771 research outputs found

    Explicit model predictive control accuracy analysis

    Full text link
    Model Predictive Control (MPC) can efficiently control constrained systems in real-time applications. MPC feedback law for a linear system with linear inequality constraints can be explicitly computed off-line, which results in an off-line partition of the state space into non-overlapped convex regions, with affine control laws associated to each region of the partition. An actual implementation of this explicit MPC in low cost micro-controllers requires the data to be "quantized", i.e. represented with a small number of memory bits. An aggressive quantization decreases the number of bits and the controller manufacturing costs, and may increase the speed of the controller, but reduces accuracy of the control input computation. We derive upper bounds for the absolute error in the control depending on the number of quantization bits and system parameters. The bounds can be used to determine how many quantization bits are needed in order to guarantee a specific level of accuracy in the control input.Comment: 6 pages, 7 figures. Accepted to IEEE CDC 201

    Robust semi-explicit model predictive control for hybrid automata

    Get PDF
    In this paper we propose an on-line design technique for the target control problem of hybrid automata. First, we compute on-line the shortest path, which has the minimum discrete cost, from an initial state to the given target set. Next, we derive a controller which successfully drives the system from the initial state to the target set while minimizing a cost function. The (robust) model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the (robust) mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining the two techniques and applied on a high-speed and energy-saving control problem of the CPU processing

    A General Lattice Representation for Explicit Model Predictive Control

    Get PDF

    Analysis of the explicit model predictive control for semi-active suspension

    Get PDF
    Explicit model predictive control (MPC) enhances application of MPC to areas where the fast online computation of the control signal is crucial, such as in aircraft or vehicle control. Explicit MPC controllers consist of several affine feedback gains, each of them valid over a polyhedral region of the state space. In this paper the optimal control of the quarter car semi-active suspension is studied. After a detailed theoretical introduction to the modeling, clipped LQ control and explicit MPC, the article demonstrates that there may exist regions where constrained MPC/explicit MPC has no feasible solution. To overcome this problem the use of soft constraints and combined clipped LQ/MPC methods are suggested. The paper also shows that the clipped optimal LQ solution equals to the MPC with horizon N=1 for the whole union of explicit MPC regions. We study the explicit MPC of the semi-active suspension with actual discrete time observer connected to the explicit MPC in order to increase its practical applicabili ty. The controller requires only measurement of the suspension deflection. Performance of the derived controller is evaluated through simulations where shock tests and white noise velocity disturbances are applied to a real quarter car vertical model. Comparing MPC and the clipped LQ approach, no essential improvement was detected in the control behavior

    Multi set-point explicit model predictive control for nonlinear process systems

    Get PDF
    In this article, we introduce a novel framework for the design of multi set-point nonlinear explicit controllers for process systems engineering problems where the set-points are treated as uncertain parameters simultaneously with the initial state of the dynamical system at each sampling instance. To this end, an algorithm for a special class of multi-parametric nonlinear programming problems with uncertain parameters on the right-hand side of the constraints and the cost coefficients of the objective function is presented. The algorithm is based on computed algebra methods for symbolic manipulation that enable an analytical solution of the optimality conditions of the underlying multi-parametric nonlinear program. A notable property of the presented algorithm is the computation of exact, in general nonconvex, critical regions that results in potentially great computational savings through a reduction in the number of convex approximate critical regions

    Explicit model predictive control on the air path of turbocharged diesel engines

    Get PDF
    The turbocharged diesel engine is a typical multi-input multi-output (MIMO) system with strong couplings, actuator constraints, and fast dynamics. This paper addresses the air path regulation in turbocharged diesel engines using an explicit model predictive control (EMPC) approach, which allows tracking of the time-varying setpoint values generated by the supervisory level controller while satisfying the actuator constraints. The proposed EMPC framework consists of calibration, engine model identification, controller formulation, and state observer design. The proposed EMPC approach has a low computation requirement and is suitable for implementation in the engine control unit (ECU) on board. The experimental results on a turbocharged Cat ® C6.6 diesel engine illustrate that the EMPC controller significantly improves the tracking performance of the exhaust emission variables against the decentralized single-input single-output (SISO) control method

    Modelling, Optimisation and Explicit Model Predictive Control of Anaesthesia Drug Delivery Systems

    Get PDF
    The contributions of this thesis are organised in two parts. Part I presents a mathematical model for drug distribution and drug effect of volatile anaesthesia. Part II presents model predictive control strategies for depth of anaesthesia control based on the derived model. Closed-loop model predictive control strategies for anaesthesia are aiming to improve patient's safety and to fine-tune drug delivery, routinely performed by the anaesthetist. The framework presented in this thesis highlights the advantages of extensive modelling and model analysis, which are contributing to a detailed understanding of the system, when aiming for the optimal control of such system. As part of the presented framework, the model uncertainty originated from patient-variability is analysed and the designed control strategy is tested against the identified uncertainty. An individualised physiologically based model of drug distribution and uptake, pharmacokinetics, and drug effect, pharmacodynamics, of volatile anaesthesia is presented, where the pharmacokinetic model is adjusted to the weight, height, gender and age of the patient. The pharmacodynamic model links the hypnotic depth measured by the Bispectral index (BIS), to the arterial concentration by an artificial effect site compartment and the Hill equation. The individualised pharmacokinetic and pharmacodynamic variables and parameters are analysed with respect to their influence on the measurable outputs, the end-tidal concentration and the BIS. The validation of the model, performed with clinical data for isoflurane and desflurane based anaesthesia, shows a good prediction of the drug uptake, while the pharmacodynamic parameters are individually estimated for each patient. The derived control design consists of a linear multi-parametric model predictive controller and a state estimator. The non-measurable tissue and blood concentrations are estimated based on the end-tidal concentration of the volatile anaesthetic. The designed controller adapts to the individual patient's dynamics based on measured data. In an alternative approach, the individual patient's sensitivity is estimated on-line by solving a least squares parameter estimation problem.Open Acces
    • …
    corecore