = 9 points and compute numerical solutions for the time interval
t = [0, 4.5]. Since in this particular example we explicitly know u(x) we can choose
the spatial step-size freely and assess its influence (coming via interpolation error) on
the accuracy. Of course, the accuracy is also related to the time step-size and, thus,
we perform series of tests for various values of h. Finally, since the choice of the
employed IRK method is also of importance, either because of the fact that they are
of different orders or the implementation is different (see above), we employ three
different methods, namely Lobatto IIIC, Radau IIA and the Gauss method. To com-
plete the flow method settings, we choose piece-wise linear inverse interpolation.
For the first set of experiments we fix the number of discretisation points {xk}

n
k=0, for

which we compute {uk}
n
k=0, to be n = 21 (which gives ∆x = 0.05). Then we vary the

value of the time-step, say h = 0.5, 0.1, 0.05, for all aforementioned methods and
compute the ∞-norm of the global error over all flow points solutions in time, see
Figures 6.3.1a, 6.3.2a and 6.3.3a. For the Lobatto IIIC and Radau IIA method (which
satisfy cs = 1) one should note that decreasing the time step does not improve the
accuracy much since the interpolation error is dominant. On the other hand, the im-
plementation of the Gauss method introduces the error which satisfies (6.3.21), i.e.
the error is decreasing by the factor of h, see Figure 6.3.3a. To avoid the influence
of the error coming from direct interpolation evaluations, i.e. the last part of the
right-hand side of (6.3.21), we use univariate spline interpolation, which is O

(

∆x4
)

.

In the second experiment we fix the time step-size, say h = 0.05, and vary the spatial
step-size, say ∆x = 0.05, 0.025, 0.0125 and again compute the ∞-norm of the global
error over all flow points solutions in time. The results for different (employed) IRK
methods are shown in Figures 6.3.1b, 6.3.2b and 6.3.3b. One should note that the
ratio between errors is approximately 1

4
, which is clearly coming from the fact that

the interpolation error is O
(

∆x2
)

.

98 The flow method based on Runge-Kutta methods

(a) ∆x = 0.05 (b) h = 0.05

FIGURE 6.3.1. Global error of the flow method which employs the
Lobatto IIIC method.

(a) ∆x = 0.05 (b) h = 0.05

FIGURE 6.3.2. Global error of the flow method which employs the
Radau IIA method.

(a) ∆x = 0.05 (b) h = 0.05

FIGURE 6.3.3. Global error of the flow method which employs the
Gauss method.

6.4 Stability 99

FIGURE 6.3.4. Global error of different (employed) IRK methods
with h = 0.05 and ∆x = 0.025.

Finally, we can compare results obtained by different methods by using the same
time and spatial step-sizes, say h = 0.05 and ∆x = 0.025, see Figure 6.3.4. Since it
was already shown that the interpolation error is dominant, it is clear that the errors
of the employed Lobatto IIIC and Radau IIA are of the same order and determined
by the value of the interpolation error. Hence, by recalling (6.3.4), one should note
that the larger accuracy order of the Radau IIA method is lost. Of course, employ-
ing the IRK method of higher order, especially in choosing the number of stages,
does not improve the overall accuracy if the interpolation error is not sufficiently
small. On the other hand, the accuracy may be improved (by the factor of h) by em-
ploying (more expensive) methods, e.g. the Gauss method, which require additional
direct interpolation, which should be, of course, accurate enough. In Figure 6.3.4 it is
clearly shown that the error of the employed Gauss method is h times smaller than
the error of the other two methods.

6.4 Stability

As already mentioned, the main reason for using IRK methods is based on their
favourable stability properties. The flow method should then, of course, inherit these
properties, such as A, A(α), L-stability. To check this, we use the stability function
(see Section 2.4). However, since linear interpolation is exact for a linear problem, it
is clear that the flow method has the same properties as the employed IRK method.
For example, the flow method is A-stable if and only if the employed IRK method is
A-stable. Of course, the same also holds for A(α) and L-stable methods.

The stability analysis of the flow method of the general nonlinear problem, as shown
below, leads to similar conclusions, i.e. that the B-stability property is closely related
to one of the employed IRK method. This can be shown by studying first varia-
tions. Although we are mainly interested in the behaviour of the solution at time
grid points ti, i = 1, 2, . . ., it will be shown that the behaviour of the inner-stage
solutions, obtained by the flow method, is also determined by the behaviour of the
inner-stage solutions of the standard IRK method. Let us start from the inner-stage
solutions of IRK for a particular flow point, say xj, which follows from (6.1.9), i.e.

(6.4.1) yi
j = g

(

xi
j e
)

.

100 The flow method based on Runge-Kutta methods

Let zi
j

∣

∣

j fixed
:= zij e denote a small perturbation of xi

j := xi
j e, such that xi

j + zi
j

∣

∣

j fixed

also satisfies (6.4.1) to first order. Then we have

(6.4.2) yi
j + ∆yi

j = g
((

xi
j + zij

)

e
) .

= g
(

xi
j e
)

+ zijDg
(

xi
j e
)

e,

where ∆yi
j represents the perturbation of the inner-stage solutions. Hence from

(6.4.1) and (6.4.2) it follows

(6.4.3) ∆yi
j = zijDg

(

xi
j e
)

e.

Assuming cs = 1 and observing the last stage only, we have

(6.4.4) zi+1
j = ∆yis

j =
〈

∇gs

(

xi
j e
)

, e
〉

zij =

(

∂gs

∂y1

(

xi
j e
)

+ · · · + ∂gs

∂ys

(

xi
j e
)

)

zij .

Now, by employing the contractivity condition, which assures the stability of the
method, we obtain the following

(6.4.5)
∣

∣

〈

∇gs

(

xi
j e
)

, e
〉∣

∣ < 1,

which we call the stability condition of the IRK method. This condition is related
with derivatives of the unknown inverse function and, thus, needs to be expressed
in terms of f, i.e. u. Since

(6.4.6) Dg
(

xi
j e
)

= Df−1
(

yi
j

)

,

and recalling (6.1.8), we have

(6.4.7) Dg
(

xi
j e
)

=
[

Is − hADu
(

yi
j

)]−1
,

from which we can obtain the condition (6.4.5) related to the derivative of u and the
coefficients of the matrix A.

The inner-stage solutions of the flow method with piece-wise linear interpolation
follows from (6.2.31), and clearly the following holds

(6.4.8) Dp
(

xi
j e
)

= Bj,

where Bj is the interpolation matrix, which was introduced in the Subsection 6.2.2.
Now, we can show that the matrix Dp is closely related to Dg, i.e. that the stability
condition of the flow method is approximately the same as (6.4.5). Recalling (6.2.43),
we clearly have

(6.4.9) B−1
j = FM Y−1

K .

However, according to (6.2.42) and (6.2.46), we have

(6.4.10) YK = ∆x Is,

which leads to

(6.4.11) B−1
j =

1

∆x
FM.

The elements of FM are defined by (6.2.52). Assuming that ∆x is sufficiently small,
so that

(6.4.12)
u
(

yK
M + ∆x

)

− u
(

yK
M

)

∆x

.
= u ′ (yK

M

)

,

we may write

(6.4.13) FM = ∆x [Is − hADu (yM)] .

Substituting this into (6.4.11) and recalling (6.4.8), we have

(6.4.14) Dp
(

xi
j e
)

= [Is − hADu (yM)]
−1
.

6.4 Stability 101

Comparing (6.4.7) and (6.4.14) one should note that the expressions are approxi-
mately the same and that the only difference is coming from the value of Du. How-
ever, since points yi

j and yM belong to the same simplex ΓM of the original grid, this
difference is small. Hence we may conclude that the behaviour of the inner-stage so-
lutions of the flow method are closely related to ones of the standard IRK methods.

Following the same approach as above, one can obtain the contractivity condition
for the flow method as

(6.4.15)
∣

∣

〈

∇ps

(

xi
j e
)

, e
〉∣

∣ < 1.

From (6.2.31), we have

(6.4.16)
〈

∇ps

(

xi
j e
)

, e
〉

=

s∑

l=1

bsl.

Since

(6.4.17)
s∑

l=1

bsl =
∆x

det FM

s∑

l=1

FM,l,s,

where FM,l,s are, as before, the minors which correspond to elements fls of the ma-
trix FM. Hence the contractivity condition of the flow method is given by

(6.4.18)

∣

∣

∣

∣

∣

∆x

det FM

s∑

l=1

Fls

∣

∣

∣

∣

∣

< 1.

For the flow method which employs a two-stage method, the condition (6.4.18) reads
(6.4.19)
∣

∣

∣

∣

∣

∣

∣

∣

1 + h (a21 − a11)
∆u(y1

M)
∆x

1 − h

(

a11
∆u(y1

M)
∆x

+ a22
∆u(y2

M)
∆x

)

+ h2 (a11a22 − a12a21)
∆u(y1

M)
∆x

∆u(y2
M)

∆x

∣

∣

∣

∣

∣

∣

∣

∣

< 1.

Clearly the expression on the left-hand side tends to zero if the problem is stiff, i.e.
if hu ′ � −1. This means that there are no time-step constraints concerning stability.
For some IRK methods, e.g. Radau IA, Lobatto IIIB and Lobatto IIIC, we even have
a21 = a11, which gives
(6.4.20)
∣

∣

∣

∣

∣

∣

∣

∣

1

1 − h

(

a11
∆u(y1

M)
∆x

+ a22
∆u(y2

M)
∆x

)

+ h2 (a11a22 − a12a21)
∆u(y1

M)
∆x

∆u(y2
M)

∆x

∣

∣

∣

∣

∣

∣

∣

∣

< 1,

and holds even stronger for the stiff case.

CHAPTER 7

The flow method for solving vectorial
ODEs

In previous chapters we introduced the flow method based on various implicit nu-
merical methods. However, the analysis was based on scalar problems. In this chap-
ter we consider (general) vectorial problems. Even though the method principle
remains the same, a further analysis is needed since multivariate inverse interpola-
tion is more involved. Again we analyse the flow method that employs the Euler
Backward method, just to keep the analysis simple. However, we also extend the
analysis of our method to the implicit midpoint rule (IMR) method. Since this method
is closely related to EB (as we will show later), the implementation of IMR into the
flow method is straightforward.

In the following section we consider the method implementation, as well as inter-
polation issues of the method. The local error analysis is given in Section 7.2. The
stability properties of the flow method are still closely related to the standard (em-
ployed) method, as shown in Section 7.3. Finally, we conclude this chapter with
some numerical examples, which illustrate the quality of the method.

7.1 Method implementation

Here we consider the general flow problem, as defined in Section 2.2, i.e. the follow-
ing

(7.1.1)
{

dx
dt

= u(x), x ∈ RN,

x(0) ∈ I(x, 0),

which is the vectorial analogue of the scalar flow problem from previous chapters.
Here x is a point of the flow and u(x) is not given explicitly, although we assume
that u(x) is Lipschitz continuous. To track the flow I(x, t) numerically in time, one
needs to properly discretise I(x, t) in space. Hence, we denote by {xj(t)}

µ

j=0
⊂ I(x, t)

a set of points which gives a numerical spatial representation of the flow. Let us now
assume that at a particular time point, u(x) is obtained discretely (e.g. numerically
or experimentally) at some spatial points, say {xk}

n
k=0 ∈ Γ , i.e. it is given by the set

of values {uk}
n
k=0. Here Γ represents a convex hull of the set {xk}

n
k=0. We distinguish

104 The flow method for solving vectorial ODEs

{xk}
n
k=0 from {xj}

µ

j=0
, since u(x) can also be known at some additional points. Of

course, I(x, t) ⊆ Γ should hold for all t to avoid lack of information about the velocity.

Again for solving (7.1.1), one needs a proper time discretisation. For stiff problems
we need to use an implicit method. We illustrate our method employing the Euler
Backward (EB) method (see Section 2.3). Even though the method principle remains
the same, like e.g. we discussed in Chapter 4, a further analysis is needed since mul-
tivariate inverse interpolation is more involved. We also extend the analysis of our
method to the IMR (Implicit Midpoint Rule) method. Since this method is closely re-
lated to EB (as we will show later), the implementation of IMR into the flow method
is straightforward. Since IMR is a symplectic integrator, this allows us to employ our
method in the applications where the volume preservation is an essential issue. The
generalization of the flow method which employs other numerical methods can be
done similarly as already shown for the scalar case.

Time discretisation of (7.1.1) by the EB method gives

(7.1.2) xi+1
j = xi

j + hu
(

xi+1
j

)

.

If we apply IMR then we have

(7.1.3) xi+1
j = xi

j + hu

(

xi+1
j + xi

j

2

)

,

which can be transformed into

(7.1.4) xi+ 1
2

j = xi
j +

h

2
u
(

xi+ 1
2

j

)

,

(7.1.5) xi+1
j = 2 xi+ 1

2

j − xi
j.

Both (7.1.2) and (7.1.4) are systems of nonlinear equations which, in general, cannot
be solved directly. One possible way to solve them is to employ some Newton type
iterative method. However, this introduces some additional problems, as mentioned
in Section 2.7. Hence we apply the flow method, as we did in the scalar case before.

Let us define

(7.1.6) x̂i+1
k := xk,

and since (7.1.1) is autonomous, we clearly have

(7.1.7) u
(

x̂i+1
k

)

= u (xk) = uk.

Taking x̂i+1
k now as the result of an EB step then this should correspond to a value

x̂i
k defined by

(7.1.8) fk = x̂i
k := x̂i+1

k − hu
(

x̂i+1
k

)

= xk − huk.

In Figure 7.1.1 a 2-D example is shown where the points {xk}
n
k=0 are the vertices of a

triangular grid. Clearly there is a functional dependence of points at two consecutive
time-levels (which is, of course, analytically unknown). Nevertheless we can employ
this fact for finding approximate values for all points in Γ and thus for the solution
points. For the general point xi ∈ Γ we can rewrite (7.1.8) as

(7.1.9) xi = xi+1 − hu
(

xi+1
)

=: f
(

xi+1
)

.

If f(x) satisfies the conditions of the inverse function theorem (see Theorem 3.5.1),
then there exists

(7.1.10) g(x) := f−1(x),

7.1 Method implementation 105

FIGURE 7.1.1. Flow method principle for 2-D (original) triangular grid.

and we may write

(7.1.11) xi+1 = g
(

xi
)

.

Since g is unknown in general, we can try to find an approximation, say p, by re-
quiring p

(

x̂i
k

)

= g
(

x̂i
k

)

. An obvious choice is to interpolate points {(fk, xk)}
n
k=0 in

2N-dimensional space. Now the solution at the next time-level follows from

(7.1.12) xi+1
j = p

(

xi
j

)

.

The choice of the interpolation method involved can be seen as arbitrary, but there
are some preferences which can help answering the question which method should
be used. Firstly, the interpolation should preferably be local to avoid big costs in
computations. Secondly, the additional (interpolation) error should be commen-
surate with the local discretisation error to preserve the accuracy of EB. Finally,
the interpolation method should be applicable for irregular grids, since the new
grid is obtained from the original (possibly regular) grid by the nonlinear mapping
f : RN → RN, defined by (7.1.9).

If we use IMR, the method goes essentially similar. Indeed, it can be seen, from (7.1.4)
and (7.1.5), that IMR is just an EB step on a half-interval followed by an (explicit)
algebraic evaluation. This means that we can apply the flow method with a step-size
h
2

and obtain the solution at the half-interval by

(7.1.13) xi+ 1
2

j = p(xi
j).

Now by substituting (7.1.13) in (7.1.5) we obtain the desired solution at the next time
level.

The nonlinear system (7.1.9) is equivalent to a well-studied problem

(7.1.14) F(x) = 0,

which we already discussed in Section 3.5. The literature about this problem is rich
(see e.g. [37]) and in the last decade a number of papers addressed the particular case
arising from the use of implicit numerical methods for solving ODEs. Conditions for
existence and uniqueness of the solution of (7.1.14) as well as a time step constraints
for which these conditions are guaranteed are given in [54] and [17]. Hence we will
assume that the solution exists and that it is unique. Our main interest here is to
analyse the influence of the nonlinear mapping f (under the influence of u) on our
interpolation technique. Also we assume that f is a diffeomorphism.

106 The flow method for solving vectorial ODEs

Let us assume that Γ is discretised in space, i.e. the grid which covers Γ is defined
by points {xk}

n
k=0 and adequate elements: For example, one can think of a triangular

grid in 2-D. For our algorithm, the grid needs to be mapped onto a new grid defined
by points {fk}

n
k=0 and elements of the same type. The diffeomorphism f can cause a

change in the orientation of the grid elements, causing an overlapping of elements in
the new grid. This makes interpolation difficult to handle or even highly ill-posed,
which one should avoid of course. In Section 3.5, where we discussed the inverse
interpolation principle, it was shown that the essential property of this mapping
for accurate interpolation, is the topology preservation in space, given by (3.5.5).
Typically for stiff systems we have multiple time scales which are related to different
eigenvalues of the Jacobian matrix of u, say λl(t), l = 1, . . . , N that are widely spread
(but with a significant gap between them) in the left half of the complex plane. In
other words all eigenvalues have negative real part. From (7.1.9) we see that the
Jacobian matrix of f reads

(7.1.15) Df = IN − hDu,

where IN is the identity matrix of order N. If we now express the Jacobian det [Df]
via the aforementioned eigenvalues of Du we have

(7.1.16) det [Df] =

N∏

l=1

[1 − hλl(t)] .

From the characteristics of the stiff problems mentioned above, i.e. Re{λl(t)} < 0 and
(7.1.16), it is clear that det [Df] > 0 holds on the entire RN.

Again, we point out that the flow method can be used for the class of the non-
autonomous problems given by

(7.1.17) ẋ = u(x) + w(t),

where w is an explicitly given time dependent function. The interpolation is then
done only on the autonomous part of the velocity field and the solution at the next
time-level reads

(7.1.18) xi+1
j = p

(

xi
j + hw

(

ti+1
))

.

It can easily be shown (as in Chapter 4) that, for a case where the autonomous part
is linear in x and by applying (7.1.18) with p as the linear interpolation function, the
result is identical to one obtained by EB.

7.2 Error analysis

In Section 4.4 it was shown that for the univariate case the local error of the flow
method consists of two components: the local discretisation error of EB and the in-
terpolation error. Of course, the same also holds for the multivariate case. Assuming
that u is Lipschitz continuous and smooth enough, the local error of a particular
point in the flow can be expressed as

(7.2.1) δ
(

xj

(

ti+1
)

, h
)

= dh

(

xj

(

ti+1
))

+ rh
(

xj

(

ti+1
))

,

where dh is the local discretisation error and rh is the interpolation error. The EB
method has the consistency order 1 and IMR order 2, i.e. dh is O(h) and O

(

h2
)

re-
spectively. The goal is thus to have the interpolation error commensurate with the
discretisation error. In the previous section we pointed out that the interpolation
method can be of arbitrary type if it satisfies all of three preferences noted there.

7.2 Error analysis 107

However, we will restrict ourselves to piecewise linear interpolation, i.e. the inter-
polation by linear polynomials to function values at (N + 1) points in RN, just for
ease of argument. Also, this interpolation is local and it can be applied on irregular
grids, which means that the only requirement left is that of sufficient accuracy.

Piece-wise linear interpolation was introduced in Section 3.4, where the method
principle and accuracy aspects were given. Here we apply these results with the
same notation. For the error bounds of piece-wise linear interpolation, we use The-
orem 3.4.1 and Theorem 3.4.2, together with Theorem 3.4.3, which relates these two
results. Again we will assume Γ̂ to be the interpolation domain, which is actually a
range of the flow domain Γ . We denote all symbols related to Γ̂ by providing them
with a hat symbol above.

Assume that Γ̂ is covered by a set of (nondegenerate) simplices, say Γ̂m,m = 1, . . . ,M.
The simplex Γ̂m is defined by a set, say Ŝm, of affinely independent N + 1 points in
RN. These points, which we denote by x̂m1, x̂m2, . . . , x̂m,N+1 , are actually the ver-
tices of the new (mapped) grid simplex. Now, Γ̂m can be seen as a convex hull of Ŝm,
i.e.

(7.2.2) Γ̂m := conv Ŝm.

Similarly to (3.4.5), we can define a diameter, say ∆x̂, of the new grid, like

(7.2.3) ∆x̂ := diam Ŝm = max
x̂mr,x̂ms∈Ŝm

‖x̂mr − x̂ms‖ .

The aforementioned error bounds are given for a scalar function g : RN → R, while
our problem concerns a vectorial mapping g : RN → RN. However, all elements
of the vector g, say gl, l = 1, . . . , N, are defined on the same simplex Γ̂m, which
allows us to do an element-wise analysis first. For any gl we can define a linear
interpolation map pl, l = 1, . . . , N, defined on Γ̂m. From (3.4.10) it follows that

(7.2.4) |gl(x̂) − pl(x̂)| ≤ 1

2

(

R̂2 − ‖x̂ − ĉ‖2
)

∥

∥D2gl

∥

∥

∞,Γ̂m
,

where R̂ and ĉ are the radius and the center of the (unique) sphere containing Ŝ. The
norm ‖·‖ is again the Euclidean norm and

∥

∥D2gl

∥

∥

∞,Γ̂m
represents the ∞−norm of

the second derivativeD2gl on Γ̂m, see (3.4.8).

Since all gl (and pl) are defined on the same simplex we have, by taking the ∞−norm
over |gl(x̂) − pl(x̂)| and

∥

∥D2gl

∥

∥

∞,Γ̂m
, l = 1, . . . , N

‖g(x) − p(x)‖∞,Γ̂m
:= max

l
|gl(x̂) − pl(x̂)| ≤ 1

2

(

R̂2 − ‖x̂ − ĉ‖2
)

max
l

∥

∥D2gl

∥

∥

∞,Γ̂m

=
1

2

(

R̂2 − ‖x̂ − ĉ‖2
)

∥

∥D2g
∥

∥

∞,Γ̂m
.(7.2.5)

The expression R̂2 − ‖x̂ − ĉ‖2 in Γ̂m has a maximum for the point x̂∗ ∈ Γ̂m, closest to
ĉ. Defining the distance, say ρ̂ between ĉ and Γ̂m, by using (3.4.12), we then find

(7.2.6) rh := ‖g − p‖L∞(Γ̂m) ≤
1

2
(R̂2 − ρ̂2)

∥

∥D2g
∥

∥

∞,Γ̂m
.

Now, we apply (7.2.6) to our analysis. This error bound is given, of course, for direct
interpolation. In our case it does not give explicit information since it still requires
knowledge of a second derivative of the unknown inverse function g and depends

108 The flow method for solving vectorial ODEs

on the geometry of the new grid. However, sinceDf = IN−hDu andD2f = −hD2u,
from (3.5.18) we find

(7.2.7) D2g = h [IN − hDu]−1 D2u [IN − hDu]−2.

Substituting (7.2.7) into (7.2.6), we can eliminate g, i.e the interpolation error bound
reads

(7.2.8) rh ≤ h

2
(R̂2 − ρ̂2)

∥

∥[IN − hDu]−1 D2u [IN − hDu]−2
∥

∥

∞,Γm
,

where Γm is a simplex of the original grid, i.e the original of Γ̂m. Clearly, if ‖Du‖∞,Γm

is large, which typically occurs in stiff problems (our problems of interest), then
∥

∥D2g
∥

∥

∞,Γ̂m
is not necessarily large due to the inversion of the matrix [IN − hDu].

The expression R̂2 − ρ̂2, present in the error bound, is strongly depending on the
diameter of the simplex Γ̂m and the geometry of the new grid. Hence, let us first
relate ∆x̂ to the diameter of the original grid ∆x. By applying (7.1.8), (7.2.3) and
recalling (3.5.26) we obtain an estimate of ∆x̂

(7.2.9) ∆x̂ ≤ ∆x ‖IN − hDu(x̃)‖ .
Note that ‖xmq − xms‖ ≤ ∆x, since the diameter of the original grid is not necessarily
attached to the corresponding points with the same indexes of the new grid.

Now by applying Theorem 3.4.3 and (7.2.9), we find

(7.2.10) R̂2 − ρ̂2 ≤ 1

2

N

N+ 1
∆x2 ‖IN − hDu(x̃)‖2

,

which holds in general case. Substituting (7.2.10) into (7.2.8), we finally obtain
(7.2.11)

rh ≤ h

4

N

N + 1
∆x2 ‖IN − hDu(x̃)‖2

∥

∥[IN − hDu]−1 D2u [IN − hDu]−2
∥

∥

∞,Γm
.

From (7.2.11) it follows that the interpolation error isO
(

∆x2
)

, meaning that the local
error of the flow method is order O (hp) +O

(

∆x2
)

, where p = 1, 2 for EB and IMR
respectively. Clearly this means that the original grid simplex size (defined by ∆x)
should be as such that both local error components are of the same order. If ∆x is
larger, then the interpolation error can become a dominant source of error, i.e. the
accuracy of the original implicit method may be lost. On the other hand by doing
the interpolation more accurately than needed, the error will not decrease below the
error of the original implicit method.

7.3 Stability

Numerical stability properties of the flow method should be similar to those of the
implicit method involved. In particular we will analyse EB for stiff problems, by
studying first variations. Let zi

j |j fixed denote a small perturbation of the solution
xi

j |j fixed of (7.1.12), such that xi
j + zi

j |j fixed also satisfies (7.1.12) to first order. Now
we have

(7.3.1) xi+1
j + zi+1

j = p
(

xi
j + zi

j

) .
= p

(

xi
j

)

+Dp
(

xi
j

)

zi
j.

By neglecting higher order terms we have

(7.3.2) zi+1
j = Dp

(

xi
j

)

zi
j.

7.3 Stability 109

For stability in a nonlinear situation it is sufficient to prove that the contractivity
condition of the discrete equation (7.3.2) is satisfied, i.e.

(7.3.3)
∥

∥Dp
(

xi
j

)∥

∥ < 1.

Before continuing we would like to relate (7.3.3) to the equivalent condition for EB,
which reads

(7.3.4)
∥

∥[Df]−1
∥

∥ =
∥

∥[IN − hDu]−1
∥

∥ < 1.

Since Dp .
= Dg = [Df]−1 one should expect that (7.3.3) and (7.3.4) are equivalent in

a way. Indeed, this can be shown as follows. Again for the ease of argument, we
will stick to the case where the interpolation (vectorial) polynomial is the piecewise
linear function w.r.t. x, i.e. p(x) on a certain simplex reads

(7.3.5) p(x) = Ax + b.

Clearly A = Dp .
= Dg, which means that the matrix A−1 should be an approxi-

mation of Df. To find A let us choose the simplex Γm from the original grid with
vertices xk = [x1k, x2k, . . . , xN,k]T , k = 1, . . . , N+ 1, and corresponding Γ̂m from the
new grid with vertices fk = [f1k, f2k, . . . , fN,k]T , k = 1, . . . , N+ 1, defined by (7.1.8).
By applying this to (7.3.5), we have

(7.3.6) A = B C−1,

where

(7.3.7) B =

x12 − x11 x13 − x11 . . . x1,N+1 − x11

x22 − x21 x23 − x21 x2,N+1 − x21

...
xN,2 − xN,1 xN,3 − xN,1 xN,N+1 − xN,1

,

(7.3.8) C =

f12 − f11 f13 − f11 . . . f1,N+1 − f11

f22 − f21 f23 − f21 f2,N+1 − f21

...
fN,2 − fN,1 fN,3 − fN,1 fN,N+1 − fN,1

.

For ease of argument we will choose vertices of Γm with coordinates

(7.3.9) xlk = xl1 + δl+1,k ∆xl, l = 1, . . . , N, k = 1, . . . , N+ 1,

where δl+1,k is the Kronecker delta. This gives the (original) simplex where all
vertices are at the axes of the orthogonal coordinate system with the origin at x1 and
∆xl, l = 1, . . . , N are the lengths of edges connecting vertices x2, . . . , xN+1 with the
origin x1. As a 3-D illustration one should think of a tetrahedron, which has three
edges parallel to x, y and z axes respectively, see Figure 7.3.1. By substituting (7.3.9)
into (7.3.7) we have

(7.3.10) B = diag [∆x1, ∆x2, . . . , ∆xN] .

On the other hand, for elements in C, we have
(7.3.11)

fl,k+1 − fl1 = ∆xk

(

δl,k − h
∂ul (x11, x21, . . . , ck, . . . , xN,1)

∂xk

)

, l, k = 1, . . . , N,

where xk1 ≤ ck ≤ xk1 + ∆xk, i.e. ck ∈ Γm.

110 The flow method for solving vectorial ODEs

FIGURE 7.3.1. 3-D example of the original grid simplex.

We can now use (7.3.10) and (7.3.11) to obtain A−1. From (7.3.6) we have

(7.3.12) A−1 = C B−1 =

{
δl,k − h

∂ul (x11, x21, . . . , ck, . . . , xN,1)

∂xl

}N

k,j=1

.

Clearly we have that A−1 is close toDf(xi+1
j) = IN −Du(xi+1

j) since xi+1
j ∈ Γm. This

means that the contractivity condition ‖A‖ < 1 of the flow method is equivalent
to one of EB, given by (7.3.4). Of course, this holds only if det [Df] > 0, i.e. if the
topology in space is preserved; otherwise the interpolation can become ill-posed. In
particular obtaining A can represent a problem if C is ill-conditioned. However, as
mentioned before, that is typically not the case for stiff problems of interest.

7.4 Practical Aspects

In the previous sections we introduced our method in higher dimensional prob-
lems and gave an error and stability analysis. In this section we will apply the
flow method to several examples, where typically the velocity field is not known
explicitly. The first one concerns the situation where the velocity is obtained experi-
mentally. In particular we will solve a stiff problem coming from electrical networks
with nonlinear elements. Hence we apply the flow method based on EB, showing
that it has the desirable accuracy and stability properties.

The second example concerns a problem where the velocity is a numerical solution
of a divergence free velocity field, coming from a boundary problem, that is part of a
PDE. The resulting ODE can be related to a Hamiltonian form, which means that the
volume, defined by the flow, should be preserved during the time integration. A typ-
ical symplectic numerical method, which has this property, is IMR (see [46]). Hence
we will apply the flow method based on IMR and show that a sufficient accuracy
can be achieved even for relatively long time integration intervals.

The third example is a synchronisation (control) problem of a harmonic oscillatory
system. The control law is defined by the sliding mode regime, i.e. by a variable
structure controller. It employs switching mechanism, which is usually modelled by
the signum function. However, in practical realisation settings, one needs to use real
electrical switches, which have nonlinear and explicitly not known transfer func-
tion. Hence, we use the transfer function that is represented by the tabular values
only, which represent experimentally obtained data. The mathematical model of an

7.4 Practical Aspects 111

oscillator is an ODE in a Hamiltonian form and, thus, one needs to compute the nu-
merical solution by applying a symplectic method. Hence we apply the flow method
based on IMR to show that computing the solution can be achieved with a sufficient
accuracy. It is also shown that the amplitude of the solution is approximately con-
stant even for a long time integration interval.

The last example in this section is related to the motion of a viscous axisymmetric
body driven by the surface tension. Here the velocity field is described by the Stokes
equations that need to be solved by some numerical method (e.g. the finite element
method) at every time level. Here the physical flow evolution is such that the body
volume is preserved in time. Hence for the time discretisation, a symplectic method
needs to be used. We again apply the flow method based on the IMR and obtain
sufficiently accurate results, even for large time scales. The example is of a special
interest since the flow problem is not quite autonomous and it shows that the flow
method can be successfully applied even for some non-autonomous problems.

7.4.1 An Electrical Network

Consider an electrical network with two DC motors, power-supplied by the same
source and current protected by a nonlinear resistor, see Figure 7.4.1a. The most
severe situation is when both motor shafts (i.e. rotors) are blocked. Then currents
are largest and the equivalent electrical circuit is shown in Figure 7.4.1b. Here both
motors are modeled as serial connections of a resistor (Rk, k = 1, 2) and an inductor
(Lk) and since both Rk and Lk are relatively small all currents tend to increase under
the influence of the relatively large input voltage.

(a) Principle scheme (b) Electrical scheme with rotors blocked

FIGURE 7.4.1. DC motors supplied from the same power source

The task of the nonlinear resistor is to prevent currents not to increase (motors cur-
rent protection) under the high voltage at the input, here ug = ug(t). According to
this the transfer function (U-I characteristic) of the nonlinear resistor X is very steep,
making the problem stiff. Moreover, this characteristic is not known in closed form
and usually given by some tabular values. The mathematical model of the system
follows from the second Kirchhoff’s law, i.e

L1

di1

dt
= − u(i1 + i2) − R1i1 + ug(t),

L2

di2

dt
= − u(i1 + i2) − R2i2 + ug(t),(7.4.1)

112 The flow method for solving vectorial ODEs

where ik = ik(t) are the currents in the motors loops and u(i) is the voltage on the
nonlinear resistor. The system (7.4.1) can be rewritten as

(7.4.2) ẋ = v(x) + w(t),

where

x =
[

i1, i2
]T
, w(t) = ug(t)

[

1
L1
, 1

L2

]T
,

v(x) =
[

− 1
L1

(u(x1 + x2) + R1x1) , − 1
L2

(u(x1 + x2) + R2x2)
]T
.(7.4.3)

Here we take ug(t) = V cosωt and as typical parameters values R1 = 2Ω, R2 = 1Ω,
L1 = 10−2H, L2 = 10−4H, V = 220V andω = 1 rad/s. The U-I transfer function u(x)

is obtained experimentally (at n points {yk}
n
k=1), see Table 7.4.1 and Figure 7.4.2a.

y -10.0 -9.75 . . . -0.25 0.0 0.25 . . . 10.0

u(y) -1.0e+7 -8.376e+6 . . . -6.1e-5 0.0 6.1e-5 . . . 1.0e+7

TABLE 7.4.1. Discrete U-I transfer function of the nonlinear transistor

Of course, this set can be used both partially and totally. Hence we will assume that
n ≤ 81. Since we know u only for the given set {yk}

n
k=1 we can create a 2-D trian-

gular grid with points xk,l = (x1,k,l , x2,k,l), l = 1, . . . ,M, where the coordinates
of all grid points satisfy yk = x1,k,l + x2,k,l . Of course, the number of points M is
arbitrary. But since we would like to keep our original grid as good as possible, we
keep the symmetry of the grid, meaning that the distances between neighbouring
points in both directions, say ∆y1 and ∆y2, are equal to ∆y, which is determined by
the experimentally obtained data. Hence we take M = n. Now we have a set of
n2 points which can be triangularized, obtaining a 2-D grid (see Figure 7.4.2b where
n = 6), for which v(x) is known in all vertices.

−15 −10 −5 5 10 15
−1

−0.5

0

0.5

1
 x10

7

i

u(i)

(a) Discrete U-I transfer function

−20 −10 0 10 20
−10

−5

0

5

10

(b) Triangular 2-D grid

FIGURE 7.4.2. Discrete velocity field and the constructed mesh

To show the influence of the interpolation error we do the following numerical ex-
periment. For fixed h = 0.01 and the flow points initial values

I0 =
{
[1.0, 0.0]

T
, [0.5, 0.5]

T
}
,

7.4 Practical Aspects 113

we compute the solutions up to the final time of computation Tf = 3.5. The com-
putation is performed by using different numbers of the given tabular points, in
particular n = 11, 21, 41, 81, which correspond to the spatial step sizes ∆y = 2.0,
1.0, 0.5, 0.25 respectively. Of course for a triangularisation as shown in Figure 7.4.2,
the diameter of all simplices reads ∆x =

√
2∆y. To assess the accuracy of the flow

method we compare results with the EB solutions with a much smaller time step
h∗ = 0.0001. By taking the ∞−norm of the global error at Tf over all flow points
(and their both coordinates) we obtain the dependence between the error and the
diameter of the original grid simplex. According to (7.2.11) this dependence should
be quadratic (up to the constant), which can be seen in Figure 7.4.3. Here the solid
line represents the error of the flow method and the dashed line a quadratic function
q(a) = Ca2. Of course, such a behaviour of the global error is due to the fact that the
time step is much smaller than the simplex diameter, making the interpolation error
the dominant error source.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

∆x

||
e|

| ∞

q(∆x) = 0.1∆x 2

FIGURE 7.4.3. Global error of the flow method as a function of the
original grid diameter

As the final remark we note that the flow method is numerically stable, i.e. there are
no time step constraints even for the highly stiff problems as this one.

7.4.2 A Boundary Problem

Consider the following problem

(7.4.4) ∇2 · u = F(x), x ∈ Γ,
defined on some domain Γ with the boundary ∂Γ . Here x represents the point in Γ
with the velocity u = u(x). By describing Dirichlet boundary conditions (BC) for u,
we have a boundary value problem. To obtain the exact solution of such problem is
in general impossible. However, there is a variety of different numerical schemes,
such as e.g. finite elements or finite differences which give an approximation of the
solution (up to a certain accuracy) on a discrete (finite dimensional) subdomain, say
Γ∗ ⊂ Γ . Actually Γ∗ represents the set of nodes of the grid which covers Γ . To solve
the flow problem (7.1.1) defined by such velocity and the initial condition I0 ⊆ Γ ,
one needs to solve an autonomous ODE with discretely given u.

Let us consider the problem (7.4.4), where x = [x, y]T is the point in Cartesian coor-
dinates, u = [ux(x, y), uy(x, y)]

T and

(7.4.5) F(x, y) = − cosy − x siny.

114 The flow method for solving vectorial ODEs

The domain is a rectangle (see Figure 7.4.4a) defined by

(7.4.6) Γ := {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 } .

Let the boundary conditions be given by

(7.4.7) u(x)|∂Γ =

[0, 0]
T
, x = 0,

[

−1
2
x2, 0

]T
, y = 0,

[

−9
2

cosy, 3 sin y
]T
, x = 3,

[

− cos 3
2
x2, x sin 3

]T
, y = 3.

To obtain the numerical solution of this problem one needs to discretise (7.4.4). To
avoid a discussion on error contamination due to this discretisation we will use the
exact solution of the boundary value problem, which we happen to know in this
case. Indeed, we find a solution of (7.4.4), (7.4.5), (7.4.6) and (7.4.7)

0 3
0

3

x

y

Γ

(a) The domain Γ

0 0.5 1 1.5 2 2.5 3
0

0.5
1

1.5
2

2.5
3

x

y

Γ

(b) The triangular grid

0 0.5 1 1.5 2 2.5 3
0

0.5
1

1.5
2

2.5
3

x

y

Γ

I0

(c) The flow initial condition

FIGURE 7.4.4. The boundary problem domain

(7.4.8)
[

ux

uy

]

=

[

−1
2
x2 cos y
x sin y

]

.

We will assume this to be known at a set of grid points {xk}
n
k=1 ∈ Γ∗ only. Now, let

us define the flow problem

(7.4.9)
[

dx
dt
dy
dt

]

=

[

ux

uy

]

,

with initial condition x(0) ∈ I0, where I0 is a quarter of an ellipse defined by

(7.4.10) I0 =

{
(x, y)

∣

∣

∣

∣

x2

4
+ y2 ≤ 1, x, y ≥ 0

}
.

Clearly I0 ⊂ Γ as shown in Figure 7.4.4c and it is discretised (as pointed out in
Section 7.1) by a set of points {xj}

µ

j=1
. Assuming well-posedness these points can be

placed at the boundary of the flow only. Now we apply the flow method, defined by
(7.1.5) and (7.1.13), and compute the flow evolution in time, see Figure 7.4.5. Here
we take h = 0.01, nj = 10 and Tf = 2.0. To compare the results we also compute the
solution of the ”standard” IMR method with the same time step size.

By taking the ∞−norm of the vector of differences between results for both coor-
dinates we have the measure of the additional error (coming from interpolation)
introduced by the flow method. We perform the numerical experiment by taking
n = 6 × 6, 11 × 11, 21 × 21, 41 × 41, 81 × 81, for which we have the corresponding
spatial step (for both coordinates) ∆y = 0.6, 0.3, 0.15, 0.075, 0.0375 and ∆x =

√
2∆y.

7.4 Practical Aspects 115

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x

y

FIGURE 7.4.5. Quarter of ellipse time evolution

Now we can observe how the interpolation error behaves in time, depending on the
size of the spatial step used, see Figure 7.4.6a. Here, the thicker the line the smaller
the grid step size. Note that even for a relatively large spatial step size (∆y ≤ 0.3),
the order of the error is smaller then O

(

h2
)

, which is the order of IMR, even for the
relatively long time scale introduced here. This means that we can compute the flow
evolution relatively cheaply (without using extreme number of grid points) and yet
keep the interpolation error negligible comparing to the local discretisation error for
a large number of time steps. The interpolation error is again quadratically depen-
dent on the diameter of the simplex, which can be shown by computing the error
at the end of the computational time for different values of a. Again we obtain the
relation, which is close to quadratic function q(a) = Ca2, see Figure 7.4.6b (where
C = 0.00075). For the volume preservation results one should see [32], where this
example was introduced.

0 0.5 1 1.5 2 2.5
10

−8

10
−6

10
−4

10
−2

t

||
e|

| ∞

(a) Error in time (thicker line - smaller ∆x)

0 0.2 0.4 0.6 0.8 1
0

2

4

6
 x10

−4

∆x

||
e|

| ∞

q(∆x) = C∆x 2

(b) Error-diameter dependence

FIGURE 7.4.6. Error in time and as a function of the diameter

7.4.3 Harmonic oscillator synchronisation

Consider a synchronisation control problem of the harmonic oscillatory system intro-
duced in [50] and shown in Figure 7.4.7. Although the original problem concerns the
control of both the amplitude and the phase of the system, we restrict ourselves to the

116 The flow method for solving vectorial ODEs

amplitude synchronisation only, since in these settings the problem is autonomous.
Moreover, we restrict ourselves to the unperturbed, two-phase oscillator.

FIGURE 7.4.7. Variable structure control of the oscillatory harmonic system

A mathematical model of such a system is given by the following ODE system

(7.4.11) ẋ = A x + B(x) v(x) := u(x),

where x = [x1, x2]
T and v(x) = [v1 (x1, x2) , v2 (x1, x2)]

T . Matrices A and B(x) are
defined by

(7.4.12) A :=

[

0 ω0

−ω0 0

]

, B(x) :=

[

x1 x2

x2 −x1

]

.

The value ofω0 represents the natural radial frequency of the oscillatory system and
the matrix B(x) is chosen in such a (symmetrical) form to allow decoupling of the
amplitude and the phase control.

As mentioned, we are only interested in the synchronisation of amplitude, say xA(t),
with the amplitude of the reference input signal, say rr. Then the control requirement
can be expressed as

(7.4.13) xA(t) = rr,

and we assume that amplitudes of the both components of x are the same. The
reference input signal is given by

(7.4.14) r :=

[

rr sin (ωrt + θr0)

rr cos (ωrt+ θr0)

]

.

Since the phase control is omitted, the role of the referent frequency ωr and initial
angle θr0 is insignificant.

As shown in detail in [50], the control law is constructed by ensuring a sliding mode
regime of the system on an appropriate sliding surface, say s, defined by

(7.4.15) s (x1, x2) := r2r − x2
1 − x2

2.

Obviously, if the sliding regime, on the nonlinear sliding surface s = 0, is possible,
requirement (7.4.13) is fulfilled. Hence by choosing

(7.4.16) v(x) :=

[

αψ
(

r2r − x2
1 − x2

2

)

0

]

,

where ψ is the switching function, the solution will reach the sliding surface in finite
time. Hence we obtain the control goal, since after this time (7.4.13) holds. We remark
that the second component of v is set to zero since we are not interested in controlling
the phase of the system.

7.4 Practical Aspects 117

In the theory of the variable structure control systems the switching function is often
modelled by the signum function, i.e. ψ(x) := sgn(x), where

(7.4.17) sgn(x) =

−1, x < 0,

0, x = 0,

1, x > 0.

However, in practical realisations electrical switches do not have such (ideal) transfer
functions. Often their (real) transfer functions are functions that are approximately
close to (7.4.17). For example, as shown in [1], the voltage controlled switch is ap-
proximated by a transfer function defined by

(7.4.18) ψ(x) =

−1, x < 0,

φ(x), x = 0,

1, x > 0,

where

(7.4.19) φ(x) =

X = x−X0

2 X0
,

Y = 2X2, X < 0.5,

Y = 1 − 2 (X − 1)2, X ≥ 0.5,
φ(x) = <

{
(−1)

1−Y
}
.

To obtain the exact transfer function, one would need to perform an experiment.
The result would then be a discrete set of tabular values. Here, for simplicity we just
sample the approximate switching function ψ at n points, with X0 = 0.2, as shown
in Figure 7.4.8.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

ψ(x)

FIGURE 7.4.8. Transfer function of the voltage controlled switch

By taking ω0 = 6, rr = 1 and α = 3 and by substituting the discrete switching
function ψ into (7.4.16) and (7.4.11) we obtain the velocity field u. On a rectangle

(7.4.20) Γ := {(x1, x2) | −2 ≤ x ≤ 2, −2 ≤ y ≤ 2 } ,

the first component of the velocity field u1 is shown in Figure 7.4.9. The other one is
linear. To obtain the velocity field, we triangularize Γ by n× n, where

(7.4.21) ∆x =
4
√
2

n − 1
,

represents the diameter of the original grid.

118 The flow method for solving vectorial ODEs

−2
−1

0
1

2

−2

0

2
−20

−10

0

10

20

x
1

x
2

u
1
(x

1
,x

2
)

FIGURE 7.4.9. The first component of the velocity field

Since the solution approach time to the sliding surface depends on initial values, we
take a set

(7.4.22) I(x, 0) := {(x1, x2) | −1.5 ≤ x ≤ 1.5, −1.5 ≤ y ≤ 1.5 } ,

to be the initial flow. Of course, to obtain the flow, we first need to discretise the set
I(x, 0). Let us taken = 16 points equispaced points (four per direction) on a rectangle
I(x, 0). Now, we have the initial flow as I0 =

{
x0

j

}15

j=0
.

To compute the solution, we need an appropriate numerical method. Since the sys-
tem, once the sliding mode is ensured, is in the Hamiltonian form, we choose (like in
the previous example) a symplectic method. Hence we apply the flow method based
on IMR. By taking h = π/30

.
= 0.1, ∆x = 0.1 and the time of computation Tf = π/2,

we obtain the solution as shown in Figure 7.4.10 from two different aspect angles.
Clearly, after some finite time interval the flow solutions are close to the unit circle,
which is represented as a cylinder in time.

x

x

FIGURE 7.4.10. Flow in time

Numerically the most interesting aspect of this problem is the preservation of the
amplitude for larger time intervals. As known, some numerical methods generate
an increasing global error, causing the increase or decrease of the amplitude in time.
Of course, the IMR does not have this problem, since it is a symplectic method and
the flow method should preserve this property. Hence let us solve the same problem,

7.4 Practical Aspects 119

with the same values of coefficients, but on the interval Tf = 45 π. The result is given
in Figure 7.4.11a, where we show the amplitude of the solution as function of the
number of periods, say t∗. The amplitude is not constant, which is caused by the
imperfections of the switching function, the sliding mode algorithm and, most of
all, the relatively large time step. However, one should note that the value of the
amplitude stays in the neighbourhood of the input amplitude. In other words, there
is effectively no increase (or decrease), even for a relatively large time scale.

In this particular case we know the exact switching function, whence we can com-
pute the solution by applying the standard IMR. The difference between two results
is actually the interpolation error, which is shown in Figure 7.4.11b. Since interpola-
tion is linear, one should note that the error is commensurate with the latter.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

t∗

x
A

(t∗)

(a) Amplitude

0 20 40 60 80 100 120 140
10−5

10−4

10−3

10−2

10−1

100

t∗

r
h
(t∗)

h=∆x=0.1
h=∆x=0.05

(b) Interpolation error

FIGURE 7.4.11. Numerical results

7.4.4 Stokes problem

Consider the motion of a viscous axisymmetric body driven by the surface tension
introduced in [32]. At a fixed time point and on a certain spatial domain Γ , the
problem is described by the Stokes equations (see [41])

∇ · u = 0,

∇ · σ = 0,(7.4.23)

where σ = −p I +
(

∇u + ∇uT
)

is the stress tensor. Here u is the velocity of the fluid
and p is the pressure. Let us assume the body to be axisymmetric, so we then have
(in cylindrical coordinates) u = [ur, uz]

T . The evolution of the body is given by the
flow problem

(7.4.24)
{

dx
dt

= u, x = [r, z]
T
,

x(0) ∈ I(x, 0).

In particular we are interested in the flow of the boundary of the computational
domain Γ . Of course, the initial flow is defined by the boundary of the initial compu-
tational domain, say Γ0. Let us take Γ0 to be an ellipsoid with principle axes in r and
z direction equal to 1 and 0.5 respectively. Employing the symmetry of the body, it
is sufficient to let Γ0 be a quarter of an ellipse. In Figure 7.4.12 the time evolution of
the ellipsoid is shown.

120 The flow method for solving vectorial ODEs

FIGURE 7.4.12. Time evolution of the ellipsoid

To solve (7.4.23) we need boundary conditions. At a particular time point ti, the
boundary is defined by the flow Ii that consists of three parts Ii

Or, Ii
Oz and Ii

ρ, where
Ii
Or and Ii

Oz are parts of r and z axes and Ii
ρ is defined by the free boundary, see

Figure 7.4.13 for the initial flow.

I
ρ

I
Or

I
Oz

FIGURE 7.4.13. Initial flow

For x ∈ Ii
Or ∪ Ii

Oz we have symmetric boundary conditions

u · n = 0,

σn · t = 0,(7.4.25)

where n is the outward normal and t is the tangent to the boundary. For x ∈ Ii
ρ we

take surface tension boundary conditions (see [41]), which read

(7.4.26) σn = −κ(ρ) n,

where κ(ρ) is the curvature of the boundary.

The solution of (7.4.23) can e.g. be obtained by using a finite element method as
shown in [32]. A thus obtained velocity can be used for solving the flow problem
(7.4.24). Rewriting the system (7.4.24) in Hamiltonian form we can also numerically

7.4 Practical Aspects 121

preserve the body volume if we use a symplectic numerical method. Applying the
flow method based on the implicit midpoint rule, one can solve the time evolution
of the flow as already shown in previous examples. However, in this example the
velocity field is not quite autonomous, since it depends on the time dependent free
boundary. Hence (7.1.7) does not hold. On the other hand, from

(7.4.27) u
(

ti+1/2, x
)

.
= u

(

ti, x
)

+
h

2

∂u
(

ti, x
)

∂t
,

it follows that the explicit time dependence of u can be neglected if the following
holds

(7.4.28)
h

2

∥

∥

∥

∥

∂u (t, x)

∂t

∥

∥

∥

∥

t∈[ti,ti+1/2]
� ‖u (t, x)‖

t∈[ti,ti+1/2] , x ∈ Γ.

In this particular example if

(7.4.29)
h

2

∥

∥

∥

∥

∂u (t, x)

∂t

∥

∥

∥

∥

t∈[ti,ti+1/2]
= O

(

∆x2
)

,

where ∆x is the largest diameter of the grid elements, the overall accuracy is the
same, if the finite element method has the second order accuracy. To verify this,
we fix a number of control points near the free boundary where the velocity field
changes the most, see Figure 7.4.14a. We compute velocity differences ∆ur and ∆uz

at these points at two consecutive time-levels, see Figure 7.4.14b. Here ρ denotes
the distance from the origin to a control point. The number of boundary nodes is
nb = 26, which gives ∆x ≈ 0.08. Since ∆ur, ∆uz = O(∆x2), it is clear that (7.4.29)
holds, which allows us to implement the flow method directly.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

r

z

(a) Control points

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

x 10−3

ρ

∆u

∆u
r

∆u
z

(b) Velocity differences

FIGURE 7.4.14. Velocity differences computed over a single time
step (h = 0.01, ∆x = 0.03)

Numerical results obtained in [32] are shown in Figure 7.4.15. One should note that
the accuracy of the computed area is much higher than the discretisation error.

122 The flow method for solving vectorial ODEs

0 0.2 0.4 0.6

0

2

4

6

8

10
 x10

−7

nb

2nb

FIGURE 7.4.15. The evolution of the volume error (h = 0.01, nb = 27)

CHAPTER 8

Conclusions and recommendations

Standard approach for solving ODE flows by applying implicit numerical methods
involve Newton iteration for which the iterative function needs to be known explic-
itly as well as the Jacobian of the velocity. Moreover, iteration is a recursive process
and the convergence is not guaranteed in general. In this thesis we developed a new
method for solving autonomous flow problems, which has some advantages over
the standard methods that are typically used. The method is based on inverse inter-
polation and it needs known values of the velocity field at some spatial points only,
i.e. it does not require the velocity to be explicitly expressed. It does not introduce
recursion and it is effectively an explicit method. The accuracy is similar to the ac-
curacy of the employed implicit method, assuming that the interpolation accuracy
is sufficient. The interpolation error can be controlled independently by choosing an
appropriate grid and an appropriate interpolation method.

The interpolation method used by the flow method, needs to satisfy several pre-
requisites. Firstly, the method should be appropriate for interpolation of scattered
data, since interpolation is performed on an irregular grid in general. Secondly, the
interpolation accuracy should be sufficient so that the interpolation error be com-
mensurate with the local discretisation error of the standard implicit method em-
ployed. Finally, interpolation computational costs should not be large, especially
for higher dimensional problems. Interpolation should preferably be done locally,
which should decrease computational costs and relax the implementation problems.
An example of a method that has these characteristics is piece-wise linear interpo-
lation. This method showed satisfactory results, both with respect to accuracy and
stability.

In this thesis we considered some of the most important implicit numerical methods,
in particular BDF methods, and some implicit RK methods such as Gauss, Radau,
Lobatto and DIRK methods. Beside the stability and the accuracy analysis, we also
investigated the well-posedness of the solution, i.e. conditions for flow integral
curves not to intersect. It turns out that not all of the methods mentioned gener-
ate satisfactory results. The flow method mimics this property, which is important
for choosing the method to be used.

Practical aspects of the flow method considered here are problems from fluid dynam-
ics, electrical networks and control systems. We have solved a number of stiff and
Hamiltonian problems with a discretely given velocity field. Although the method
is constructed for autonomous problems, it can successfully be applied to a class of

124 Conclusions and recommendations

non-autonomous problems where explicit time dependence of the velocity field is
expressed via the forcing term only. Moreover, the method can produce satisfactory
results even for general non-autonomous problem if the velocity is relatively slowly
changing in time, i.e. over a single time-step of integration.

If the problem that needs to be solved is stiff and the stiffness is not related to the
explicit time dependence of the velocity field, one can simply extrapolate velocity
values over a single time interval and yet obtain satisfactory results. For solving
Hamiltonian problems, in particular the evolution of a material blob with a slowly
(in time) varying velocity field (defined by Stokes equations), it was shown that re-
sults obtained by the flow method based on implicit symplectic method are much
more accurate than ones obtained by some explicit (non-symplectic) method, such
as e.g. Euler Forward. For problems where the velocity field is not slowly varying
in time, the flow method can be used in combination with an additional numerical
method, which should be used for computing several starting values only in order
to obtain the information about the explicit time dependence of the velocity field.
Then by increasing the dimensionality of the system, i.e. by including time as the
additional unknown, the problem is transformed into the autonomous form.

Implicit numerical methods are also used for solving other, more complex problems
described by DAEs (Differential Algebraic Equations) and PDEs (Partial Differential
Equations). The principle of the flow method shows that the method implementation
can similarly be done for these problems. Moreover, solving some one-dimensional
semidiscretised PDEs showed that the solution can be obtained by applying univari-
ate interpolation only, although the actual ODE system is of much higher dimen-
sionality (coming from spatial discretisation). This can decrease computational costs
tremendously, since there is no need to compute the Jacobian of the higher dimen-
sional system. However, since this is not the case in general, it was not included in
this thesis.

Bibliography

[1] AGILENT. Circuit Components System Models. Tech. rep., 2002.
[2] AHLBERG, J. H., NILSON, E. N., AND WALSH, J. L. The Theory of Splines and Their Applications.

Academic Press, 1967.
[3] AUBIN, T. A Course in Differential Geometry. American Mathematical Society, 2001.
[4] BERNSTEIN, S. N. Démonstration du théorème de weierstrass fondée sur le calcul des probabilités.

Comm. Soc. Math. Kharkov 13 (1912), 1–2.
[5] BLU, T., THÉVENAZ, P., AND UNSER, M. How a simple shift can significantly improve the perfor-

mance of linear interpolation. In Proceedings of the 2002 IEEE International Conference on Image Process-
ing (ICIP’02) (Rochester NY, USA, September 22-25, 2002), vol. III, pp. 377–380.

[6] BOOTHBY, W. M. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press,
Inc., 1975.

[7] BROWNLEE, R., AND LIGHT, W. Approximation orders for interpolation by surface splines to rough
functions. IMA J. Numer. Anal. (to appear).

[8] BUTCHER, J. C. Implicit Runge-Kutta processes. Math. Comp. 18 (1964), 50–64.
[9] BUTCHER, J. C. A stability property of implicit Runge-Kutta methods. BIT 15 (1975), 358–361.

[10] BUTCHER, J. C. The Numerical Analysis of Ordinary Differential Equations. John Wiley & Sons, 1987.
[11] CAROTHERS, N. L. A short course on approximation theory. Tech. Rep. Math 682, Bowling Green

State University, 1998.
[12] CHENEY, E., AND LIGHT, W. A Course in Approximation Theory. Brooks Cole, Pacific Grove, 2000.
[13] CURTISS, C. F., AND HIRSCHFELDER, J. O. Integration of stiff equations. Proceedings of the National

Academy of Sciences of the United States of America 38 (1952), 235–243.
[14] DE BOOR, C. A Practical Guide to Splines. Springer, 1978.
[15] DEKKER, K., AND VERWER, J. G. Stability of Runge-Kutta methods for stiff nonlinear differential equations.

North-Holland, 1984.
[16] DEVORE, R. A., AND LORENTZ, G. G. Constructive Approximation. Springer-Verlag, 1993.
[17] DORSSELAER, J. L. M., AND SPIJKER, M. N. The error committed by stopping the Newton iteration

in the numerical solution of stiff initial value problem. IMA J. of Num. An. 14 (1994), 183–209.
[18] DUCHON, J. Sur l’erreur d’ interpolation des fonctions de plusieurs variables par les Dm-splines.

RAIRO Analyse numerique 12 (1978), 325–334.
[19] EHLE, B. L. High order A-stable methods for the numerical solution of systems of differential equa-

tions. BIT 8 (1968), 276–278.
[20] FRANKE, R. Scattered data interpolation: Tests of some methods. Mathematics of Computation 38

(1982), 181–200.
[21] GEAR, C. W. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.
[22] GRAY, P. R., HURST, P. J., LEWIS, S. H., AND MEYER, R. G. Analysis and design of analog integrated

circuits, 4th ed. John Wiley & Sons, 2001.
[23] HAIRER, E., NORSET, S. P., AND WANNER, G. Solving ordinary differential equations I - Nonstiff prob-

lems. Springer-Verlag, 1987.
[24] HAIRER, E., AND WANNER, G. Solving ordinary differential equations II - Stiff and differential-algebraic

problems. Springer-Verlag, 1991.
[25] HANDSCOMB, D. C. Errors of linear interpolation on a triangle. Tech. Rep. Research Report NA-

95/09, Oxford University, 1995.
[26] HARTMAN, P. Ordinary Differential Equations. John Wiley & Sons, 1964.
[27] JOHNSON, M. J. The L2-approximation order of surface spline interpolation. Mathematics of Compu-

tations 70 (2000), 719–737.
[28] KREYSZIG, E. Introductory Functional Analysis with Applications. John Wiley & Sons, 1989.

126 Bibliography

[29] KUNTZMANN, J. Neure entwicklungen der methoden methoden von runge und kutta. Z. Angew.
Math. Mech. 41 (1961), 28–31.

[30] KUNZ, K. S. Numerical Solutions of Ordinary Differential Equations: Methods of Starting the Solution.
McGraw-Hill, 1957.

[31] LAMBERT, J. D. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John
Wiley & Sons Ltd., 1991.

[32] MATTHEIJ, R. M. M., AND LAEVSKY, K. Numerical volume preservation of a divergence free fluid
under symmetry. Tech. Rep. RANA 01-11, Eindhoven University Of Technology, 2001.

[33] MATTHEIJ, R. M. M., AND MOLENAAR, J. Ordinary Differential Equations in Theory and Practice. John
Wiley & Sons, 1996.

[34] MEINGUET, J. Surface spline interpolation: Basic theory and computational aspects. In Approximation
Theory and Spline Functions (1984), S. P. Singh, Ed., D. Reidel Publ. Company, pp. 127–142.

[35] MHASKAR, H. N., AND PAI, D. V. Fundamentals of Approximation Theory. Narosa Publishing House,
2000.

[36] MILOVANOVIĆ, G. Numerička Analiza - II deo. Naučna Knjiga, 1991.
[37] ORTEGA, J. M., AND RHEINBOLDT, W. C. Iterative Solution of Nonlinear Equations in Several Variables.

Academic Press, Inc., 1970.
[38] OSHER, S., AND SETHIAN, J. A. Fronts propagating with curvature-dependent speed: algorithms

based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 1 (1988), 12–49.
[39] POWELL, M. J. D. The uniform convergence of thin plate spline interpolation in two dimensions.

Numer. Math. 68 (1994), 107–128.
[40] RAMSDEN, D., AND HOLLOWAY, G. Timestepping Langrangian particles in two dimensional Euler-

ian flow fields. Journal of Computational Physics 95 (1991), 101–116.
[41] RICHARDSON, S. Two-dimensional Stokes flows with time-dependent free boundaries driven by

surface tension. European Journal of Applied Mathematics 8 (1997), 311–330.
[42] RIENSTRA, S. W., AND CHANDRA, T. D. Analytical approximations to the viscous glass flow prob-

lem in the mould-plunger pressing process, including an investigation of boundary conditions. Jour-
nal of Engineering Mathematics 39 (2001), 241–259.

[43] RIPPA, S. Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Anal. 29 (1992),
257–270.

[44] ROSSO, R., SONNET, A. M., AND VIRGA, E. G. Evolution of vesicles subject to adhesion. R. Soc. Lond.
Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), 1523–1545.

[45] SANDWELL, D. T. Biharmonic spline interpolation of geos-3 and seasat altimeter data. Geophysical
Research Letters 14 (1987), 139–142.

[46] SANZ-SERNA, J. M., AND CALVO, M. P. Numerical Hamiltonian Problems. Chapman & Hall, 1994.
[47] SUBBOTIN, Y. N. Dependence of estimates of a multidimensional piecewise polynomial approxima-

tion on the geometric characteristics of the triangulation. Proc. Stek. Inst. Math. 189 (1990), 135–159.
[48] SUBBOTIN, Y. N. Error of the approximation by interpolation polynomials of small degrees on n-

simplices. Math. Notes 48 (1990), 1030–1037.
[49] VAN DE VORST, G. A. L. Numerical simulation of axisymmetric viscous sintering. Engineering Anal-

ysis with Boundary Elements 14 (1995), 193–207.
[50] VESELIĆ, B., AND Č. MILOSAVLJEVIĆ. Sliding mode based harmonic oscillator synchronization. In-

ternational Journal of Electronics 90 (2003), 553–570.
[51] WALDRON, S. The error in linear interpolation at the vertices of a simplex. SIAM Journal on Numerical

Analysis 35 (1998), 1191–1200.
[52] WEIERSTRASS, K. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer

reellen veränderlichen. Sitzungsberichte der Akademie zu Berlin (1885), 633–639 and 789–805.
[53] WIDLUND, O. B. A note on unconditionally stable linear multistep methods. BIT 7 (1967), 65–70.
[54] WILLIAMS, J. Existence and uniqueness of solutions of the algebraic equations in the BDF methods.

Tech. Rep. Numerical Analysis Report No. 272, University Of Manchester, 1995.
[55] YAMAMURA, K. An efficient algorithm for finding all solutions of piecewise-linear resistive circuits.

IEEE Transactions on Circuits and Systems 39 (1992), 213–221.
[56] YOON, J. Lp-error estimates for "shifted" surface spline interpolation on Sobolev space. Mathematics

of Computations 72 (2002), 1349–1367.

Index

algebraic polynomial, 27
approximation, 27

function, 27
autonomous

flow problem, 11
ODE, 8, 49

basis functions, 27
BDF methods, 16, 67
biharmonic equation, 42
boundary value problem, 61
Butcher matrix, 18, 81
BVP, see boundary value problem

consistency, 17, 19
consistency order, 95, 106

of LMM, 17
of RK, 19

contractivity condition, 109
of EB, 60
of ODE, 19
of the flow method, 60

diagonally implicit Runge-Kutta, 18, 22,
84

diameter, 34
diffeomorphism, 44, 105
difference equation, 12
discretisation

spatial discretisation, 28
time discretisation, 12

EB, see Euler Backward
EF, see Euler Forward
error constant

of LMM, 17
Euler Backward, 13, 50, 104
Euler Forward, 12
existence

of ILMM solution, 15

of IRK solution, 24
of ODE solution, 9

explicit
LMM, 15
Runge-Kutta methods, 18

flow, 10, 50
problem, 10

flow method, 51, 67, 81, 103

Gauss method, 20
global error, 79
grid, 28

homeomorphism, 44

implicit
linear multistep method, 15
Runge-Kutta method, 18, 81

initial condition, 7
initial value problem, 7
injective map, 43
interpolation, 27

domain, 28
error, 30, 57, 95
nearest-neighbour, 32
nodes, 28
piece-wise

cubic, 32
functions, 28
linear, 32, 107

problem, 28
inverse function theorem, 44
inverse interpolation problem, 44
IRK, see implicit Runge-Kutta
IVP, see initial value problem

Jacobian, 8
matrix, 8, 25

128 Index

linear multistep method, 15, 68
linear test problem, 13, 17
Lipschitz

condition, 9
one-sided, 9, 16, 19

constant, 9, 24
one-sided, 9

continuous, 9
LMM, see linear multistep method
Lobatto

IIIA, 21
IIIB, 21
IIIC, 21

local discretisation error
of EB, 55
of LMM, 17
of RK, 19, 95

local error
of the flow method, 55, 75

midpoint rule
explicit, 16
implicit, 103

multi-index, 40

natural boundary conditions, 41
Newton method, 25
norm
Lp−norm, 29
L∞−norm, 29
∞−norm, 29
Euclidean norm, 9
Hölder norm, 29

numerical solution of ODE, 12

one-step method, 18
explicit, 13
implicit, 13

orbit, 8
positive orbit, 8

order of interpolation accuracy, 30

piece-wise functions, 32

quadrature formulae, 12

Radau
IA, 20
IIA, 20

radial basis function, 41
RK, see Runge-Kutta methods
Runge-Kutta methods, 18

simplex, 28
singly diagonally implicit Runge-Kutta,

22
solution curve, 8, 11
spline, 27, 32

biharmonic, 33, 42
cubic, 32
surface, 41
thin-plate spline, 42

stability
A-stability, 14
A(α)-stability, 14
B-stability, 19
L-stability, 15
of ODE solution, 10
root-stability, 17
total stability, 10

stability domain, 13, 18, 59, 77
stability function, 13

of Euler Backward, 59
of RK, 19

stages of RK method, 18
state space, 8
stationary point, 8, 78
stiff problems, 13

time step, 12
time-grid, 12
time-state space, 8
topology preservation, 45, 53, 85, 106
trajectory, 8

uniqueness
of ILMM solution, 15
of IRK solution, 24
of ODE solution, 9

velocity field, 8

Weierstrass theorem, 30
well-posedness

of Euler Backward method, 53
of IRK methods, 85
of LMM solutions, 70

Summary

Ordinary differential equations (ODEs) are present in almost every technical disci-
pline. Electrical circuits, mechanical systems, control problems, physical and chem-
ical processes, etc. are typically modelled by systems of ODEs. Many of these are
autonomous. For example, in glass industry the common ODE problem is a deform-
ing material blob, where one needs to obtain the boundary evolution of the molten
glass. To solve such a problem, one needs to obtain the time evolution of a contin-
uum of solutions, which is called a flow. Another example is coming from electrical
networks where one is interested in the circuit behaviour under the influence of var-
ious initial values or variations of components parameters. The solution is again a
flow, which needs to be obtained on a certain time interval.

Although the theory is extensive, solving a flow problem cannot be seen as a trivial
task in general. Since not all ODEs can be solved analytically, the solution has to
be obtained numerically. To do so one needs to perform a proper time discretisa-
tion. This discretisation is done by a numerical method for solving ODEs. Numer-
ical methods are numerous and their application area depends on the nature of the
problem. How to choose an appropriate numerical method for a particular problem
depends on dimensionality, requested accuracy, stiffness, preservation of volume,
energy, etc. Often one needs to use an implicit method, like for solving so-called stiff
problems or problems where the preservation of the volume is an essential issue.
Implicit methods introduce an additional problem in solving (non)linear system of
equations at every time-level. To solve such a system, one needs to use Newton’s
iterative method. This is not a straightforward matter as the iteration function is not
known explicitly.

In this thesis a new method is constructed based on existing implicit methods. To
preserve favourable properties of these methods and avoid iteration, we apply in-
verse interpolation. Inverse interpolation turns out to be a powerful tool for solving
nonlinear systems coming from discretised ODEs. Moreover, the interpolation the-
ory is rich and a variety of interpolation methods can be used in these settings. The
natural choice is for a method which is not computationally expensive, like piece-
wise linear interpolation. This method is easy to implement and does not require
regular grids.

The method discussed in this thesis is referred to as the flow method. It can be
based on any existing implicit integration method. The most interesting ones are
linear multistep methods and Runge-Kutta methods that are used for solving stiff
problems; in particular, BDF and methods based on Gaussian quadrature, such as
Gauss, Radau and Lobatto, which are A(α)-stable. The flow method inherits this
property and gives similar results. The method can also be constructed based on

130 Summary

so-called symplectic methods, which are used for solving Hamiltonian problems.
Some of these methods, like the midpoint rule, are implicit and introduce similar
implementation difficulties. In problems, where the volume needs to be preserved
during the computational time, the implementation of the flow method shows that
this can be done with high accuracy even for large time scales.

The accuracy of the flow method depends on two sources of errors. The first one
arises from discretisation and the second one from interpolation. The overall error
should be controlled so that both errors are the same order. This can be achieved by
choosing a proper time discretisation and a proper interpolation method.

A number of numerical examples illustrates the potential of the method. It is also
shown that the flow method can be applied successfully for problems where the
explicit time dependency is present via a forcing term only.

Samenvatting

Gewone differentiaal vergelijkingen komen in bijna elke discipline voor. Elektrische
circuits, mechanische systemen, sturingsproblemen, scheikundige en natuurkundige
processen enz. worden typisch gemodelleerd door stelsels van differentiaalvergeli-
jkingen. Veel van deze systemen zijn autonoom. Een probleem, dat bijvoorbeeld
voorkomt in de glasindustrie, is het berekenen van de voortgang van de positie van
de rand van een vervormende glazen bel. Om zo’n probleem op te lossen, moet de
tijdsevolutie van een geheel aan oplossingen worden verkregen, wat een stroming
wordt genoemd. Een ander, vergelijkbaar voorbeeld kan worden gevonden bij de
bestudering van elektrische netwerken, waarbij men geïnteresseerd is in het gedrag
van het circuit onder invloed van verschillende beginvoorwaarden of variaties in
de parameters van de componenten. De oplossing is weer de stroming die op een
bepaald tijdsinterval bepaald dient te worden. Deze problemen worden dan ook wel
stromingsproblemen genoemd.

Hoewel de theorie uitgebreid is, is het oplossen van een stromingsprobleem door-
gaans verre van triviaal. Omdat niet alle differentiaalvergelijkingen analytisch kun-
nen worden opgelost, wordt de oplossing doorgaans numeriek verkregen. Hier-
toe dient men vooraleerst een deugdelijke discretisatie van tijd en ruimte uit te vo-
eren. De tijdsdiscretisatie wordt hierbij gedaan door een numerieke methode voor
het oplossen van gewone differentiaalvergelijkingen. Er bestaan veel van deze nu-
merieke methoden; hun toepassing hangt af van de aard van het probleem. De
keuze van een bepaalde methode hangt af van de dimensionaliteit, de benodigde
nauwkeurigheid, de stijfheid, het behoud van volume of energie, enz. Ze komen in
zowel expliciete als impliciete vorm voor. Als de stijfheid van het probleem of juist
het behoud van volume een grote zorg zijn, moet doorgaans een impliciete methode
gebruikt worden. Deze impliciete methoden introduceren helaas een aanvullend
probleem, omdat ze vereisen voor elke tijdstap een stelsel niet-lineaire vergelijkin-
gen op te lossen. Hiervoor wordt Newton’s methode voor gebruikt, waarvan de
convergentie helaas niet gegarandeerd kan worden. De situatie wordt verder be-
moeilijkt als de functie, waarover geïtereerd wordt, niet expliciet bekend is.

In dit proefschrift wordt een nieuwe methode geconstrueerd gebaseerd op besta-
ande impliciete methoden. Om de gunstige eigenschappen van deze methoden te
behouden maar iteratie te vermijden, passen we inverse interpolatie toe. Inverse
interpolatie blijkt een krachtig gereedschap voor het oplossen van de niet-lineaire
stelsels, die uit gediscretiseerde differentiaalvergelijkingen volgen. Bovendien is de
theorie over interpolatie rijk, en kunnen talloze interpolatie technieken voor dit doel
gebruikt worden. Voor de hand liggende keuzes zijn rekenkundig goedkope metho-
den, zoals bijvoorbeeld stuksgewijs lineaire interpolatie. Deze laatste is gemakkelijk

132 Samenvatting

te implementeren en heeft geen regulier rooster nodig. Om echter nauwkeurigere
resultaten te behalen, kunnen ook hogere-orde methoden toegepast worden. Voor-
beelden van zulke methoden zijn stuksgewijs derdegraads interpolatie, oppervlakte-
spline interpolatie, en biharmonische spline interpolatie.

De stromingsmethode kan worden gebaseerd op elke willekeurige bestaande im-
pliciete numerieke methode. De interessantste zijn lineaire meerstapsmethoden en
Runge-Kutta-methoden voor stijve problemen; in het bijzonder BDF en methoden,
die zijn afgeleid van Gausse kwadratuur, zoals Gauss, Radau, en Lobatto. Deze
methoden zijn A(α)-stabiel en worden vaak gebruikt om stijve problemen op te
lossen. De stromingsmethode erft deze eigenschap en geeft vergelijkbare resultaten.
De stromingsmethode kan ook worden afgeleid waarbij deze gebaseerd wordt op
zogenaamde symplektische methoden, die gebruikt worden om Hamiltonse prob-
lemen op te lossen. Enkele van deze methoden, zoals de impliciete midpuntsregel,
zijn impliciet en introduceren vergelijkbare moeilijkheden bij implementatie.

Voor problemen waarbij het volume gedurende de berekening behouden moet bli-
jven, toont onze implementatie van de stromingsmethode aan, dat zelfs voor heel
grote tijdsschalen hoge nauwkeurigheid behaald kan worden. De nauwkeurigheid
van de stromingsmethode hangt van twee factoren af: ten eerste van de discreti-
satiefout in de eerdergenoemde onderliggende methoden; ten tweede van de in-
terpolatiefout. De gezamenlijke fout dient dusdanig gecontroleerd te worden dat
beide samenstellende fouten van dezelfde orde zijn. Dit gebeurt door de juiste
discretisatie-methode bij de juiste interpolatie-methode te kiezen.

Numerieke voorbeelden laten zien dat de hier afgeleide methode veel potentieel
biedt voor het oplossen van autonome stromingsproblemen. Bovendien is ze even
succesvol voor de klasse van niet-autonome problemen, waarbij de tijdsafhankeli-
jkheid van het snelheidsveld wordt weergegeven via de krachtsterm. Het belan-
grijkste voordeel van de stromingsmethode is dat het gebruikt kan worden voor
problemen waar het snelheidsveld alleen in discrete punten bekend is.

C V R R I C V L V M V I T Æ
The author was born in Niš, Serbia and Montenegro,
on January 26th 1971. After completing pre-university
schooling at the Gymnasium "Svetozar Marković" in Niš
in 1990 and a year of a regular military service, in 1991 he
started M.Sc. studies in Automatic Control in Electrical
Engineering at Faculty of Electronic Engineering, Univer-
sity of Niš, Serbia and Montenegro. After finishing his
graduation project Application of Nonlinear Techniques in
Control of Induction Motor Coordinates in 1998, he became
a research assistant and a postgraduate student at the
Department of Automatic Control, Faculty of Electronic
Engineering, University of Niš. His specialization subject
was Control of processes and electromechanical systems. In
2000 he moved to Eindhoven, The Netherlands, where
he started the PhD research discussed in this dissertation
at the Scientific Computing Group of the Eindhoven
University of Technology. Since October 2004, he is
employed by MICHAEL BAILEY ASSOCIATES LTD. as a
Mathematic Software Engineer and works on a project
of ED&T Group, which is part of the company PHILIPS.

THE ROAD GOES
EVER ON

The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let others follow it who can!
Let them a journey new begin,
But I at last with weary feet
Will turn towards the lighted inn,
My evening-rest and sleep to meet.

by J. R. R. Tolkien

Stellingen

behorende bij het proefschrift

Numerical Methods for Solving
ODE Flow

van

Bratislav Tasić

I

A stiff ODE problem can successfully be solved without use of Newton’s
iterative method. This can be achieved by means of inverse interpolation
instead.

II

The flow method can be applied to a variety of flow problems in which the
velocity field is not known explicitly. Problems as such can be found in glass
production, electrical networks and mechanical systems.

III

In solving flow problems it is important that numerical integral curves do
not intersect. In this respect the BDF methods of odd order behave better
than the BDF methods of even order. The same holds for the Runge-Kutta
methods of Radau IA, Lobatto IIIB and Lobatto IIIC type as compared to
Gauss, Radau IIA and Lobatto IIIA methods.

IV

The error constant C, present in the error bound of piece-wise linear interpo-
lation on a simplex Γ , reads

C =

{

1

4

N

N+1
∆x2, c ∈ Γ,

1

4

N−1

N
∆x2, c /∈ Γ,

where c is the centre of the circumscribed sphere around the simplex, ∆x is
the diameter and N is the dimensionality of the simplex.

V

The increasing number of allergy problems within the human population
(currently around 20% in developed countries) is related to the once highly
spread helminth (parasitic worms) infections. Long time ago people were
more affected by these infections and, according to the law of evolution, per-
sons with a stronger immune mechanism lived longer and had more descen-
dants. Today these diseases are rare and the mechanism is counterproductive
since it reacts to various substances in human surroundings.
Hypothesis of L. LICHTENSTEIN ET AL, University John Hopkins, Baltimore, USA.

VI

Soon there will be "a new kind of webmail, built on the idea that you should
never have to delete mail and you should always be able to find the message
you want" (announced by the Company Google). Although an interesting
approach, it may cause difficulties in information readability after a long time
period due to an extensive amount of unnecessary data.

VII

Electronic paper display modules may completely substitute all present pa-
per media. It may represent a solution for saving forests destroyed for paper
production, but it will also shrink our home libraries to just a few e-Book
readers.
First-Generation Electronic Paper Display from Philips, Sony and E-Ink to Be Used
in New Electronic Reading Device, Philips Research Press Release, March 2004.

VIII

At first sight nature finds strange equilibria sometimes. A life cycle of Plas-
modium species (cause of malaria) starts in a mosquito, continues in a hu-
man, where it must reach the liver within 30 minutes after a bite and then go
to the blood destroying blood-cells. Finally, the reproduction cycle must end
again in a mosquito. According to the World Health Organisation over 20
million people are infected and over a million die every year from malaria.
If the Plasmodium life cycle was just slightly less complex, the whole species
would cease to exist since there would be no more humans to be infected.
W.J. BECK AND E.J. DAVIES, Medical Parasitology, CV Mosby Company, 1981.

IX

The phrase "what works should not be changed", based on economical rea-
sons, will cause that a lot of old, yet still actively used, software will remain
unchanged in time. This reminds of the evolution principle in nature, where
many primitive organisms are still present in their original form, although
they were created millions of years ago.

X

All science and art disciplines are based on certain rules and therefore they
can be expressed in some mathematical form.
”No human investigation can be called real science if it cannot be demonstrated
mathematically” - LEONARDO DA VINCI.

XI

No matter how necessary it may seem sometimes, the use of global parame-
ters should be avoided; especially in programming and politics.

XII

It is better to have even a wrong opinion than not to have one at all. Opin-
ions are products of the mind’s activity, while the lack of them are signs of
laziness. For defending someone else’s opinion the opposite holds.

XIII

Human emotions are directly proportional to perturbations of dynamical
steady states of a human mind. Frequent appearances and often rapid be-
haviour of these perturbations are the main reason why it is so difficult to
model and predict the thinking process. However, it is almost certain that
the effect of emotions on the state of mind has a gradient nature.

XIV

Since all over the world millions of people have been involved in scientific
work, it is not easy to obtain a new and original idea. Fortunately, nature still
has to offer an indefinite number of mysteries to be explained.
”I would rather discover one scientific fact than become King of Persia” - DEMOCRI-
TUS.

XV

The only three ways to reach a state of the complete happiness are stupidity,
ignorance and love.

	Preface
	Contents
	1. Introduction
	2. Ordinary differential equations
	3. Interpolation methods
	4. Introduction to the flow method
	5. The flow method based on linear multistep methods
	6. The flow method based on Runge-Kutta methods
	7. The flow method for solving vectorial ODEs
	8. Conclusions and recommendations
	Bibliography
	Index
	Summary
	Samenvatting
	Curriculum Vitae
	Stellingen

