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1. Introduction

Model predictive control (MPC) is one of the most successful techniques to control

multi-variable constraint systems. The MPC uses a mathematical model to predict the future

effects of control inputs to system behaviors. The optimal control policy is obtained by

solving an optimization problem that minimizes/maximizes a performance objective subject

to inputs and outputs constraints over a future time horizon (Morari & Lee, 1999, Mayne

et al., 2000, Dua et al, 2008). The MPC control laws are open-loop optimal with respect to

the corresponding objective function. However, the conventional MPC may require intensive

online computation due to the repetitive solutions of an optimization problem. This limits

its applications to large and slowly varying systems. In addition, the MPC control strategy

is hard to validate, especially for safety critical system (Grancharova & Johansen, 2005,

Pistikopoulos, et al. 2001, Alessio & Bemporad 2009).
In 2002, Bemporad, Morari, Dua & Pistikopolous introduced the concept of explicit MPC

(eMPC). The eMPC reformulates the online optimization in a MPC into a mutli-parametric

linear/quadratic program (mpLP/mpQP). The optimal control action is calculated off-line

as a continuous piecewise-affine (PWA) function of the state and reference vectors (Saffer

et al, 2004, Bemporad et al. 2002a, 2002b). The eMPC has several advantages: i) The

online computational time can be reduced to the microsecond-millisecond range. It makes

the eMPC attractive for fast systems; ii) The MPC functionality is achieved in an easily

verifiable way. The eMPC control policies can be validated before real online operations;

iii) The eMPC solutions can be implemented with low-cost hardware (Johansen et al., 2007,

Wen & Ma, 2008a, 2008b). The eMPC is then promising to be used in embedded systems,

small/medium process systems, where the control systems should not be more expensive

than the process systems. The eMPC found successful applications in many areas, e.g.

AC-DC converters (Beccuti et al. 2009), autonomous vehicle steering, air separation unit

(Grancharova et al. 2004), active valve train, hybrid separation, air condition (Pistikopoulos,

et al. 2001), biomedical systems and drug delivery systems (Dua et al, 2004), scheduling (Ryu,

& Pistikopoulos, 2007), spacecraft attitude control (Hegrenas et al, 2000)and crude distillation

unit (Pannocchia et al, 2007).

The eMPC is essentially a strategy of trading time for space. A continuous PWA control map

is calculated offline, and stored in memory for online usage (Pannocchia et al, 2007). The

10

www.intechopen.com



2 Will-be-set-by-IN-TECH

efficiency of eMPC method depends critically on finding an efficient representation model

for eMPC controllers. However, it is not easy to develop a general model set to represent

continuous PWA functions. The PWA representations usually have two conflicting criteria:

description and evaluation complexities. The description complexity deals with the number
of parameters in the representation model, while the evaluation complexity specifies the time

for online calculation of function values.

When an eMPC controller is executed, one needs to solve a point-location problem with two

steps: i) identify which polyhedral region the measured state lies in; ii) compute the control

action using the corresponding affine control law. The simplest point-location solver is the

sequential search (SS) algorithm, which is implemented by substituting a given state variable

into the constraint inequalities of different regions. This method requires to store all the

polyhedral regions and affine functions individually. Due to the combinatorial nature, the

number of polyhedral regions in an eMPC control law can grow exponentially with the size

of the optimal control problem (Wen et al., 2005a). Hence, the online function evaluation is

computationally expensive when an eMPC control consists of a large number of regions or is

defined over a complicated domain partition (Wen et al., 2005b).

Many researchers developed alternative ways to represent the eMPC solutions with

appropriate data structures. In 2001, Borrelli, Baotić, Bemporad & Morari propose a search

algorithm based on the convexity of the piecewise affine value function. This convex value

function (CVF) algorithm reduces the storage space significantly. In some cases, this method

might be time consuming because it requires a kind of sequential search. A binary search

tree (BST) algorithm is proposed by Tondel, Johansen & Bemporad (2003) on the basis of the

geometric structure of the polyhedral partition. This method can deal with the fully general

PWA functions, including the discontinuous ones defined on overlapping regions or holes. In

this scheme, the auxiliary hyper-planes are introduced, which may subdivide existing regions.

This might lead to a worst case combinatorial number of subdivided regions. Then the

following search procedure has to consider an additional increase in the number of regions,

which may imply a prohibitive pre-processing time or online memory requirements. In 2007,

Christophersen, Kvasnica, Jones & Morari developed an efficient search tree algorithm by

utilizing the concept of bounding boxes and interval trees. This bounding box tree (BBT)

algorithm can deal with the PWA functions defined over a large number of polyhedral

regions. But the storage demand and online search time are still linear in the number of

polyhedral regions in the original PWA functions. In Geyer et al, 2008, an efficient approach

was developed to reduce the number of partitions in eMPC controllers by optimally merging

the polyhedral regions where the affine gain is the same. All these algorithms are successful in

dealing with the PWA functions defined over a large number of polyhedral regions. However,

their storage demands and/or online evaluation computation are dependent on the number of

polyhedral regions in the original PWA functions. These algorithms do not utilize the global

structure information in eMPC controllers. Then their efficiency may be reduced substantially

for some large-scale and complicated eMPC solutions.

The PWA approximation technique presents another efficient way to deal with the

computation and description complexities of eMPC solutions. In Johansen, Petersen &

Slupphaug (2002), an approach is proposed, which calculates the sub-optimal solutions by

predetermining a small number of sampling data when the active set or input is allowed to

change on the horizon. An alternative sub-optimal approach was developed in Bemporad &

Filippi (2003) where small slacks are introduced on the optimality conditions and the mp-QP

198 Advanced Model Predictive Control

www.intechopen.com



A General Lattice Representation for Explicit Model Predictive Control 3

is used for the relaxed problem. In 2003, an algorithm is suggested that can determine a

suboptimal explicit MPC control on a hypercubic partition (Johansen & Grancharova, 2003).

In this partition, the domain is divided into a set of hypercubes separated by orthogonal

hyperplanes. In 2006, Jones, Grieder & Rakovic interpret the PWA value function as
weighted power diagrams (extended Voronoi diagrams). By using the standard Voronoi

search methods, the online evaluation time is solved in logarithmic time (Jones, Grieder, &

Rakovic, 2006; Spjotvold, Rakovic, Tondel, & Johansen, 2006). Dynamic programming can

also be used to calculate the approximate explicit MPC laws (Bertsekas & Tsitsiklis, 1998;

Lincoln & Rantzer, 2002, 2006). The main idea of these approaches is to find the sub-optimal

solutions with known error bounds. The prescribed bounds can achieve a good trade-off

between the computation complexity and accuracy. These approximation algorithms are very

efficient regarding the storage and online calculation time. However, the approximate PWA

functions usually have different domain partitions from the original explicit MPC laws. This

deviation may hinder the controller performance and closed-loop stability.

The established representation and approximation algorithms have found many successful

applications in a variety of fields. However, they can only evaluate the control actions for

discrete measured states. None of them can provide the exact analytical expression of the

PWA control laws. An analytical expression will ease the process of closed-loop performance

analysis, online controller tuning and hardware implementations. The analytic expression

also provides the flexibility of tailoring the PWA controllers to some specific applications, e.g.

to develop different sub-optimal controllers in different zones (a union of polyhedral regions),

and to smooth the PWA controllers at region boundaries or vertices (Wen et al. 2009a).

In addition, the canonical PWA (CPWA) theory shows that the continuous PWA functions

often consist of many redundant parameters. A global and compact analytical expression can

significantly increase the computation and description complexity of eMPC solutions (Wen,

et al., 2005a). An ideal representation algorithm should describe and evaluate the simplified

MPC solutions after removing the redundant parameters.

In 1977 Chua & Kang proposed the first canonical representation for continuous PWA

functions. A canonical PWA (CPWA) function is the sum of an affine function and one or

more absolute values of affine functions. All continuous PWA functions of one variable can

be expressed in the canonical form. However, if the number of variables is greater than

one, only a subset of PWA functions have the CPWA representations (Chua & Deng, 1988).

In 1994, Lin, Xu & Unbehauen proposed a generalized canonical representation obtained

by nesting several CPWA functions. Such a representation is available for any continuous

PWA function provided that the nesting level is sufficiently high. The investigations (Lin

& Unbehauen, 1995; Li, et al. 2001, Julian et al., 1999) showed that for a continuous PWA

function, the nesting level does not exceed the number of its variables. However, the

nested absolute value functions often have implicit functional forms and are defined over

complicated boundary configurations. In 2005, Wen, Wang & Li proposed a basis function

CPWA (BPWA) representation theorem. It is shown that any continuous PWA function of n

variables can be expressed by a BPWA function, which is formulated as the sum of a suitable

number of the maximum/minimum of n+1 affine functions.

The class of lattice PWA functions is a different way to represent a continuous PWA function

(Tarela & Martínez, 1999, Chikkula, et al., 1998, Ovchinnikov, 2002, Necoara et al. 2008, Boom

& Schutter 2002, Wen et al, 2005c, Wen & Wang, 2005d). The lattice representation model

describes a PWA function in term of its local affine functions and the order of the values of all
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the affine functions in each region. From theoretical point of view, the lattice PWA function

has a universal representation capability for any continuous PWA function. According to the

BPWA representation theorem, any BPWA function can be equivalently transformed into a

lattice PWA function (Wen et al. 2005a, 2006). Then the well-developed methods to analyze
and control the class of CPWA functions can be extended to that of the lattice PWA functions.

From a practical point of view, it is of great significance that a lattice PWA function can be

easily constructed, provided that we know the local affine functions and their polyhedral

partition of the domain (Wen & Ma, 2007, Wen et al, 2009a, 2009b). Since these information

on affine functions and partitions is provided in the solutions of both mp-LP and mp-QP, the

lattice PWA function presents an ideal way to represent the eMPC solutions.

In this paper, we propose a general lattice representation for continuous eMPC solutions

obtained by the multi-parametric program. The main advantage of a lattice expression is

that it is a global and compact representation, which automatically removes the redundant

parameters in an eMPC solution. The lattice representation can save a significant amount

of online computation and storage when dealing with the eMPC solutions that have many

polyhedral regions with equal affine control laws. Three benchmark MPC problems are

illustrated to demonstrate that the proposed lattice eMPC control have a lower description

complexity, comparable evaluation and preprocessing complexities, when compared to the

traditional eMPC solutions without global description models.

The rest of this paper is organized as follows. Section II introduces the main features of PWA

functions and eMPC problems. The lattice PWA function and representation theorem are

presented in Section III. Section IV is the main part of this paper. It presents the complexity

reduction theorem of lattice eMPC solutions, the lattice representation algorithm and its

complexity analysis. Numerical simulation results are shown in Section V, and Section VI

provides the concluding remarks.

2. PWA functions and eMPC solutions

2.1 PWA function

Definition 1. In ℜn, let Ω = ∪M
i=1Ri be a compact set, which is partitioned into M convex

polyhedrons called regions Ri, i = 1, . . . , M. Then a nonlinear function p(x) : Ω �→ ℜm is defined as

a PWA function if

p(x) = Fix + gi, ∀x ∈ Ri (1)

with Fi ∈ ℜm×(n+1), βi ∈ ℜm. A PWA function is continuous if

Fix + gi = Fjx + gj, ∀x ∈ Bi,j (2)

where Bi,j = Ri ∩ Rj is defined as boundaries and i, j ∈ [1, · · · , M]. Specially, when m = 1, p(x) is

called as a scalar PWA function, i.e.

p(x) = ℓ(x|αk, βk) = αT
k x + βk , ∀x ∈ Ri (3)

with αk ∈ ℜn, βk ∈ ℜ and 1 ≤ k ≤ M. For convenience of statement, we simply denote ℓ(x|αk, βk)
as ℓk(x).
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In Definition 1, each region Ri is a polyhedron defined by a set of inequality

Ri = {x ∈ ℜn|Hix ≤ Ki} (4)

where Hi, Ki are matrices of proper sizes with i = 1, · · · , M. Geometrically, a boundary Bi,j is

a real set of an (n − 1)-dimensional hyperplane.

2.2 Explicit MPC

Consider the linear time invariant system

{

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5)

which fulfills the following constraints

xmin ≤ x(t) ≤ xmax, ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤ umax, δumin ≤ δu(t) ≤ δumax, (6)

at all time instants t ≥ 0. In (5)-(6), x(t) ∈ ℜn is state variable, u(t) ∈ ℜm, y(t) ∈ ℜny

are control input and system output, respectively. A, B, C and D are matrices of appropriate

dimensions, i.e. A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜny×n and D ∈ ℜny×m. It is assumed that (A, B)
is a controllable pair. δumin and δumax are rate constraints. They restrict the variation of two

consecutive control inputs (δu(t) = u(t)− u(t − 1)) to be within of prescribed bounds. The

system is called as a single-input system when m = 1, and a multi-input system when m ≥ 2.

Assume that a full measurement of the state x(t) is available at current time t. The MPC solves

the following standard semi-infinite horizon optimal control problem:

J∗(x(t)) = min
U={u(t)T,··· ,u(t+N−1)T}T

VN(x(t + N)) +
N−1

∑
k=0

Vk

(

x(t + k|t), u(t + k)
)

(7)

subject to
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xmin ≤ x(t + k|t) ≤ xmax, k = 1, · · · , Ny,

ymin ≤ y(t + k|t) ≤ ymax, k = 1, · · · , Ny,

umin ≤ u(t + k|t) ≤ umax, k = 1, · · · , Nc,

δumin ≤ δu(t + k|t) ≤ δumax, k = 1, · · · , Nc,

x(t) = x(t|t)

x(t + k + 1|t) = Ax(t + k|t) + Bu(t + k), k ≥ 0

y(t + k + 1|t) = Cx(t + k|t) + Du(t + k), k ≥ 0

u(t + k) = Kx(t + k|t), Nu ≤ k < Ny

(8)

at each time t, where x(t+ k|t)denotes the the predicted state vector at time t+ k. It is obtained

by applying the input sequence u(t), · · · , u(t + k − 1) to system (5). In (7), K is the feedback

gain, Nu, Ny, Nc are the input, output and constraint horizons, respectively. Normally, we

have Nu ≤ Ny and Nc ≤ Ny − 1.
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The stage cost function is defined as

Vi

(

x(t + i|t), u(t + i)
)

= ||Qx(t + k|t)||p + ||Ru(t + k)||p (9)

VN

(

x(t + Ny|t)
)

= ||Px(t + Ny|t)||p (10)

where || · || denoted a kind of norm and p ∈ {1, 2,+∞}, P, Q and R are weighting matrices

of proper sizes. VN is the terminal penalty function. In this paper, it is assumed that

the parameters P, Q, R are chosen in such a way that problem (7) generates a feasible and

stabilizing control law when applied in a receding horizon fashion and J∗(x) is a polyhedral

piecewise affine/quatratic Lyapunov function.

At each time t, the MPC control law u(t) is the first item in the optimal solution u∗(t), i.e.

u(t) = u∗(t) (11)

where u∗(t) = {u∗(t), · · · , u∗(t + Nc − 1)}. Apply u(t) as input to problem (5) and repeat the

optimization (7) at time t+ 1 using the new state x(t+ 1). This control strategy is also referred

to as moving or receding horizon.

By some algebraic manipulations, the MPC problem can be formulated as a parametric Linear

Program (pLP) for p ∈ {1,+∞}

u∗(x) = min
u

ΥTu (12)

s.t. Gu ≤ W + Ex

or a parametric quadratic Program (pQP) for p = 2

u∗(x) = min
u

ΥTu +
1

2
uT Hu (13)

s.t. Gu ≤ W + Ex

See (Bemporad et al. 2002) for details on the computation of the matrices G, W, E, H and Υ

in (12) and (13). By solving the pLP/pQP, the optimal control input u∗(x) is computed for

each feasible value of the state x. The features of MPC controllers and value functions are

summarized in the following lemma.

Lemma 1. Kvasnica et al., 2004 Consider the multi-parametric programming of (12) and (13). The

solution u∗(x) : ℜn �→ ℜm is a continuous and piecewise affine

u∗(x) = Fix + gi, ∀x ∈ Ri (14)

where Ri, i = 1, · · · , M is the polyhedral regions. The optimal cost J∗(x(t)) is continuous, convex,

and piecewise quadratic (p = 2) or piecewise affine (p ∈ {1, ∞}).

3. Lattice representation of scalar eMPC solutions

3.1 Lattice PWA Function

Let Φ = [φ1, · · · , φM]T be an M × (n + 1) matrix and Ψ = [ψij] a M × M zero-one matrix. A

lattice piecewise-affine function P(x|Φ, Ψ) may be formed as follows,

202 Advanced Model Predictive Control
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P(x|Φ, Ψ) = min
1≤i≤M

⎧

⎪

⎨

⎪

⎩

max
1≤j≤M

ψij=1

{ℓj(x)}

⎫

⎪

⎬

⎪

⎭

, ∀x ∈ ℜn. (15)

Note that P(x|Φ, Ψ) is equal to one of ℓ1(x), · · · , ℓM(x) for any x ∈ ℜn. P(x|Φ, Ψ) is indeed
a continuous PWA function whose local affine functions are just ℓj(x), 1 ≤ j ≤ M. The

parameter vectors of these affine functions are exactly the row vectors of Φ. Hence the matrix

Φ is called a parameter matrix. The matrix Ψ is defined as a structure matrix, if its elements

are calculated as

ψij =

{

1 i f ℓi(x) ≥ ℓj(x)

0 else
(16)

with x ∈ Ri and 1 ≤ i, j ≤ M. Similarly, a dual structure matrix Ψ̂ = [ψ̂ij]
M×M is defined by

ψ̂ij =

{

1 i f ℓ(x|φi) ≤ ℓ(x|φj)

0 else
(17)

with x ∈ Ri and 1 ≤ i, j ≤ M.

Lemma 2. Wen et al., 2007 Given any n-dimensional continuous PWA function p(x), there must exist

a lattice PWA function P(x|Φ, Ψ) such that

p(x) = P(x|Φ, Ψ), ∀x ∈ ℜn (18)

where Φ, Ψ are parameter and structure matrices, respectively.

It is shown in Lemma 2 that a continuous PWA function can be fully specified by a parameter

matrix Φ and a structure matrix Ψ. This provides a systematic way to represent the eMPC

solutions. The lattice PWA function contains only the operators of min, max and vector

multiplication. It is an ideal model structure from the online calculation point of view.

Example 1: The realization of a lattice PWA function can be made more clear using a simple

example. Let p(x) be a 1-dimensional PWA function with 4 affine segments,

p(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ℓ1(x) = 1, ∀x ∈ R1 = [−2,−1]

ℓ2(x) = −x, ∀x ∈ R1 = (−1, 0]

ℓ3(x) = x, ∀x ∈ R2 = (0, 1]

ℓ4(x) = −x + 2, ∀x ∈ R3 = (1, 2]

(19)

where the plot of p(x) is depicted in Fig. 1. It is easy to see that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ℓ4(x) > ℓ2(x) > ℓ1(x) > ℓ3(x), ∀x ∈ R1

ℓ4(x) > ℓ1(x) > ℓ2(x) > ℓ3(x), ∀x ∈ R2

ℓ4(x) > ℓ1(x) > ℓ3(x) > ℓ2(x), ∀x ∈ R3

ℓ3(x) > ℓ1(x) > ℓ4(x) > ℓ2(x), ∀x ∈ R4

(20)
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0
R3R2R1 R4

1 2-1-2 x

y

Fig. 1. Plot of 1-dimensional PWA function p(x)

Then the structure matrix is written as Ψ =

⎡

⎢

⎢

⎣

1 0 1 0

0 1 1 0

0 1 1 0

0 1 0 1

⎤

⎥

⎥

⎦

. It follows from (5) that the parameter

matrix is Φ =

⎡

⎢

⎢

⎣

0 1

−1 0

1 0

−1 2

⎤

⎥

⎥

⎦

. Finally, the lattice PWA function is formulated as

p(x) = P(x|Φ, Ψ) = min{max{ℓ1, ℓ3}, max{ℓ2, ℓ3}, max{ℓ2, ℓ3}, max{ℓ2, ℓ4}} (21)

It is obvious that the lattice PWA function in (21) can be further simplified. The simplification

algorithm will be discussed in the subsequent sections.

3.2 Lattice representation theorem of eMPC solutions

Lemma 3. Assume that Ri, Rj are two n-dimensional convex polytopes, where ℓi(x), ℓj(x) are their

local affine functions with i, j ∈ {1, · · · , M}. Then the structure matrix Ψ = [ψij]
M×M can be

calculated as follows:

ψij =

{

1 i f ℓi(vk) ≥ ℓj(vk), 1 ≤ k ≤ Ki

0 i f ℓi(vk) < ℓj(vk), k ∈ {1, · · · , Ki}
(22)

where vk are the vertices of Ri with 1 ≤ k ≤ Ki and Ki ∈ Z
+ is the number of vertices of Ri.

Proof. Since Ri is an n-dimensional polytope, it can be described by its vertices v1, · · · , vKi

Ri = {x ∈ ℜn|x =
Ki

∑
k=1

λkvk, 0 ≤ λk ≤ 1,
Ki

∑
i=1

λk = 1} (23)

Then for any x ∈ Ri, we have

ℓi(x) = ℓi

(

Ki

∑
k=1

λkvk

)

=
Ki

∑
k=1

λkℓi(vk) (24)

ℓj(x) = ℓj

(

Ki

∑
k=1

λkvk

)

=
Ki

∑
k=1

λkℓj(vk) (25)
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If ℓi(vk) ≥ ℓj(vk), ∀1 ≤ k ≤ Ki, then ℓi(x) ≥ ℓj(x) holds for all x ∈ Ri. It follows from (3) that

ψij = 1.

Similarly, if there exists any k ∈ {1, · · · , Ki} such that ℓi(vk) < ℓj(vk), then ℓi(x) and ℓj(x) will

intersect together with an (n − 1)-dimensional hyperplane as the common boundary. This
implies that ψij = 0.

Using the same procedure stated above, all the elements in the structure matrix Ψ can be

calculated, and this completes the proof of Lemma 3.

Lemma 3 shows that the order of the affine function values in a convex polytope can be

specified by the order of the function values at the polytope vertices. This presents a

constructive way to realize the structure matrix of a given PWA function.

Theorem 1. Any continuous eMPC solution can be represented by a lattice PWA function.

Proof. According to Bemporad et al. 2002, an eMPC solution is presented in the form of

conventional PWA representation, which lists all the parameters of the affine functions and

regions in a table. Each region is a convex polytope defined by a set of inequalities. It follows

from Lemma 2 that an explicit solution to MPC can be realized by a structure matrix and

a parameter matrix. These two matrices specify a lattice PWA function. Then any eMPC

solution can be described by a lattice PWA function. This completes the proof of Theorem

1.

4. Simplification of scalar lattice PWA representation

4.1 Super-region

Definition 2. Given a PWA function p(x) : Ω �→ ℜm with M regions, i.e. Ω = ∪M
i=1Ri. Let

Γi =
{

j ∈ {1, · · · , M}|αix + βi = αjx + βj, ∀x ∈ Ω
}

(26)

be a finite set with M̃ components. Then the set Π ⊆ Ω is defined as a super-region, if Π = ∪M̃
k=1Rk

and k ∈ Γi with i ∈ {1, · · · , M}.

A super-regions is defined as a union of polyhedral regions with same affine function. It can

be non-convex or even not connected. If a PWA function have many regions with the same
local functions, the number of super-regions is much less than that of regions.

The concept of super-region can be clarified by an 1-dimensional PWA function shown in Fig.

2. The PWA function p(x) is defined over a compact set Ω = AE. The domain is partitioned

into 4 regions, i.e. Ω = ∪4
i=1Ri. Each region Ri is a convex polyhedron defined by two

inequalities, e.g. R2 = BC = {x ∈ AF|x ≥ xB, x ≤ xC}, where xB, xC are the coordinates of

points B, C. In Ω, there are 3 boundaries, e.g. B, C and D. Note that p(x) = [p1(x), p2(x)]
T,

where

pj(x) = αT
i,jx + βi,j ∀x ∈ Ri

with αi,j, βi,j ∈ ℜ, i = 1, · · · , 4, j = 1, 2. We can get Fi =

[

αT
i,1

αT
i,2

]

and gi =

[

βi,1

βi,2

]

.

It follows from the plot of p1(x) that αT
1,1x + β1,1 = αT

4,1x + β4,1, ∀x ∈ AE. Then Π1 = R1 ∪
R2 = AB ∪ DE is defined as a super-region. It is evident that Π1 is not convex, because it
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12

α
3
1+
β
3
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Fig. 2. Plot of a 1-dimensional vector PWA function p(x) = [p1(x), p2(x)]
T.

is composed of two disconnected line intersections. Similarly, Π2 = R2 ∪ R3 = BD defines

another super-region of p2(x).

4.2 Row vector simplification lemma

Lemma 4. Assume that P(x|Φ, Ψ) : D ⊂ ℜn �→ ℜ is a PWA function with M linear segments.

Let ϕi, ϕj be rows of the structure matrix. If the pointwise inequation ϕi − ϕj ≤ 0 holds for any

i, j ∈ {1, · · · , M}, there exist a simplified structure matrix Ψ̃ ∈ ℜ(M−1)×M, such that

P(x|Φ, Ψ) = P(x|Φ, Ψ̃) (27)

where Ψ ∈ ℜM×M = [ϕ1, · · · , ϕM]T and Ψ̃ = [ϕ1, · · · , ϕj−1, ϕj+1, · · · , ϕM]T.

Proof. Denote Ii ∈ ℜM as the index set of the local affine functions, whose values are smaller
than the i-th affine function in its active region, i.e.

Ii = {k|ℓk(x) ≤ ℓi(x), ∀x ∈ Ri} (28)

with i, k ∈ {1, · · · , M}. Since ϕi − ϕj ≤ 0 holds for any pointwise inequality, we can get

Ii ⊆ Ij. It directly follows that {ℓp(x)} ⊆ {ℓq(x)} with p ∈ Ii, q ∈ Ij.

Therefore, it leads that

max
p∈Ii

{ℓp(x)} ≤ max
q∈Ij

{ℓq(x)} (29)

This implies that

min
{

max
p∈Ii

{ℓp(x)}, max
q∈Ij

{ℓq(x)}
}

= max
p∈Ii

{ℓp(x)} (30)

Then we finally have

P(x|Φ, Ψ) = min
1≤i≤M

{

max
k∈Ii

{ℓk(x)}
}

= min
1≤i≤M

i �=j

{

max
k∈Ii

{ℓk(x)}
}

= P(x|Φ, Ψ̃) (31)

Here we can see that the j-th row of structure matrix Ψ can be deleted without affecting the

function values of P(x|Φ, Ψ). This completes the proof of Lemma 4.

Since Lemma 4 can be used recursively, a much simplified structure matrix is obtained by

deleting all the redundant rows. A single row in Ψ̃ corresponds to a super region, which

is defined as an aggregation of several affine regions. Being a mergence of many convex
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polytopes, a super region can be concave or even disconnected. Then the number of super

regions can be much smaller than that of regions (Wen, 2006).

4.3 Column vector simplification lemma

Lemma 5. Assume that P(x|Φ, Ψ) : D ⊂ ℜn �→ ℜ is a PWA function with M linear segments.

Denote Ψ = [ψij]
M×M and Ψ̂ = [ψ̂ij]

M×M as the primary and dual structure matrix. Then the

following results hold.

1. Given any i, j, k ∈ {1, · · · , M}, if k, j ∈ Ii and ψ̂jk = 1, then ψij = 0, where Ii is the same as

defined in (13);

2. If ψij = 0, ∀1 ≤ j ≤ M, then there exist a simplified structure matrix Ψ̃ ∈ ℜ(M−1)×M and

parameter matrix Φ̃ ∈ ℜ(M−1)×(n+1), such that

P(x|Φ, Ψ) = P(x|Φ̃, Ψ̃) (32)

where Φ ∈ ℜM×(n+1) = [φ1, · · · , φM]T, Φ̃ ∈ ℜ(M−1)×(n+1) =
[φ1, · · · , φj−1, φj+1, · · · , φM]T, and Ψ, Ψ̃ are the same as defined in Lemma 4.

Proof. According to (17), if ψ̂jk = 1, we have

ℓj(x) ≤ ℓk(x), ∀x ∈ Rj (33)

which implies that ℓj(x) is inactive in its own region, i.e.

max{ℓj(x), ℓk(x)} = ℓk(x), ∀x ∈ Rj (34)

Note that k, j ∈ Ii and Ii is the index set of ℓi(x). We can get

max
p∈Ii

{ℓp(x)} = max
p∈Ii

p �=j

{ℓp(x)}, ∀x ∈ D (35)

This implies that ψij = 0.

In addition, if ψij = 0 holds for any 1 ≤ j ≤ M, then ℓj(x) will be totally covered by other

affine functions throughout the whole domain. Therefore, the j-th column of the structure

matrix and j-th row of the parameter matrix can be deleted. This means that P(x|Φ, Ψ) =
P(x|Φ̃, Ψ̃). It should be noted that the matrix Ψ̃ corresponds to a simpler lattice PWA function

than Ψ even without a deletion of row vectors. A lattice PWA function with less terms in max

operators is produced if some elements in the structure matrix are changed from one to zero.

This completes the proof of Lemma 5.

The significance of Lemma 5 is that it can differentiate the inactive regions from the active

ones in a given PWA function. The inactive regions can then be removed from the analytic

expression because they do not contribute to the PWA function values. The active regions are

also referred to as the lattice regions, which define the number of columns in the structure

matrix Ψ̃.

Lemma 5 presents an efficient and constructive method to reduce the complexity of a lattice

PWA function. Recalling that an eMPC controller u(x) ∈ ℜ of a single input system is a

continuous scalar PWA function, in which many polyhedral regions have same feedback
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gains. It implies that the number of super-regions is usually much smaller than that of

polyhedral regions. The complexity reduction algorithm of Lemma 5 can produce a very

compact representation of the scalar eMPC solutions.

Example 2: In order to clarify the simplification procedure, we consider the lattice PWA

function of (21) derived in Example 1.

Denoting Ψ = [ϕ1 ϕ2 ϕ3 ϕ4]
T, we can get ϕ2 − ϕ3 = [0 0 0 0] ≤ 0, where ” ≤ ” is the

pointwise inequality. It follows from Lemma 4 that the third row vector ϕ3 can be removed.

Then the structure matrix is simplified as

Ψ =

⎡

⎣

1 0 1 0

0 1 1 0

0 1 0 1

⎤

⎦ . (36)

Furthermore, by using (17), we can obtain the dual structure matrix

Ψ̂ =

⎡

⎢

⎢

⎣

1 1 0 1

1 1 0 1

1 0 1 1

1 0 1 1

⎤

⎥

⎥

⎦

. (37)

According to (36), we have Ii = {k, j} with k = 4, j = 2 and i = 3. Using (37), we further have

ψ̂jk = ψ̂24 = 1. Then it follows from Lemma 5 that the item of ψ32 can be put to zero. The final

structure matrix is written as

Ψ̃ =

⎡

⎣

1 0 1 0

0 1 1 0

0 0 0 1

⎤

⎦ (38)

The corresponding lattice PWA function is

p(x) = min
{

max{ℓ1, ℓ3}, max{ℓ2, ℓ3}, ℓ4

}

(39)

4.4 Lattice PWA representation theorem

Theorem 2. Let P(x) : Ω �→ ℜ be a continuous scalar PWA function with M̂ super-regions. There

must exist a positive integer M̄ ≤ M̂, a parameter matrix Φ ∈ ℜM̂×(n+1), a structure matrix Ψ =

[ψij]
M̄×M̂ and a lattice PWA function

L(x|Φ, Ψ) = min
1≤i≤M̄

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
1≤j≤M̂

ψij=1

{

ℓj(x)
}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(40)

such that

P(x) = L(x|Φ, Ψ), ∀x ∈ Ω (41)

where ψij is a boolean variable, Φ = [φ1, · · · , φM̂]T, φj = [αT
j , βj ], αj ∈ ℜn, βj ∈ ℜ with 1 ≤ i ≤

M̄, 1 ≤ j ≤ M̂.
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Theorem 2 shows that the class of lattice PWA functions provides a universal model set for

continuous scalar PWA functions. The complexity of a lattice PWA function is specified

by the number of super-regions instead of that of regions. Then the lattice PWA functions

may present a more compact representation than the PWA models without global analytical
descriptions.

The scalar lattice representation theorem can be generalized to describe a vector eMPC

solution u(x) : Ω �→ ℜm. The main idea is to represent each component scalar eMPC feedback

law individually.

Theorem 3. Let u(x) = [u1(x), · · · , um(x)]T be a continuous vector eMPC solution with x ∈ Ω.

There must exist m lattice PWA functions L(x|Φi, Ψi) such that

ui(x) = L(x|Φi, Ψi) ∀x ∈ Ω (42)

where Φi, Ψi are parameter and structure matrices and i = 1, · · · , m.

The vector lattice representation theorem is valid for continuous PWA functions. It is proved

in (Spjotvold et al, 2007, Bemporad et al. 2002) that an eMPC controller is continuous from

a strictly convex mpQP problem. The continuity property is further generalized to general

convex mpQP problems (Spjotvold et al, 2006). An eMPC problem with a linear cost function

may have discontinuous solutions because of the degeneracy of critical regions. It is proved

in (Bemporad et al, 2002) that there always exists a polyhedral partition even for degenerate

critical regions, such that the eMPC control is continuous. Recalling that the mpLP problems

are essentially special realizations of convex mpQP problems. It is proved constructively

in (Spjotvold et al, 2006) that a continuous eMPC solution can be found for LP-based MPC
problems by using a minimum norm method. Therefore, the set of continuous PWA functions

can cover a wide class of eMPC solutions by utilizing appropriate multi-parametric program

solvers.

The continuity of eMPC controllers can be easily verified by checking the function values

at the vertices of different regions. This function has been implicitly implemented in the

lattice PWA representation algorithm (Wen et al., 2009a). Therefore, the lattice representation

can automatically separate the continuous eMPC solutions from the discontinuous ones. In

addition, the discontinuity in eMPC controls are often caused by the overlapping of critical

regions (Bemporad et al, 2002). The mpt-toolbox (Kvasnica et al., 2004) has a function to detect

the existence of overlapping regions. It presents another efficient way to verify the continuity

of eMPC controls.

The vector lattice representation can be extended to discontinuous eMPC solutions. A

discontinuous eMPC solution is usually decomposed into a set of continuous PWA functions.

Recalling that each continuous PWA function has a vector lattice representation. Then the

discontinuous eMPC solutions can be represented by a set of lattice PWA functions and a

switch logic. The switch logic may be implemented as a binary search tree (Tondel et al.

2003) or bounding box search tree (Christophersen et al, 2007). Further research is under

investigation to generalize the lattice representation method to discontinuous PWA functions.

The lattice representation has a quadratic complexity for both online evaluation and memory

storage. When the eMPC solutions consist of a large number of super-regions, e.g. the eMPC

problems has a large input constraint set, the BST or BBT algorithms may have a lower online

computational complexity.
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4.5 Representation algorithm

In Kvasnica et al. 2004, a Multi-Parametric Toolbox (MPT) for computing optimal feedback

controllers of constrained linear and piecewise affine systems is developed. The toolbox offers

a broad spectrum of algorithms to calculate the eMPC solutions. The proposed lattice PWA

representation algorithm can be easily embedded into the MPT toolbox and provide a better

performance in term of online calculation and memory space requirements.

The main steps of the representation algorithm are summarized as follows.

1. Calculate the eMPC solution using the MPT toolbox. Record the local affine functions,

constrained inequalities and vertices of each region;

2. Calculate the values of each affine function at each vertex;

3. Calculate the structure matrix using Lemma 3;

4. Delete the redundant row vectors in structure matrix using Lemma 4;

5. Delete the redundant elements in structure and parameter matrices using Lemma 5;

6. Get the lattice PWA expression of an eMPC solution.

It should be noted that the multi-parametric solver may return a PWA solution that is

discontinuous, even for problems where continuous PWA solution exists. Then the lattice

representation algorithm is feasible for the continuous PWA solutions obtained from the

multi-parametric solver.

4.6 Complexity analysis

Let u(x) = [u1(x), · · · , um(x)]T be a vector PWA function with M polydedral regions and

x ∈ ℜn. Denote M̃k as the number of lattice regions in uk(x) and M̂k the number of super

regions with 1 ≤ k ≤ m.

4.6.1 Storage

The lattice representation requires the storage of a (n + 1) × ∑
m
k=1 M̃k parameter matrix and

a ∑
m
k=1 M̂k × M̃k structure matrix. The total memory needed is O

(

(n + 1)∑
m
k=1 M̃k

)

real

numbers and O
(

∑
m
k=1 M̂k M̃k

)

binary numbers. The structure matrix is usually very sparse.

The actual required memory space can be significantly smaller than the worst estimation

through the use of appropriate sparse storage techniques.

4.6.2 Online complexity

For a given state variable, the online evaluation of a lattice PWA control law consists of 3
steps. The first step is to calculate the function value of M̃k affine functions. This requires

nM̃k multiplication and nM̃k sums. In the second step, we need to calculate the maximum

of M̄k function values, where M̄k is the number of affine functions with ψij = 1 in the

structure matrix. Note that M̄k ≤ M̃k. In the worse case, this step requires (M̃k − 1) × M̃k

by considering the M̃k maximization terms. The last step is to calculate the minimum of

M̂k real numbers. It needs M̂k − 1 comparisons. Therefore, the total online complexity is

O
(

∑
m
k=1(2nM̃ + (M̃k − 1)M̃k + (M̂k − 1)

)

. It follows from Wen et al. (2009a) that n ≪ M̃k and

M̂k < M̃k holds for any k ∈ {1, · · · , m}. The online complexity can be roughly approximated

by O
(

∑
m
k=1 M̃2

k

)

. It should be noted that the structure matrix is usually sparse. The estimate

of online calculation is very conservative in most cases. Then the average online calculation

complexity can be considerably lower than the worse case estimate.
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4.6.3 Preprocessing

The preprocessing phase for the lattice representation is composed of two steps. The first

step is to calculate the eMPC control law using multi-parameter program. The second one

is to represent the eMPC law with a lattice PWA function. It is very difficult to present a

close-form solution of the off-line complexity. However, it was observed in extensive trials

that the representation step takes significantly less time than the initial computation of an

eMPC controller. Therefore, the proposed lattice representation method can be applied to any

system for which an explicit controller is feasible.

5. Numerical examples

Two examples are illustrated in this section. All the simulations are run in Matlab 2007a on a

2.0 GHz Core 2 CPU with 1 GB RAM.

Example 3: Consider the double integrator

y(t) =
1

s2
u(t) (43)

Its equivalent discrete-time state-space representation

⎧

⎪

⎨

⎪

⎩

x(t + 1) =

[

1 1

0 1

]

x(t) +

[

0

1

]

u(t)

y(t) =
[

1
2

1
2

]

x(t)

is obtained by setting

ÿ(t) ≈
ẏ(t + T)− ẏ(t)

T
(44)

ẏ(t) ≈
y(t + T)− y(t)

T
(45)

with T = 1 s. The problem of regulate the system to the origin is formulated as an optimization
problem, which minimizes the following performance measure

1

∑
k=0

∣

∣

∣

∣

∣

∣

∣

∣

[

1 1

0 1

]

xk+1

∣

∣

∣

∣

∣

∣

∣

∣

∞

+ |0.8uk| (46)

subject to the input constraints −1 ≤ uk ≤ 1, k = 0, 1. and the state constraints −10 ≤ xk ≤

10, k = 1, 2.. where Ny = 2, Nu = 2, Q =

[

1 1
0 1

]

, R = 0.8. The solution of this problem

is a continuous PWA function, whose surface plot is visualized in Fig. 3(a). According to

Bemporad et al. 2002, the eMPC solution is given in Table 1.
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Region # Region Controller

1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.00 2.00

0.00 1.00

−1.00 −1.00

0.80 −3.20

1.00 1.00

−1.00 −3.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

11.00

11.00

10.00

−2.40

10.00

−2.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

-1.00

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.80 3.20

−1.00 −2.00

−1.00 −1.00

1.00 1.00

0.00 −1.00

1.00 3.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2.40

11.00

10.00

10.00

11.00

−2.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1.00

3

⎡

⎢

⎢

⎢

⎣

0.53 2.13

0.67 0.67

−1.00 −1.00

−0.33 −1.33

⎤

⎥

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎢

⎣

0.00

0.00

10.00

1.00

⎤

⎥

⎥

⎥

⎦

[−0.33,−1.33]x

4

⎡

⎢

⎣

−0.80 −3.20

1.00 3.00

−1.00 −1.00

⎤

⎥

⎦
x ≤

⎡

⎢

⎣

0.00

0.00

10.00

⎤

⎥

⎦
0

5

⎡

⎢

⎢

⎢

⎣

−1.00 −1.00

0.50 0.50

−0.80 −2.40

0.50 1.50

⎤

⎥

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎢

⎣

10.00

0.00

0.00

1.00

⎤

⎥

⎥

⎥

⎦

[−0.50,−1.50]x

6

⎡

⎢

⎣

0.80 3.20

−1.00 −3.00

1.00 1.00

⎤

⎥

⎦
x ≤

⎡

⎢

⎣

0.00

0.00

10.00

⎤

⎥

⎦
0

7

⎡

⎢

⎢

⎢

⎣

1.00 1.00

−0.50 −0.50

0.80 2.40

−0.50 −1.50

⎤

⎥

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎢

⎣

10.00

0.00

0.00

1.00

⎤

⎥

⎥

⎥

⎦

[−0.50,−1.50]x

8

⎡

⎢

⎢

⎢

⎣

−0.53 −2.13

−0.67 −0.67

1.00 1.00

0.33 1.33

⎤

⎥

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎢

⎣

0.00

0.00

10.00

1.00

⎤

⎥

⎥

⎥

⎦

[−0.33,−1.33]x

Table 1. Conventional Representation of the MPC Solution
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Using Lemma 3, we can get

Ψ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0 1 0 1 1

1 1 0 1 0 1 0 0

1 0 1 0 1 0 1 1

1 0 1 1 0 1 0 1

1 0 1 0 1 0 1 1

1 0 0 1 1 1 1 0

1 0 0 1 1 1 1 0

1 0 1 1 0 1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(47)

By applying Lemma 4 and 5, we can further get a simplified structure matrix

Ψ̃ =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1 0 1

0 1 0 0 0

0 0 1 1 0

0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

(48)

The corresponding parameter matrix is

Φ̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −1.00

0 0 1.00

−0.33 −1.33 0

0 0 0

−0.50 −1.50 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)

Therefore, the analytical expression of the MPC control law is written as

u(x) = min
{

1, max{−1,−0.33x1 − 1.33x2,−0.50x1 − 1.50x2}, (50)

max{0,−0.33x1 − 1.33x2}, max{(0,−0.50x1 − 1.50x2}
}

Here it is easy to see that the online MPC optimization is reduced to a lattice PWA function

evaluation problem. Same as Bemporad et al. (2002), we consider the starting point x(0) =
[10,−5]T. This point is substituted into (50), and the corresponding control action is u(x) =
1, which is obtained without any optimization calculations and table searching procedures.

The closed-loop response is shown in Fig. 3(b), which is exactly the same with the results

from online optimization in Bemporad et al. 2002. The required memory in the analytical

expression is to store a structure matrix Ψ̃ ∈ ℜ4×5 and a parameter matrix Φ̃ ∈ ℜ5×3. The

total memory is 35, which is much smaller than the memory space used in Table 1. The online

computation requires 7 comparison operations, 8 multiplications and 5 summations. It is

evident that the lattice PWA MPC control law performs better in term of online calculation

and memory requirements than the conventional eMPC solution.

Example 4: This example is to demonstrate the performance of lattice representation for eMPC

solutions from parametric quadratic program. The 2-norm is used in the stage cost function.
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Fig. 3. Lattice eMPC Solution

Consider the following state space representation:

⎧

⎪

⎨

⎪

⎩

x(t + 1) =

[

0.7326 −0.0861

0.1722 0.9909

]

x(t) +

[

0.0609

0.0064

]

u(t)

y(t) =
[

0 1.4142
]

x(t)

(51)

The constraints on input are −2 ≤ u(t) ≤ 2. The corresponding optimization problem for

regulating to the origin is written as follows:

min
ut,ut+1

xT
t+2|tPxt+2|t +

1

∑
k=0

[

xT
t+k|tQxt+k|t + Ru2

t+k

]

s.t.− 2 ≤ u(t + k) ≤ 2, k = 0, 1 (52)

xt|t = x(t)

where P ∈ ℜ2×2 is the solution of the Lyapunov equation P = ATPA + Q, Q =

[

1 0

0 1

]

, R =

0.01, Nu = Ny = Nc = 2. According to Bemporad et al. (2000), the eMPC solution is provided

in Table 2.

Using Lemma 3, we can get the following structure matrix.

Ψ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0 1 1

0 1 1 1 0 1 0

0 1 1 1 0 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(53)
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Fig. 4. Closed-loop response of the lattice PWA feedback law

By applying Lemma 4 and 5, we can further get the much simplified structure matrix by

deleting all the redundant rows and columns

Ψ̃ =

⎡

⎣

0 1 0 0 0

0 0 1 1 0

1 0 1 0 1

⎤

⎦ (54)

According to the third column of Table 2, the corresponding parameter matrix is

Φ̃ =

⎡

⎢

⎢

⎢

⎢

⎣

−5.9220 −6.8883 0

0 0 2

0 0 −2

−6.4159 −4.6953 0.6423

−6.4159 −4.6953 −0.6423

⎤

⎥

⎥

⎥

⎥

⎦

(55)

Finally, the analytical expression of the eMPC solution is written as

u(x) = min
{

2, max{−2,−6.4159x1 − 4.6953x2 + 0.6423}, (56)

max{−2,−5.9220x1 − 6.8883x2 ,−6.4159x1 − 4.6953x2 − 0.6423}
}

The closed-loop response of the states is depicted in Fig. 4, which is the same as the one

obtained from the online optimization in Bemporad et al. (2000). The required memory in

the analytical expression is to store a structure matrix Ψ̃ ∈ ℜ3×5 and a parameter matrix Φ̃ ∈
ℜ5×3. It is evident that the lattice representation requires much smaller memory space than

Table 2. Therefore, the lattice PWA representation of an eMPC solution saves both memory

space and online calculation requirements.

Now we discuss the scalability of the lattice representation algorithm. Here this system is
solved using different prediction horizons. The simulation results are summarized in Table 3,

where N denotes the prediction horizon, τmpt is the time in seconds to compute the original

PWA control, τlat is the computation time in seconds to build the lattice representation. Note

that both representation algorithms give the same lattice eMPC solutions and τ̂lat < τlat hold

for all prediction horizons.
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No. Region Controller

1

⎡

⎢

⎢

⎣

−5.9220 −6.8883
5.9229 6.8883

−1.5379 6.8296
1.5379 −6.8296

⎤

⎥

⎥

⎦

x ≤

⎡

⎢

⎢

⎣

2.0000
2.0000
2.0000
2.0000

⎤

⎥

⎥

⎦

−[5.9220, 6.8883]x

2,4

⎡

⎣

−3.4155 4.6452
0.1044 0.1215
0.1259 0.0922

⎤

⎦ x ≤

⎡

⎣

2.6341
−0.0353
−0.0267

⎤

⎦ 2.0000

3

[

0.0679 −0.0924
0.1259 0.0922

]

x ≤

[

−0.0524
−0.0519

]

2.0000

5

[

−0.1259 −0.0922
−0.0679 0.0924

]

x ≤

[

−0.0519
−0.0524

]

-2.0000

6

⎡

⎣

−6.4159 −4.6953
−0.0275 0.1220

6.4159 4.6953

⎤

⎦ x ≤

⎡

⎣

1.3577
−0.0357

2.6423

⎤

⎦

−[6.4159, 4.6953]x
+0.6423

7,8

⎡

⎣

3.4155 −4.6452
−0.1044 −0.1215
−0.1259 −0.0922

⎤

⎦ x ≤

⎡

⎣

2.6341
−0.0353
−0.0267

⎤

⎦ -2.0000

9

⎡

⎣

6.4159 4.6953
0.0275 −0.1220

−6.4159 −4.6953

⎤

⎦ x ≤

⎡

⎣

1.3577
−0.0357

2.6423

⎤

⎦

−[6.4159, 4.6953]x
−0.6423

Table 2. Conventional Representation of the eMPC Solution

According to Table 3, the number of affine regions in the eMPC control law increased

considerably with the length of prediction horizons. However, all the eMPC laws can be

represented by a single lattice PWA function with 19 lattice regions and 12 super-regions.

For example, when N = 28, the original PWA controller consists of 894 polyhedral regions.

But there are only 19 unique affine functions. Therefore, the complexity of the lattice

representation is very robust to the length of prediction horizons.

Fig. 5(a) shows the domain partition of the eMPC control when N = 8. The corresponding

surface plot is visualized in Fig. 5(b). The lattice representation requires to store a 19 × 3

parameter matrix and a 12× 19 structure matrix. The total memory needed is 285. This implies
a significant saving in the storage by considering that there are 894 affine functions in the

original PWA controller. In the worst case, the online-calculation complexity is O(234). This

means a high computation efficiency because the complexity of the competing methods in

Table 3 are all specified by the original MPC solution with 894 polyhedral regions.

In this example, the off-line computation is mainly determined by the calculation of the

original PWA controllers. For the complex cases with long prediction horizons, the time

for building the lattice presentation is one order magnitude less than that for calculating the

initial controllers. This makes negligible the additional off-line computation cost for a lattice

representation when N ≥ 20.

Note that the more complicated eMPC laws generally have more polyhedral regions with

equal affine control laws. For an instance, when N = 28, 875 regions can be merged into

one of 19 regions. By comparison, the number of such regions is only 409 when N = 12.

Therefore, better performance can be anticipated from the lattice representation regarding the
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Fig. 5. eMPC solution when N = 8

storage, on-line calculation and off-line preprocessing cost when dealing with the complex

MPC solutions with large number of polyhedral regions.

N M M̃ M̂ τmpt τlat

8 254 19 12 11.73 2.06
12 428 19 12 31.19 5.46
16 697 19 12 80.59 15.77
20 863 19 12 174.66 26.23
24 892 19 12 296.05 28.25
28 894 19 12 429.55 28.39

Table 3. Performance of lattice representation for an eMPC solution with different prediction
horizons

Example 5: Consider the following linear system with three states and two inputs

(Christophersen et al, 2007)

x(t + 1) =

⎡

⎣

0.7 −0.1 0

0.2 −0.5 0.1

0 0.1 0.1

⎤

⎦ x(t) +

⎡

⎣

0.1 0

0.1 1

0.1 0

⎤

⎦ u(t). (57)

The system is subject to input constraints −1 ≤ ui(t) ≤ 1 with i = 1, 2, and state constraints

−20 ≤ xi(t) ≤ 20 with i = 1, 2, 3. The constrained finite time optimal control problem is

solved with p = 1, Ny = 8, Q =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦, R =

[

0.1 0

0 0.1

]

and P =

⎡

⎣

0 0 0

0 0 0

0 0 0

⎤

⎦. The MPT

toolbox is used to generate the eMPC control law u(x) = [u1(x), u2(x)]
T with 813.4 seconds.

The vector eMPC control is defined over 2497 regions.

Two scalar lattice PWA functions are used to describe u(x), which requires 2 structure matrices

Ψ1 ∈ ℜ18×21, Ψ2 ∈ ℜ3×5 and two parameter matrices Φ1 ∈ ℜ21×4, Φ1 ∈ ℜ5×4. The total
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memory required is 497 in the worst case. In addition, the online computational complexity

is calculated as 616. The average evaluation time of the lattice eMPC is 3.01 × 10−4 seconds

by randomly sampling 20, 000 states in the feasible region. In the preprocessing stage, it takes

11.4 seconds to build the lattice PWA function.
Table 4 lists the comparison results of SS algorithm, CVF algorithm (Christophersen et al,

2007), BST algorithm (Tondel et al. 2003), BBT algorithm (Christophersen et al, 2007) and the

proposed lattice representation (LR) algorithm. The LR algorithm has the lowest description

complexity. It saves more than 90% memory storage compared with the most efficient

competing algorithm. The BST algorithm has the lowest online computational complexity.

But it requires more than 5 millions linear programs to construct the binary search tree.

The pre-processing time is 3504.2 seconds, which is much longer than the time for building

the eMPC control. The SS, BBT and BST algorithms require shorter pre-processing time

than the LR algorithm. However, the former algorithms have much higher evaluation and

description complexities than the latter. In summary, the LR algorithm offers a significant

reduction in memory storage. Therefore, the LR method has a better overall performance

than other competing methods by considering description, online and off-line computational

complexities.

In order to test the scalability of the LR algorithm, we solve system (57) with different

horizons. The simulation results are summarized in Table 5, where N, M, τmpt, τ̂lat are defined

as above in Example 4. According to Table 5, the number of affine regions in the eMPC

control law increased considerably with horizon N. However, the complexity of the vector

lattice representation is very robust to the prediction horizons. The description and evaluation

complexities of lattice representation keep constant, although the number of regions increase

from 1600 (N = 12) to 3189 (N = 20) in the original eMPC controls. In all cases, the

preprocessing time for building the lattice representations is negligible compared with the

time for the eMPC solutions using MPT toolbox. Therefore, the LR algorithm is promising for

large-scale eMPC problems with long prediction horizons.

φ ψ τ

SS Algorithm 81661 106295 0
CVF Algorithm 9988 14982 0
BST Algorithm 21368 110 3504.2
BBT Algorithm 30104 923 10.0
LR Algorithm 497 616 11.4

Table 4. Comparison of Description, Evaluation and Preprocessing Complexities

N M M̄u1 M̂u1 M̄u2 M̂u2 τmpt τlat

4 1510 14 17 3 5 86.0 6.0
8 2497 18 21 3 5 813.4 11.4

12 2600 18 21 3 5 1658.3 12.0
16 3189 18 21 3 5 3385.6 14.7
20 3189 18 21 3 5 5589.8 14.7

Table 5. Performance of LR Algorithm for eMPC Solutions with Different Horizons
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6. Conclusions

This paper proposes a general lattice PWA representation theorem for continuous eMPC

solutions. A constructive proof is developed to show that the global structure information

of an eMPC controller can be fully represented by a set of scalar lattice PWA functions. A

lattice PWA function is a global and compact representation of an eMPC solution, because

the redundant parameters are automatically removed by utilizing the continuity of eMPC

controllers. A lattice representation has an explicit analytical expression. This facilitates the

implementation of lattice eMPC solutions using low-cost hardware.

A complexity reduction algorithm is proposed to develop a computationally efficient

lattice representation of eMPC controllers obtained from multi-parametric program. The

description and evaluation complexities of a lattice eMPC controller depend on the number

of super-regions instead of the number of polyhedral regions. Therefore, the lattice

representation of eMPC solutions can reduce computation and memory requirements

significantly, when the original MPC solutions have many polyhedral regions with equal

affine control laws.

The class of lattice PWA functions provides a compact and explicit model structure for

continuous eMPC solutions. The global structure information in an eMPC control is utilized

to reduce the complexity of its lattice representation. The lattice eMPC controllers present

the first step to use a global PWA representation model to describe generic eMPC solutions.

Further investigation is needed to generalize the lattice representation into the discontinuous

eMPC solutions.
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