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Abstract

The contributions of this thesis are organised in two parts. Part I presents a

mathematical model for drug distribution and drug effect of volatile anaesthe-

sia. Part II presents model predictive control strategies for depth of anaesthe-

sia control based on the derived model.

Closed-loop model predictive control strategies for anaesthesia are aiming

to improve patient’s safety and to fine-tune drug delivery, routinely performed

by the anaesthetist.

The framework presented in this thesis highlights the advantages of ex-

tensive modelling and model analysis, which are contributing to a detailed

understanding of the system, when aiming for the optimal control of such sys-

tem. As part of the presented framework, the model uncertainty originated

from patient-variability is analysed and the designed control strategy is tested

against the identified uncertainty.

An individualised physiologically based model of drug distribution and up-

take, pharmacokinetics, and drug effect, pharmacodynamics, of volatile anaes-

thesia is presented, where the pharmacokinetic model is adjusted to the weight,

height, gender and age of the patient. The pharmacodynamic model links the

hypnotic depth measured by the Bispectral index (BIS), to the arterial con-

centration by an artificial effect site compartment and the Hill equation. The

individualised pharmacokinetic and pharmacodynamic variables and parame-

ters are analysed with respect to their influence on the measurable outputs, the

end-tidal concentration and the BIS. The validation of the model, performed

with clinical data for isoflurane and desflurane based anaesthesia, shows a

good prediction of the drug uptake, while the pharmacodynamic parameters

are individually estimated for each patient.

The derived control design consists of a linear multi-parametric model pre-

dictive controller and a state estimator. The non-measurable tissue and blood

concentrations are estimated based on the end-tidal concentration of the volatile

anaesthetic. The designed controller adapts to the individual patient’s dy-

namics based on measured data. In an alternative approach, the individual

patient’s sensitivity is estimated on-line by solving a least squares parameter

estimation problem.
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QP Quadratic programming

RSME Root mean squared error
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List of Variables

Symbol Denotation

A State matrix

B Input matrix

Bd Input disturbance matrix

C Output matrix

Cd Output disturbance matrix

CR Critical Region

d Disturbance

E Constraint matrix of mp-QP problem

F Weight matrix of mp-QP problem

G Disturbance matrix

G Constraint matrix of mp-QP problem

H Weight matrix of mp-QP problem

M Control horizon

N Output horizon

P Weight matrix on the final states

Q Weight matrix on the states

Q̂ Process noise covariance matrix of Kalman filter

QR Weight matrix on reference tracking error

R Weight matrix on inputs

R̂ Measurement noise covariance matrix of Kalman filter

R1 Weight matrix on rate of change in control input

ts Sampling time

θ Parameter vector of mp-QP problem

u Input vector

U Optimisation vector of mp-QP problem

∆u Step change in control input, (∆CI)

v Measurement noise

w Process noise

W Constraint matrix of mp-QP problem

x State vector

y Output vector

Y Weight matrix of mp-QP problem

yR Reference point



1. Motivation and Introduction

During surgery, the anaesthetist faces the task of providing safe anaesthesia

for the patient, while maintaining the vital functions. A mix of administered

drugs leads to the desired effects of hypnosis, amnesia, analgesia and muscle

relaxation. The drug side-effects on the cardiovascular system, the respiratory

system and the central nervous system, if not monitored closely, can have such

a high impact that they are life threatening. Given an enormous variety of

(i) patients differing in weight, height, age, sex and race, (ii) requirements

for surgeries with distinctive impact on the patient and (iii) interactions of

administered agents, the anaesthetist has to keep all these covariates and

influences in mind, while providing anaesthesia with possible complications.

Currently anaesthetists rely on common practice and their personal ex-

perience to determine simultaneous drug administration rates. High-fidelity

modelling and optimised control for drug administration could (i) pave the

way for personalised health care, taking into account the individual patient

characteristics for optimal and flexible drug administration, (ii) guarantee the

safety of the patient minimising side-effects, as well as (iii) provide the anaes-

thetist with additional information about the current anaesthetic state of the

patient, the patient’s vital functions and more time to focus on critical issues.

The modelling and automatic control of anaesthesia is believed to benefit

the safety of the patient undergoing surgery and provide anaesthetists and

researchers with valuable insights, (Bibian et al., 2005; Glass and Rampil,

2001; Hardman and Ross, 2006; Morari and Gentilini, 2001; Struys et al.,

2006).

Motivated by various challenges in automation of anaesthesia, this thesis

focuses on the automation of the hypnotic state of the patient. The presented

steps in this thesis towards a validated control strategy starting with the model

development via model analysis, uncertainty identification and robust control

design are pointed out in the framework in Figure 1.1.
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Modelling

Control

Model AnalyisModel
Uncertainty

Identification

Closed-Loop

Control System

Validation

Robust Control

Strategies

Figure 1.1.: Framework illustrating the work presented in this thesis.

Anaesthesia is either both induced and maintained by the continuous in-

fusion of an intravenous anaesthetic agent, e.g. propofol, or maintained by

admixture of a volatile anaesthetic agent, e.g. isoflurane or desflurane, to the

inhaled air. Volatile anaesthesia is preferred by most anaesthetists, because

the end-tidal concentration of the volatile anaesthetic is standardly measured

and widely used as an indicator of the hypnotic depth, (Miller et al., 2010)

and (Chapter 2, Figure 2.2). For intravenous anaesthesia, the anaesthetist

relies on the measurement of the hypnotic depth by, for example, the Bispec-

tral Index (BIS), because on-line plasma concentration measurements are not

available. The Bispectral index (BIS) is an empirically derived signal based on

a real-time electroencephalography (EEG) trace acquired from a frontotem-

poral montage. The BIS value indicates the responsiveness of the patient and

ranges from 100 to 0, where 100 describes normal cortical electrical activity

of a fully awake patient, 85-65 sedation, 65-45 general anaesthesia, 45 deep

hypnosis, 40 near suppression, 30-0 increasing burst suppression and 0 cortical

electrical silence, (Miller et al., 2010).

In brief, the objective for control of anaesthesia can be summarised by a fast

and stable maintenance of the hypnotic level, measured by the BIS. The BIS

target values for general anaesthesia lie in-between 40-60, but might be mod-

ified by the anaesthetist. A summary of the control objective is depicted in

Figure 1.2, where CI denotes the concentration of the inhaled volatile anaes-

thetic or the bolus of the infused intravenous anaesthetic. BIS denotes the

measure of the anaesthetic depth and CE the exhaled or end-tidal anaesthetic

concentration, only available for volatile anaesthesia.
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BIS C
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Figure 1.2.: Control objective for intravenous and volatile anaesthesia.

The closed loop state feedback control design for drug delivery of anaesthesia

is illustrated in Figure 1.3. The controller, MPC block in Figure 1.3, computes

the optimal drug concentration or dose u (CI) for the patient to maintain the

reference point yR on the BIS or CE , which is illustrated in Figure 1.2.

Set point

selector
MPC PatientyR u

Estimator

y

x̂

Figure 1.3.: Closed loop control design structure.

The first essential step towards such closed loop control strategy is the

derivation of a mathematical model that adequately describes the system.

Here the challenge is to find the balance between a very complex model and an

over-simplified model. The very complex model is likely to contain too many

parameters that cannot be determined or estimated independently, mainly

due to the lack of measurements and adequate sensors. The over-simplified

model might neither capture the systems dynamics nor allow insights and

understanding of the system. During the modelling process and model design,

the objective of the model development plays a crucial role; in this thesis, the

focus lies on model development for explicit MPC. Hence, the model should

be of a reasonable size to enable the computation of an explicit controller, but

still represent the individual patient’s characteristics.

The pharmacokinetic-pharmacodynamic (PK-PD) model presented in this

thesis contains 7 ordinary differential equations (ODE), presented in Chap-

ter 3. The state space representation (1.1) of the equation system, built based

on this model, has two fixed inputs, one variable input, one output and 7 state
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variables, resulting in a 7-dimensional state vector x ∈ Rn with n=7.

xk+1 =Axk +Buk

yk = f(xk),
(1.1)

where k denotes the discrete time points. The state vector, xk, contains the

concentrations in the blood and tissue compartments of the model, uk denotes

the variable input, CI , and yk is the output, BIS. An illustration is given in

Figures 1.2 - 1.3. The non-linearity, f(xk), is introduced by the Hill equation,

which relates the effect-site concentration to the BIS. For the design of a linear

explicit MPC strategy a discrete linear state space system is required:

xk+1 =Axk +Buk

yk =Cxk
(1.2)

The strategies to obtain a liner system are (i) the algebraic inverse of the

Hill equation (Gentilini et al., 2001; Ionescu et al., 2008) or alternatively (ii)

piecewise affine approximations of the Hill equation (Chapter 7).

The derived model is implemented and simulated in gPROMS (PSE, 2011)

and shows a good approximation of the pharmacokinetics of isoflurane and

desflurane, whereas the pharmacodynamic parameters were individually esti-

mated for each patient applying the gPROMS (PSE, 2011) parameter esti-

mation entity (Chapter 5). To gain further understanding, all parameters of

the model are analysed with respect to the measurable outputs: the end-tidal

concentration and the BIS. For a global sensitivity analysis parameters and

variables were divided into a pharmacokinetic and pharmacodynamic group

and analysed separately. A further analysis was performed by changing the

parameters one at a time in-between specified bounds to observe the effect on

the output of interest. In the final part of the model analysis, a correlation

analysis of the most influential parameters and variables is presented. This

extensive analysis leads to a very good understanding of the model and its

dynamics and, more importantly, the envelope of uncertainty the MPC has to

handle (Chapter 4). In addition, the model with individually adjusted vari-

ables and parameters can be applied for closed loop control validation, where

the patient block in Figure 1.3 represents a patient of the clinical study.

Given this validated and analysed model, an anaesthesia drug delivery sys-

tem consisting of an explicit MPC is designed that calculates the optimal drug

dose as a function of the derived model. The MPC is designed as a state feed-

back controller. The optimal control input, the drug dose CI , is calculated

based on the system’s states, which are the drug concentrations in the tissue
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and blood compartments. Not all drug concentrations can be easily measured;

hence, a state estimator is required to predict the non-measurable states. The

straightforward choice is to apply the derived state space model and simulate

it simultaneously with the process for identical inputs to obtain the states. As

a second strategy the states are estimated by a Kalman filter based on the

measurement of the end-tidal anaesthetic concentration (Chapter 7).

The choice for the design of an explicit controller via multi-parametric

quadratic programming (mp-QP) is motivated by the possibility of testing

the controller in advance for all occurring scenarios and the full parameter

space, (Bemporad et al., 2002), which complies with the high safety standards

for drug delivery systems of anaesthesia. The mp-MPC is derived in the POP

toolbox for MATLAB, (ParOS, 2004), and designed to adjust to the indi-

vidual patient’s dynamics by an output feedback strategy. As an add-on to

the explicit MPC, an on-line parameter estimation of the PD parameter C50,

which shows the highest sensitivity towards the BIS is presented. Here a least

squares optimisation problem is solved in GAMS (2013) (Chapter 10).

Structure of this Thesis

The structure of this thesis is organised in two parts guided by the frame-

work presented in Figure 1.1. Part I is concerned with modelling of the drug

distribution and drug effects during volatile anaesthesia, model analysis and

validation studies. Part I has been partly published in Krieger et al. (2013).

Part II is illustrating the control design and closed-loop control validation

of the drug delivery system for depth of anaesthesia. Each part contains a

separate literature review.





Part I:

Modelling, Model Analysis

and Model Validation
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Objective and Summary

The objective of this part is to fundamentally understand and analyse the

dynamics of the system: the model for volatile anaesthesia.

Modelling

Model AnalyisModel
Uncertainty

Identification

(Chapter 3,

5 and 6)

Validated model

for closed-loop

control testing.

(Chapter 4)

Most influential

parameters and

variables of

the model.

(Chapter 4)

Envelope of

uncertainty the

control strategy

has to handle.

Figure 1.4.: Modelling framework and contributions presented in Part I.

The objectives and contributions of an extensive analysis leading to a well-

established understanding of the dynamic system model in Figure 1.4 are

further defined as follows:

I) Validated model with clinical data for closed loop control evaluation.

▶ Validated model for uptake and distribution of isoflurane and des-

flurane based anaesthesia.

II) In-depth understanding of the influence of the model’s parameters and

variables.

▶ Cardiac output and lung volume are the parameters with the highest

influence on the distribution and uptake of the volatile anaesthetic

agent.

▶ The pharmacodynamic parameters have the highest influence with

respect to the drug effect; particularly C50 defined as the effect site

concentration at 50% drug effect.

III) Identify the uncertainty for the design of a robust control strategy.

▶ The inter-patient variability is very high; particularly for the phar-

macodynamic parameters; hence an off-set free robust control method

or on-line parameter estimation is required to provide safe control.
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2. Fundamentals of Mathematical

Modelling for Anaesthesia

The mathematical modelling of drug distribution and drug effect for a wide

number of drugs, e.g. chemotherapeutic agents, hypnotics and analgesics is

a well established method to help understanding and predicting the mecha-

nisms occurring during and after drug administration. In this context, the

aim is to describe the time course of drug concentrations in the tissues and

the effect on the body by mathematical equations, (Dingemanse and Appel-

Dingemanse, 2007). Equations describing the distribution, absorption, elimi-

nation and metabolism are referred to as pharmacokinetics, whereas the link

of the concentration to the effect is described by pharmacodynamic equations.

2.1. Pharmacokinetic Modelling

Pharmacokinetics describe the distribution of the drug in the human body.

Here, two approaches for pharmacokinetic models dominate the literature,

(i) mammillary compartmental models, where several peripheral compart-

ments are connected to one central compartment, and (ii) physiologically

based pharmacokinetic models, where organs and tissues are interconnected

and arranged copied from physiology. The approach of physiologically based

pharmacokinetic (PBPK) modelling for drug delivery, uptake and distribution

models gains increasing attention of researchers, (Hall et al., 2012), and may

be very detailed down to a systems biology level, (Ghosh et al., 2011).

The probably oldest idea of of describing the human body as a complex inter-

action of flows and plants processing nutrients originates from Kahn (1926),

who imagined the man as a complex industrial machine. In the 1930s Teorell

derived first physiologically based models for drug distribution, uptake and

elimination (Teorell, 1937a,b). Pioneering work towards individual patient

variables of volatile agents for a model mapping the circulation to describe

the uptake of ether in a dog goes back to Haggard, (Haggard, 1924a,b,c).

Regarding the prediction of the uptake of volatile anaesthetics most models

are either based on the work of Mapleson or Eger. Both authors were aiming to

match the measured uptake of the anaesthetic gas by mathematical equations
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to understand the anaesthetic uptake of their patients. The basic idea was to

group tissues with similar properties, such as the well perfused organs, into

one compartment and describe the uptake based on these tissues’ properties,

e.g. drug solubility and perfusion.

(a) PBPK model

Mapleson.

(b) Mammillary PK model Eger. (c) Further subdivision

of one compartment.

Figure 2.1.: Generic structures of pharmacokinetic models for volatile anaes-
thesia.

Mapleson described the blood flows and body tissues analogously to an

electrical circuit, where the tissue compartments are represented by capacitors

and the blood vessels by resistances, illustrated in Figure 2.1(a), (Mapleson,

1962, 1963, 1964a,b). The derived compartmental physiologically based model

was further tested and validated for halothane uptake in a dog by Allott et al.

(1976).

Eger described the uptake of the anaesthetic agent by a hydraulic model,

where different tissue groups are characterized by tanks of different diameters

and connected to one central tank, which represents the alveolar gas, and

is illustrated in Figure 2.1(b), (Cromwell et al., 1971; Eger, 1974; Eger and

Guadagni, 1963).

Based on the work of Mapleson, Zwart et al. and Smith et al. derived an

eight compartmental physiologically based model for the uptake of halothane,

(Smith et al., 1972; Zwart et al., 1972). Goldberg et al. applied this model

for closed loop anaesthesia of halothane, (Goldberg et al., 1978). Fiserova-

Bergerova et al. extended the model by adding additional tissue groups, i.e.

subcutaneous and inner adipose tissue, the liver and additional anaesthetic

agents, i.e. isoflurane, enflurane and methoxyflurane, (Fiserova-Bergerova,

1992; Fiserova-Bergerova and Holaday, 1979; Fiserova-Bergerova et al., 1974,

1980). Also Lerou et al. extended the Mapleson model to a 14 compartment

model for teaching and research purposes describing the simultaneous uptake
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of isoflurane, nitrous oxide and oxygen, which was then validated with clinical

data, (Lerou and Booij, 2001a,b, 2002; Lerou et al., 1991a,b, 2002; Vermeulen

et al., 1995).

Eger’s hydraulic model was further extended by Carpenter et al. (1986) to

a five compartmental mammillary model connected by one central compart-

ment, Figure 2.1(b). This approach was further applied and extended by

Yasuda et al. for uptake of desflurane, isoflurane and halothane, (Yasuda

et al., 1991a,b).

Kety was the pioneer towards characterisation of individualised drug uptake

depending on (i) drug solubilities or partition coefficients in the tissues and

(ii) the physiological variables such as the cardiac output, (Kety, 1950, 1951).

The description of one compartment itself in either the mammillary model

or the physiological based model can be described by complex interactions and

flows between e.g. blood cells, plasma, intestinal fluid, a rapid interactive pool,

and a slow interactive pool, illustrated in Figure 2.1(c). Bischoff (1975) gives

a comprehensive summary of physiologically based pharmacokinetic models.

Furthermore the concept of a flow-limited and/or a diffusion-limited model can

be applied to describe the uptake and distribution within one compartment,

(Thompson and Beard, 2011). Given a fast drug diffusion in the capillaries

from blood to tissue, in most approaches the compartments are assumed to

be flow-limited. In the perfusion-limited approximation the uptake of the tis-

sues is restricted by the permeability of the membranes separating blood and

tissue, (Bischoff, 1975, 1986).

2.2. Pharmacodynamic Modelling

The individualized characterisation of the pharmacodynamics, which link the

drug concentration to the drug effect, is more challenging because of higher

inter- and intra-patient variability, (Mertens and Vuyk, 1998).

To determine the hypnotic depth, anaesthetists commonly apply the Min-

imum Alveolar Concentration (MAC) as a guideline. MAC is defined as the

concentration required to prevent movement in response to surgical incision

in 50% of the patients. During general anaesthesia conventionally 1.3 MAC is

the target value, which assures sufficient anaesthesia in 90% of the patients,

(Eger et al., 1965). The resulting cumulative probability curve is shown in

Figure 2.2, (Krieger et al., 2012).
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Figure 2.2.: Population distribution of MAC for sufficient hypnosis with 95%
confidence interval. The gray dot denotes 1 MAC for 50% and the
black dot denotes 1.3 MAC for 90% of the population.

Figure 2.2 highlights the challenge of identifying the individual patient’s

sensitivity and anaesthetic state to avoid awareness or overdosing.

Already by definition the guideline for dosing of volatile anaesthetic agents

during anaesthesia is based on probability. This highlights the challenge of

identifying the individual patient’s sensitivity and consecutively the hypnotic

depth to avoid awareness or overdosing. Parameters influencing the individual

patient’s sensitivity are for example the age. Studies by Brunner et al. (1994)

investigated the correlation of MAC with patient characteristics or analgesics

administered simultaneously during anaesthesia. Mapleson (1996) and Eger

(2001) found that MAC decreases with age and that elderly patients are more

sensitive to anaesthetics. Furthermore the patient’s sensitivity towards the

anaesthetic agent changes depending on surgical stimulation and simultane-

ously administered drugs during anaesthesia, such as muscle relaxants and

analgesics, (Glass et al., 1997; Rosow, 1997). Recent advances investigate the

pharmacogenomic variability as an indicator of individual patient’s sensitivity

to anaesthetic agents, (Searle and Hopkins, 2009). The challenge is to include

the entire pharmacodynamic variability, which is estimated to vary up to 400%

by Mertens and Vuyk (1998), in the model. This task might be very complex

if not impossible.

2.3. Applications

Applications of mathematical models for drug delivery systems lie in the area

of patient simulators or mannequins for training of nurses, medical students

or anaesthetists and in on-line computation of the current drug concentrations

and effect during surgery.
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2.3.1. Patient Simulators and Simulation Tools for Teaching

and Training

The idea of using computer programs to simulate and predict the uptake of

the anaesthetic agent originates from the work of Tanner et al. (1986).

Training and teaching with patient simulators and mannequins is becoming

more common in modern medical education. One of the most advanced patient

simulators on the market is the CAE Healthcare© HPS® (CAE Healthcare,

2013). This patient simulator shows all vital functions and inhales and ex-

hales oxygen and anaesthetic agents according to a mathematical model, (Van

Meurs, 2011).

Several software tools for training are available, the most well known tool

is Gas Man®(MMSI, 2006), a computer tool for teaching, simulating and

experimenting with anaesthesia uptake and distribution.

2.3.2. On-line Monitoring and Prediction

The SmartPilot View by Dräger (Herbst, 2010) or the Navigator Applications

Suite software by GE Healthcare (2013) are software tools that enable a fre-

quently updated state of the patient calculated based on drug infusions and

boluses and the measured variables e.g. the exhaled and inhaled gases and the

vital functions. The aim of these tools is to provide the anaesthetist with a

decision support. The anaesthetist can follow the moving state of the patient

in a 2D graph and see the future states for the given infusions and inhalations,

(Grünberg, 2009).





3. Model for Volatile Anaesthesia

The first and essential step for any model predictive control design is the

derivation and validation of a model that is describing the system’s behaviour

accurately. The physiologically based model for the uptake, distribution and

effect of volatile anaesthetic agents presented in this section is based on the

work published in Krieger et al. (2013) and our previous work in Krieger et al.

(2011, 2012).

In this thesis the physiologically based pharmacokinetic modelling approach

is applied to describe the pharmacokinetics (PK) and address patient variabil-

ity by including patient-specific characteristics in the mathematical descrip-

tion, (Hall et al., 2012). The variability of the PK uncertainty is included

analogously to Fiserova-Bergerova (1992), where all volumes for blood tissue

and gas compartments are assigned specific to the individual patient’s weight,

height and age. By including these factors the aim is to reduce significantly

the variability in the PK, which is estimated to be around 60-80%, (Mertens

and Vuyk, 1998).

The challenge is to find the balance between a too complex but reasonably

simple model with respect to application in model predictive control and still

aim for the required detail, (Tanner, 1982).

3.1. Pharmacokinetics

The physiologically based compartmental model for volatile anaesthetics, Fig-

ure 3.1(a), is based on Eger’s compartmental model for volatile anaesthesia,

where the tissues with similar properties are lumped together resulting in three

body compartments representing the Vessel Rich Group (VRG), the Muscle

Group (M) and the Adipose Tissue (F), (Eger, 1974). Each body compart-

ment is further divided into an ideally mixed blood and ideally mixed tissue

part. This approach is based on a model for cancer chemotherapeutic drugs

first presented by Bischoff (1986). The gas, blood and tissue volumes are

individually adjusted to the weight, height, gender and age of the patient.

A detailed list of all variables and their units can be found in the notation

lists in the beginning of this thesis.
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The compartments are described assuming a flow-limited formulation. Hence,

the diffusion through the capillary vessel walls is assumed to be rapid and the

mass transfer of the drug into the tissue is restricted by the perfusion of the

compartment. This approximation is not fundamental to the physiological

pharmacokinetic approach, but commonly used due to the lack of sufficient

physiological information of e.g. membrane permeabilities, diffusion coeffi-

cients and tissue surfaces, (Bischoff, 1986). No inter-tissue diffusion between

the compartments e.g. from the VRG to the adipose tissue is included, (Zwart

et al., 1972). This implies that mass exchange only occurs through the blood

vessels. The transport time and the pulsatile character of the blood flow are

neglected, because the equilibration times are large compared to the cardiac

cycle, (Zwart et al., 1972). All fluxes leaving a gas, blood or tissue compart-

ment are in equilibrium with the compartment.

(a) Patient body.

Q - Qs

. .

Qs

.

CA,I uL

VD

.

VA

.
gas

blood

Ca

CI CE

Cv

(b) Fluxes in the lungs.

Figure 3.1.: Structure of the physiologically based patient model.

The uptake of the anaesthetic agent is determined by two factors: the ven-

tilation of air through the lungs and the perfusion of blood through the lungs.

The ventilation is given by the product of the respiratory frequency fR and

the tidal volume VT . Only a part of the total minute ventilation V̇ , usually

two thirds, take part in the gas exchange in the lungs and reach the alveoli.

This alveolar ventilation V̇A is given by the total ventilation V̇ less the dead

space ventilation V̇D:

V̇A = V̇ − V̇D = fR(VT − VD) (3.1)
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Here fR and VT are set by the anaesthetic machine and the anaesthetist,

respectively. Analogously to (3.1) the alveolar volume VA is determined by

the lung volume VL less the dead space volume VD.

VA = VL − VD (3.2)

The applied mass balances and assumptions, the fluxes of gas and blood in

the lungs are shown in Figure 3.1(b).

The input variable of the model, to be optimised by the controller, is the

concentration of the inhaled volatile anaesthetic agent CI , routinely set by

the anaesthetist.

To map the respiratory cycle and the changing gas concentration in the

lungs, the concentration in the alveoli just after inspiration CAI is given in

(3.3) analogous to the Bohr equation for carbon dioxide, (Miller et al., 2010),

where the amount of inhaled anaesthetic gas is ideally mixed with the gas left

in the lungs after expiration. This equation aims to represent the time-varying

process of inspiration and expiration by a time invariant equation.

CAI (VA + VT ) = CI VT +CE VA (3.3)

The concentration during expiration is given by the assumption of an equilib-

rium between the end-tidal expired concentration CE and the mixed venous

blood concentration Cv̄. The concentrations are linked via the blood gas par-

tition coefficient λ, (Eger, 1974).

CE =
Cv̄
λ

(3.4)

The anaesthetic uptake takes place in the alveoli of the lungs alongside with

the uptake of oxygen and the removal of carbon dioxide. The driving force

for all fluxes is the concentration difference between the mixed venous blood

and the arterial blood, (Miller et al., 2010). Additionally, the amount of gas

in the lungs and in the pulmonary capillaries, which are perfusing the alveoli,

is determined by the cardiac output Q̇. A part of the total cardiac output,

the shunt flow Q̇s, does not reach the alveoli and therefore is excluded from

the gas exchange, see Figure 3.1(b). This results in the following equation for

the uptake of the volatile anaesthetic in the lungs

uL = (Q̇ − Q̇s) (λCAI −Cv̄) (3.5)

with the blood gas partition coefficient λ. The concentration in the arterial
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blood Ca is determined by a mass balance of inlet and outlet fluxes indicated

in Figure 3.1(b) by the dashed line and uL in (3.5).

CaQ̇ = Cv̄Q̇ + uL (3.6)

The mixed venous blood concentration is given by an average of all blood

concentrations in the compartments multiplied with the perfusion of the re-

spective compartment. To account for the venous shunt, diversion of blood

from the artery directly to the vein, the last term in (3.7) is added.

Cv̄ = ∑
i

rQ̇,iCb,i + (1 −∑
i

rQ̇,i)Ca (3.7)

The tissue compartments in Figure 3.1(a) are further divided into blood and

tissue sub-compartments, shown in Figure 3.2.

Blood

Tissue

Vb,i Cb,i

Vt,i Ct,i

Qi Qi

Figure 3.2.: Structure of one tissue compartment.

The concentrations of the anaesthetic agent in the individual compartments

are given by mass balances for each blood and tissue compartment.

Vb,i
dCb,i

dt
= Q̇i(Ca −Cb,i) − ut,i , i = V RG,M,F (3.8)

Vt,i
dCt,i

dt
= ut,i , i =M,F (3.9)

The mass balance of VRG tissue includes an additional term for the metabolism

of the anaesthetic agent in the liver mliv, where Q̇liv describes the perfusion

of the liver, (Saltzman, 2001).

Vt,V RG
dCt,V RG

dt
= ut,V RG − Q̇liv Ct,V RGmliv (3.10)

The driving force of the anaesthetic uptake by the tissue ut,i in each com-

partment is the difference of the concentration in the tissue at equilibrium for

the given concentration in the blood Cb,i and the actual concentration in the

tissue Ct,i, (Eger, 1974; Enderle et al., 2005). The partition coefficients λi

relate the concentrations in the tissue Ct,i to the concentrations in the blood

Cb,i at equilibrium. Analogously to (3.5) the uptake of the tissue in the body
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compartments is described in (3.11).

ut,i = Q̇i(λiCb,i −Ct,i) (3.11)

The perfusion of each compartment Q̇i is given by the cardiac output Q̇ and

the ratio of the cardiac output rQ̇,i perfusing the compartment.

Q̇i = rQ̇,i ⋅ Q̇ (3.12)

Similarly, the parameter rVb,i describes the ratio of the total blood volume

Vb in compartment i and rV,i to the ratio of total body tissue volume V ,

respectively.

Vt,i = rV,i ⋅ V (3.13)

Vb,i = rVb,i ⋅ Vb (3.14)

3.2. Individualised Pharmacokinetics

In the following sections the PK variables and parameters in (3.1) - (3.14) are

given as functions of the patient’s physiology, i.e. age, weight, height and

gender, to account for patient-variability.

3.2.1. Lumped Tissue Compartments

The volumes of the body compartments are given as a part of the total body

volume. The mass of the adipose tissue is a function of the Body Mass Index

(BMI), age and gender of the patient, (Deurenberg et al., 1991). The per-

centage of the body mass of VRG and the Vessel Poor Group (VPG) are not

primarily depending on the BMI of the patient. Thus, they are assigned as

a percentage of the ideal body weight for a person with the patient’s height,

BMI = 22 [kg/m2] for both genders, (Lemmens et al., 2006). The ideal body

weight for a patient with height h is given in (3.15).

mideal = 22 ⋅ h2 with BMI =
m [kg]

(h [m])2
(3.15)

The body mass, which is neither allocated to the adipose tissue, nor to VPG

or VRG, is assigned to the muscle group. The mass and volume of VPG

is calculated to determine the volume of the muscle group and not further

considered in the mathematical model, as the perfusion and anaesthetic uptake

of the VPG tissue is negligible for short term anaesthesia. The equations for
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the patient-specific tissue compartment mass are given in Table 3.1.

Table 3.1.: Calculation of patient-specific tissue mass.

Parameter Description Equation Unit Ref

mF Adipose

mass

(1.2 BMI−10.8 gender◊+
0.23 age − 5.4) ⋅ 0.01m

kg Deurenberg

et al. (1991)

mV PG VPG mass 0.2 ⋅mideal kg Miller et al.

(2010)

mV RG VRG mass 0.1 ⋅mideal kg Miller et al.

(2010)

mM Muscle mass m−mF −mV PG −mV RG kg

◊female: gender = 0, male: gender = 1

The volume of the compartments is determined by the average density of

the tissue of the compartment, (Heymsfield et al., 2005).

Vi =
mi

ρi
(3.16)

3.2.2. Blood Volume

The blood volume is adapted to height h in [cm], weight m in [kg] and gender

of the patient published by Nadler et al. (1962), where f denotes a female and

m a male patient.

VB,f = 0.3561h3
+ 0.03308m + 0.1833 (3.17a)

VB,m = 0.3669h3
+ 0.03219m + 0.6041 (3.17b)

3.2.3. Cardiac Output

The cardiac output Q̇ in [L/min] as a function of the patient’s BMI, age and

gender is adapted from Stelfox et al. (2006); gender = 1 for a female patient

and gender = 0 for a male patient.

Q̇ = 5.84 + 0.08 BMI − 0.03 age − 0.62 gender (3.18)

Further coefficients for additional predictors such as simultaneously admin-

istered agents or the patient’s health state and be found in Stelfox et al. (2006).
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3.2.4. Lung Volume

The ventilated lung volume less the dead space determines the distribution

volume of the inspired anaesthetic in (3.2) and (3.3). On average, men have

larger lungs than women. During anaesthesia the ventilated lung volume re-

duces to approximately the functional residual capacity, altered by atelectasis

and anaesthetic side-effects. The patient-specific functional residual capacity

as a function of the BMI in litres is given by Pelosi et al. (1998).

VL = 11.97 exp(−0.096 BMI) + 0.46 (3.19)

3.3. Pharmacodynamics

Pharmacodynamics (PD) describe the link of the concentration of the anaes-

thetic agent to the effect of the drug. In a common modelling approach for

drugs with response delays a hypothetical effect-compartment, which describes

the mathematical link between the plasma concentrations and drug effects, is

added to the equation system. This hypothetical compartment is solely ap-

plied to describe the delay of the drug action by a mathematical equation and

does not contribute towards the pharmacokinetics of the drug. Therefore it is

not reflected in the pharmacokinetic equations, (Mager et al., 2003; Sheiner

et al., 1979). The effect-site concentration Ce in this hypothetical effect site

compartment is given as follows:

dCe
dt
= ke0 (Ca −Ce) (3.20)

Here, Ca denotes the concentration in the arterial blood calculated in (3.6),

Ce denotes the effect site concentration and ke0 denotes the first order rate

constant describing the delay of drug action.

The hypnotic effect, which is of interest in our case, is measured by the BIS

and calculated as a function of the concentration in the effect site compart-

ment, Ce, by the Hill equation. Originally, the Hill equation was first used

by Hill (1910) to describe the equilibrium relationship between the partial

pressure of oxygen in the blood and the saturation of haemoglobin. Now it is

known as a standard equation in pharmacology, (Goutelle et al., 2008).

BIS = BIS0 + (BISmax −BIS0)
Cγe

Cγ50 +C
γ
e
, (3.21)

where C50 is the concentration triggering 50% of the total effect or the potency

of the drug and γ the slope of the Hill equation in (3.21). BIS0 describes the
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initial effect at no anaesthetic concentration BIS0 = 100 and BISmax describes

the maximum effect BISmax = 0. The three PD parameters ke0, C50 and γ

are individual patient characteristics and might change during the course of

anaesthesia triggered by e.g. surgical stimulation or drug interaction.

3.4. Individual Patient Variables and Parameters

In this section the range of the PK and PD variables and parameters as a func-

tion of the patient’s physiology, i.e. age, weight, height and gender, are cal-

culated. Here, variables refer to values that might change over time, whereas

parameters are constant. All PK and PD variables and parameters, their

nominal values and range are summarised in Table 3.2.

In the presented model the individual PK variables are the cardiac output,

the shunt flow, the distribution of the cardiac output on the compartments, the

lung shunt, the dead space volume and the lung volume. All variables are likely

to change during the course of anaesthesia as a function of the concentration

of the anaesthetic agent, other simultaneously administered drugs or surgical

stimulation.

The deviation for the cardiac output Q̇ is calculated for patients with a

body weight of 45-100 kg, body height of 1.50-1.90 m, age of 18-90 years and

both genders in (3.18).

The shunt flow Q̇s results from a 0% to 30% shunt of the cardiac output

increased by atelectasis, which is often occurring during anaesthesia, (Miller

et al., 2010).

For the distribution of the cardiac output on the different compartments no

deviation was found in the open literature. The baroreflex is still active during

light to moderate anaesthesia and aims to provide the essential, well perfused

organs, with oxygen. Therefore the ratio of the vessel rich group is assumed to

increase slightly, whereas the perfusion of the fat and muscle group decreases,

(Miller et al., 2010).

The dead space is altered from a normal value of VD=150 mL ≈ 30%VT to

VD=600 mL ≈ 60%VT caused by atelectasis, (Miller et al., 2010).

The deviation in the lung volumes is given by (3.19) for patients with a BMI

in the range of 20 to 40 covered in the study by Pelosi et al. (1998).

The PK parameters are the partition coefficients, the tissue volumes and

the blood volumes, which are constant during the entire course of anaesthesia.

The deviation for the blood gas partition coefficient λ and the tissue parti-

tion coefficients λi were summarised and published by Eger et al. (2002) from

different sources.
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The tissue volumes are calculated for patients with a body weight of 45-

100 kg, a body height of 1.50-1.90 m and both genders applying the equations

in Table 3.1. The blood volumes are calculated based on the assumptions that

the blood volume Vb is proportional to the perfusion of the compartment and

that 60% of the total blood volume is distributed on the systematic tissue,

(Saltzman, 2001).

Vb,i = 0.6Vb rQ̇,i (3.22)

The PD parameters are ke0, C50 and γ in (3.20) and (3.21). The variation

in the PD parameters was published in a study by Gentilini et al. (2001). The

values at the boundary of the estimation problem were excluded. In Gentilini

et al. (2001) the effect site concentration Ce is linked to the alveolar gas con-

centration, whereas in the model presented here the effect site concentration

is linked to the arterial blood concentration (3.20). To ensure consistency be-

tween these two models, the value of C50,A found by Gentilini et al. (2001) is

multiplied with λ to scale Ce from alveolar to arterial concentration, analo-

gously to (3.4).

C50,a = λC50,A (3.23)
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Table 3.2.: Range and nominal values for PK and PD parameters and vari-
ables; partition coefficients at 37oC for isoflurane.

Symbol Nominal

value

Deviation Unit Ref.

PK

λ 1.4 1.38-1.46 - Eger et al. (2002)

λF 50 43.84-55.8 - Eger et al. (2002)

λM 2.57 1.44-3.19 - Eger et al. (2002)

λV RG 1.65 1.45-1.86 - Eger et al. (2002)

Q̇ 5 000 3 520-7 300 mL/min Stelfox et al. (2006)

Q̇s 150 0-1 500 mL/min Miller et al. (2010)

rQ̇,F 0.054 0.045-0.054 - Eger (1974)

rQ̇,M 0.181 0.1-0.181 - Eger (1974)

rQ̇,V RG 0.75 0.75-0.765 - Eger (1974)

Vb 4 900 2 875-6 339 mL Nadler et al. (1962)

Vb,F 160 69-205 mL Eger (1974),

Nadler et al. (1962)

Vb,M 410 276-688 mL Eger (1974),

Nadler et al. (1962)

Vb,V RG 1495 1 293-2 910 mL Eger (1974),

Nadler et al. (1962)

VD 150 150-600 mL Miller et al. (2010)

VL 2 000 770-2 200 mL Pelosi et al. (1998)

Vt,F 14 500 4 563-4 5300 mL Eger (1974)

Vt,M 33 000 20 010-55 789 mL Eger (1974)

Vt,V RG 6 000 4 950-7 942 mL Eger (1974)

PD

C50,A 0.7478 0.2959-1.094 vol% Gentilini et al. (2001)

γ 1.534 0.2-2.351 - Gentilini et al. (2001)

ke0 0.3853 0.0248-2.895 1/min Gentilini et al. (2001)
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3.5. Concluding Remarks

The presented mathematical model for volatile anaesthesia provides an update

with modifications of the standardly applied models for control of volatile

anaesthesia, (Eger, 1974; Yasuda et al., 1991a; Zwart et al., 1972). The uptake

of the tissue compartments and in the lungs is described separately by explicit

equations and the PK parameters and variables are calculated based on the

patient’s physiology.

In the next section this model is analysed and the most influential variables

and parameters are identified.





4. Model Analysis

This section presents an extensive analysis of parameters and variables in the

physiologically based model described in Chapter 3. The aim is to identify the

uncertainty the controller has to cope with. This uncertainty is originated by

inter-patient variability. In a consecutive step the model is analysed towards

its most influential parameters and variables. The methods used to gain an

in-depth understanding of the model are global sensitivity analysis, parameter

estimation and parameter correlation. The results presented in this chapter

were published in Krieger et al. (2013).

4.1. Uncertainty by Inter-patient Variability

The outcome of this section is to identify the imposed uncertainty, which is, or

may be, originated by patient variability with respect to the output of interest,

the BIS.
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Figure 4.1.: BIS for PK (left) and PD (right) variability summarised in Ta-
ble 3.2; dash dotted line: BIS nominal PKs; solid line: BIS indi-
vidualised PKs for Patient 1; black dots: measured BIS.
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For this purpose, separate simulations for the full range of PK and PD

variability in Table 3.2 were performed for isoflurane based anaesthesia with

set time-varying inputs for fR, VT and CI . Details about the patient and the

inputs are given in Section 5.1, Patient 1: Figure 5.1, Table 5.1. The resulting

envelopes of uncertainty with respect to the BIS by PK and PD variability

are shown in Figure 4.1. By comparison of the envelopes of uncertainty in

Figure 4.1 the uncertainty introduced by PD variability is identified more

profound than the uncertainty introduced by PK variability. More specifically,

the maximum deviation from the BIS for nominal PK values is 25%, whereas

the maximum deviation of the BIS including PD variability and PK values

adjusted to Patient 1 is 56%.

Additionally, the improved model prediction, given individual pharmacoki-

netics, is illustrated in Figure 4.1. For this purpose, the model is simulated

for nominal patient variables given in Table 3.2, denoted by the dash dotted

line, and for individualised pharmacokinetics presented in Section 3.2, de-

noted by the solid line, in Figure 4.1. A comparison of the two simulation

results with the measurements, denoted by the black dots, shows a significant

improvement of the prediction achieved by calculating the PK variables and

parameters based on the patient’s physiology.

Normally during anaesthesia the anaesthetist modifies the inhaled concen-

tration according to the obtained measurements in order to maintain adequate

anaesthesia. The high deviation in the variables clearly support the need for

additional information about the patient in order to assure adequate hypnosis.

4.2. Global Sensitivity Analysis

In this section the relative influence of the uncertain PK and PD parameters

and variables on the measurable outputs is investigated via global sensitivity

analysis. For volatile anaesthesia the measurable outputs are the end-tidal

volatile anaesthetic concentration CE and the BIS. The results of the global

sensitivity analysis are several sensitivity indices between 0 and 1, with 0 being

non-influential. The sensitivity index (SI) represents the relative influence of

the parameter or variable on the output of interest at the given time; the sum

of all sensitivity indices for the applied Sobol method converges to one. The

sensitivity indices of the PK and PD parameters and variables presented in

this section were calculated with the GUI-HDMR software, (Ziehn and Tomlin,

2009). To perform the analysis all PK and PD parameters and variables were

varied between their bounds; the resulting output and the scaled input from 0

to 1 for a large number of sampling points are required by the GUI-HDMR soft-
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ware. The method applied in the GUI-HDMR software uses random sampling

high dimensional model representation (RS-HDMR) to construct an expression

for the output as a function of the parameters with orthogonal polynomials.

This expression accounts for up to second order interactions and corresponds

to the ANOVA decomposition truncated to second order. From the coefficients

of the representation the SI is derived. The sensitivity indices are calculated

based on partial variances, which themselves are calculated by the approxima-

tion of the model by orthonormal polynomials. For further details on how the

sensitivity indices are derived consult: Li et al. (2002) and Ziehn and Tomlin

(2009).

In total, four sensitivity analyses for the PK and PD variables and param-

eters with 26 000 sampling points were performed. The samples were created

by simulating the model in gPROMS via the gOMATLAB interface.

In Case 1 the influence of the PK variables and parameters on the end-tidal

concentration CE is investigated, because the PK variables and parameters de-

scribe the distribution of the anaesthetic agent in the human body. In Case 2

the influence of the PK variables and parameters on the BIS is investigated.

The PK variables and parameters influence the BIS via their effect on the

arterial concentration linked to the effect site concentration and to the BIS,

(3.20) and (3.21). In Case 3 the influence of the PD parameters, which charac-

terise the link of the arterial blood concentration to the BIS is investigated. In

Case 4 all PK and PD variables and parameters were analysed with respect to

the BIS. For Case 1 and Case 2 all PD parameters were fixed at their nominal

values, while in Case 3 the PK parameters were fixed at their nominal val-

ues. In Case 4 all PK and PD variables and parameters were varied between

their lower and upper bounds in Table 3.2. The four cases are summarised in

Table 4.1.

Table 4.1.: Cases of the sensitivity analyses.

Fixed Varied Output

Case 1 PD PK CE

Case 2 PD PK BIS

Case 3 PK PD BIS

Case 4 - PK, PD BIS

For the sensitivity analysis the inspired concentration, the respiratory fre-

quency and the tidal volume, were kept constant: CI = 1.1 vol%, fR = 12 min−1,

VT = 500 mL. All concentrations were initialised with zero. The sensitivity

indices of all PK and PD variables and parameters for Case 1-Case 4 are sum-
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marised in Table 4.2.

Table 4.2.: Relative Sobol’ SIs using GUI-HDMR (Ziehn and Tomlin, 2009) of
Case 1-Case 4 in Table 4.1 after 5 min and 20 min.

Case 1: CE Case 2: BIS Case 4: BIS

Variable 5 min 20 min 5 min 20 min 5 min 20 min

PK

λ 0.0 0.0 0.0094 0.0134 0.0018 0.0031

λF 0.0 0.0 0.0 0.0 0.0 0.0

λM 0.0104 0.0259 0.0030 0.0127 0.0005 0.0028

λV RG 0.0312 0.0144 0.0097 0.0101 0.0020 0.0020

Q̇ 0.1812 0.1428 0.0462 0.0919 0.0101 0.0187

Q̇s 0.1665 0.1763 0.2362 0.2134 0.0400 0.0457

rQ̇,F 0.0017 0.0034 0.0005 0.0016 0.0002 0.0005

rQ̇,M 0.0568 0.0937 0.0175 0.0489 0.0033 0.0111

rQ̇,V RG 0.0002 0.0004 0.0002 0.0006 0.0 0.0

Vb,F 0.0024 0.0027 0.0034 0.0023 0.0 0.0

Vb,M 0.0078 0.0085 0.0006 0.0001 0.0 0.0

Vb,V RG 0.0132 0.0043 0.0060 0.0030 0.0010 0.0006

VD 0.0055 0.0054 0.0076 0.0065 0.0013 0.0013

VL 0.4595 0.4766 0.6539 0.5663 0.1101 0.1215

Vt,F 0.0003 0.0003 0.0001 0.0001 0.0 0.0

Vt,M 0.0043 0.0067 0.0267 0.0265 0.0001 0.0003

Vt,V RG 0.0753 0.0559 0.0162 0.0369 0.0038 0.0071

PD

Case 3: BIS Case 4: BIS

C50 - - 0.4241 0.7709 0.3124 0.5698

γ - - 0.2840 0.1224 0.2813 0.0851

ke0 - - 0.2809 0.0815 0.1947 0.0638
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The time-varying PK and PD sensitivity indices of all cases defined in Ta-

ble 4.1 are shown in Figure 4.2. The PK variables and parameters with an

average SI<0.01 were excluded for the purpose of clarity.
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Figure 4.2.: Time-varying relative Sobol’ SIs of Case 1-Case 4. The three bot-
tom plots denote a zoomed in scope of Case 1, Case 2 and Case 4.

In Case 1 the distribution volume of the anaesthetic agent, the lung volume

VL, has the highest SI with respect to the end-tidal concentration CE during

the entire course of anaesthesia. The PK variables with the next highest sen-

sitivity indices are the cardiac output and the shunt flow. Hence, as expected,

the ventilation and perfusion have the highest influence on the uptake of the

volatile anaesthetic agent.

For Case 2, lung volume, cardiac output and lung shunt are identified, anal-

ogously to Case 1, as the crucial variables with respect to the BIS, and hence
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the arterial blood concentration to which the BIS is linked via the effect site

concentration Ce in (3.20).

Case 3 shows that at the beginning the sensitivity indices of the PD param-

eters γ and ke0 are approximately identical, while C50 has the highest index

and hence the highest influence on the BIS. Under the assumption of a con-

stant inspired concentration, the sensitivity of C50 increases to approximately

90% after 60 min. The results of Case 3 in Figure 4.2 are in accordance with

the formulation of equations (3.20) and (3.21). Only C50 relates the BIS to

a specific effect site concentration. The parameter γ changes the slope of the

Hill equation and defines the necessary change in the effect site concentration

to achieve the desired change in the BIS. The PD parameter ke0 determines

how fast the BIS is responding to a change in the inputs and determines the

delay of the effect. Neither γ nor ke0 are affecting the steady state BIS value.

In Case 4, the PD parameters are identified to have the highest sensitivity

during the beginning of anaesthesia, whereas for a longer course of anaesthesia,

especially the lung volume’s SI is increasing.

From a physiological aspect and as a conclusion of the sensitivity analy-

sis of Case 1 and Case 2, the cardiac output and the shunt flow determine

the anaesthetic uptake in the circulation and the lung volume determines the

anaesthetic uptake in the ventilation. All other PK parameters have a consid-

erably lower SI and can be regarded as negligible compared to the lung volume,

the cardiac output and the lung shunt flow. Case 3 and Case 4 illustrate that

C50 is the most important parameter in order to obtain the correct depth of

anaesthesia for the individual patient.

4.3. Variability Analysis

In this section the influence of the individual parameters and variables on the

outputs is further investigated. The sensitivity analysis in Section 4.2 gives a

measure of the relative influence of each parameter on the output. This does

not include whether a higher or lower value of the parameter or variable of

interest is increasing or decreasing the output. The variability analysis further

expands the understanding of the model and the influence of each parameter

and variable. For an understanding of the actual physical influence of the

PK and PD variables and parameters, it was investigated whether an increase

in the PK or PD variable or parameter increases or decreases the output y,

here CE and/or BIS. For this study the calculated nominal outputs ynom of

CE and BIS were compared to the outputs of CE and BIS when changing the

respective PK or PD variable or parameter one by one to the upper ymax and
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the lower bound ymin, while keeping all other variables and parameters at their

nominal values.

P%,i =
ymax,i − ymin,i

ynom
. (4.1)

The percentage of change P%,i of CE and BIS are obtained with gPROMS,

(PSE, 2011) and the gOMATLAB interface. The results are summarised in

Table 4.3.

Table 4.3.: P%,i of CE and BIS after 5, 20 and 60 min; CI = 1.1 vol%, fR =12
and VT =500 mL.

CE BIS

Variable 5 min 20 min 60 min 5 min 20 min 60 min

PK

λ 0.0 0.0 0.0 -2.01 -3.60 -4.12

λF -0.08 -0.10 -0.16 0.01 0.04 0.08

λM -9.59 -11.27 -13.97 1.46 4.29 6.73

λV RG -12.24 -5.03 -0.81 1.96 2.34 0.43

Q̇ 28.89 17.34 8.97 -4.11 -7.71 -4.46

Q̇s -26.10 -21.25 -17.11 9.43 14.38 13.25

rQ̇,F -2.70 -2.86 -3.11 0.42 1.11 1.52

rQ̇,M -18.42 -17.67 -12.64 2.90 6.75 6.19

rQ̇,V RG -0.44 0.10 0.01 0.14 -0.04 0.00

Vb,F 0.0 0.0 0.00 0.0 0.0 0.0

Vb,M -0.26 -0.12 -0.10 0.06 0.05 0.05

Vb,V RG -8.26 -3.06 -0.47 1.50 1.44 0.25

VD 5.39 4.09 3.14 -1.92 -2.56 -2.24

VL -77.81 -50.87 -36.32 25.79 27.63 23.06

Vt,F -0.06 -0.24 -0.88 0.01 0.08 0.41

Vt,M -1.07 -4.02 -11.35 0.12 1.39 5.41

Vt,V RG -19.24 -10.59 -1.61 2.59 4.84 0.87

PD

C50 - - - 28.06 49.25 56.19

γ - - - 27.71 14.34 4.55

ke0 - - - -37.69 -52.55 -23.98
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The results in Table 4.3 and the sign of P% show how an increase or decrease

of a parameter or variable generates a lower or higher anaesthetic uptake. The

BIS is a function of the arterial concentration Ca. Hence, for an increased up-

take the BIS is increasing, see VL. Simultaneously, the end-tidal concentration,

CE , is decreasing given a higher anaesthetic uptake.

The simulations clearly confirm the results obtained by the previous sensi-

tivity analysis, as the PK and PD variables with the highest SI also show the

highest absolute value on the outputs in terms of P%,i.

4.4. Parameter Estimation and Correlation

The envelope of BIS uncertainty by PK variability is significantly smaller than

the envelope of uncertainty by PD variability in Figure 4.1. This motivates an

attempt to estimate the PD parameters in order to capture the uncertainty

as a consequence of PK variability. This statement is investigated for the

envelope of PK variability in Figure 4.1.

The parameter estimation problem is evaluated by the correlation matrix

C of the estimated parameters. An entry in the off-diagonal elements of the

correlation matrix C close to one (∣Cij ∣ ≈ 1) indicates a high correlation of

the corresponding parameters i and j, whereas an entry of zero (∣Cij ∣ ≈ 0)

indicates no correlation. The entries of the correlation matrix are calculated

based on the variance-covariance matrix V . The variance of a parameter is

given on the diagonal (Vii) and the covariance of two parameters i and j on

the off-diagonal elements (Vij). Further details can be found in the gPROMS

user guide, (PSE, 2011).

Cij =
Vij

√
ViiVjj

, i ≠ j (4.2a)

Cii = 1 (4.2b)

During the following analysis the upper bound of the envelope shown in Fig-

ure 4.1 is referred to as PKu, while the lower bound is referred to as PKl. The

evaluation of the quality of the estimates is performed for both cases.

The correlation matrix of VL and the three PD parameters obtained using

gPROMS (PSE, 2011) is given in Table 4.4.
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Table 4.4.: Correlation matrix C of C50, γ, ke0 and VL for the parameter esti-
mation problem PKu and PKu; PKu above diagonal and PKl below
diagonal.

C50 γ ke0 VL

C50 1 0.644 -0.691 -0.993

γ 0.662 1 -0.312 -0.713

ke0 -0.753 -0.368 1 0.697

VL -0.992 -0.663 0.791 1

The results show that VL and the PD parameters are highly correlated, in

particular C50 and VL, where CC50,VL≈ - 0.99. As a consequence C50 and VL

cannot be estimated independently or, for this case, the uncertainty imposed

by variability in the PK variables and parameters can be captured and a

sufficiently accurate BIS can be reproduced by the adjustment of the PD

parameters only. This statement is investigated for PKl and PKu; this time

only estimating the PD parameters.

The correlation matrix of the PD parameters for PKl and PKu for all PD

parameters obtained using gPROMS (PSE, 2011) are summarised in Table 4.5.

Table 4.5.: Correlation matrix of the PD parameters, entries for PKu above
diagonal and PKl below diagonal.

C50 γ ke0

C50 1 -0.759 -0.0033

γ 0.0563 1 0.383

ke0 0.431 0.348 1

Here, the PD parameters γ and C50 show minor correlation originated by

the formulation of (3.21).

All values of the PD parameters are obtained solving a maximum likelihood

parameter estimation problem with gPROMS and lie within their respective

bounds in Table 3.2, (Bard, 1974; PSE, 2011).
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Table 4.6.: Estimated PD parameters for PKl and PKu.

PKl PKu

C50,A 0.6177 0.8962

γ 1.4458 1.6369

ke0 0.4308 0.2978

The results of the fit are shown in Figure 4.3. Here PKl and PKu denote

the upper and lower bound of the PK uncertainty envelope and PKl,est and

PKu,est the BIS for the estimated PD parameters given in Table 4.6.
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Figure 4.3.: BIS output for estimated PD parameters in Table 4.5 captur-
ing PK variability Figure 4.1. PKl and PKu denote the upper
and lower bound of the PK uncertainty envelope and PKl,est and
PKu,est the output for values of the PD parameters given in Ta-
ble 4.5.

This analysis shows that via PD parameter estimation it is possible to cap-

ture the uncertainty introduced by potential PK variability. Hence, the PD

parameters C50, ke0 and γ are sufficient to predict the BIS under uncertainty

in the PK and PD variables and parameters. This statement is further inves-

tigated for a set of clinical patient data in the next section.

4.5. Concluding Remarks

This chapter provides a framework for a structured analysis of the parameters

and variables that influence the measurable outputs, which results in an in-

depth understanding of the model.

The PD parameters are clearly identified as the parameters with the highest

variability and highest influence on the BIS.
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In the next section the model is validated with clinical data for isoflurane

and desflurane based volatile anaesthesia.





5. Model Validation

A simulation study for isoflurane based anaesthesia of three patients and for

desflurane based anaesthesia of eight patients is presented in this section. The

anonymised data were provided by the Department of Medical Informatics

in Anesthesiology and Intensive Care Medicine of the University of Gießen

in Germany. Isoflurane and desflurane concentrations were measured with

an anaesthesia ventilator (Primus, Draeger medical) and BIS was measured

by patient monitoring (IntelliVue MP70, Phillips). The data were recorded

on-line with an anaesthesia information management system (NarkoData®,

IMESO GmbH). Anaesthesia was induced by propofol and maintained with

isoflurane and desflurane respectively, simultaneously administered analgesics

were fentanyl and/or sufentanil. Cisatracurium was used for muscle relaxation.

The results for isoflurane based anaesthesia were published in Krieger et al.

(2013).

5.1. Isoflurane Based Anaesthesia

In this section measured data of isoflurane based anaesthesia are compared

to the simulated data obtained by the model presented in Chapter 3 and

simulated in gPROMS. Anaesthesia was induced with propofol and maintained

with isoflurane. The details and drug doses are summarised in Table 5.1.

The individual PD parameters for each of the three patients were obtained

by a parameter estimation problem. For comparison, the expected BIS for the

nominal PD parameters in Table 3.2 were computed. All simulation results

and measurements are shown in Figure 5.1.

The characteristics of the three patients for isoflurane based anaesthesia and

the values of the estimated PD parameters are also summarised in Table 5.1.
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Table 5.1.: Patients’ characteristics; calculated values of the lung volume
(3.19) and cardiac output (3.18) and estimated PD parameters;
details of the surgery and simultaneously administered drugs.

Patient 1 Patient 2 Patient 3 Units

age 61 65 66 yrs

BMI 31.5 14.5 26.0 kg/m2

h 1.69 1.7 1.63 m

m 90 42 69 kg

gender m m f m/f

VL 1041 2200† 1449 mL

Q̇ 6530 5052 5317 mL/min

C50,A 0.3981 0.3600 0.5660 vol %

γ 0.4920 0.6169 1.9974 -

ke0 1.117 0.0248‡ 0.3832 1/min

ASA status 2 2 3

surgery urology urology general surg.

Propofol▲ 200 120 200 mg

Fentanyl◊ 1 0.5 1 mg

Sufentanyl◊ - 55 - µg

Cisatracurium◊ 22 28 30 mg

†VL at upper bound; ‡estimate at lower bound.

▲Dose of 1% solution propofol for induction of anaesthesia.

◊Sum of single doses during entire course of surgery.
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Figure 5.1.: Inspired and expired isoflurane concentrations and BIS for three
patients. The measured data points are denoted with (meas),
the BIS for individually estimated PD parameters is denoted with
(est) and the expected BIS for the PD nominal values is denoted
with (def).
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The simulation results of the end-tidal concentration CE for Patient 1 and

Patient 3 are in good accordance with the measurements CE (meas). Hence,

the PK model shows a good fit of the data. However, for Patient 2 the model

is not predicting the measured end-tidal concentration as close. This might

be related to the underweight of the patient, BMI=14.5, for which the PK

parameters have to be modified with additional knowledge about the patients

health state. The expected BIS for the PD nominal variables, BIS (def),

show the best match with the measured BIS for Patient 1. Especially for

Patient 3 a considerable off-set between the measurement and the predicted

BIS is observed. For individually estimated PD parameters the predicted BIS

is in good accordance with the measurement for all three patients.

The prediction of the end-tidal concentration CE by adjusting the PK vari-

ables and parameters according to the pharmacokinetic model presented in

3.1 shows good results. However, the PD parameters need to be estimated to

fit the measured data.

5.2. Desflurane Based Anaesthesia

In this section measured data of eight patients undergoing desflurane based

anaesthesia are compared to the simulated data obtained by the model pre-

sented in Chapter 3 and simulated in gPROMS. Anaesthesia was induced with

propofol and maintained with desflurane. The characteristics of the eight pa-

tients are summarised in Table 5.4.

For the simulations the solubilities of desflurane published by Eger et al.

(2002) were used. All other variables were calculated as described in Chapter 3

Table 3.2.

Table 5.2.: Solubilities of desflurane in tissue and blood, (Eger et al., 2002).

Solubility Value

λ 0.45

λF 29

λM 1.73

λV RG 1.3

The individual PD parameters for each of the eight patients were obtained by

a parameter estimation problem. PD values for desflurane based anaesthesia

were reported as a function of the end-tidal anaesthetic concentration, Ca ≙

CE in (3.20), by Rehberg et al. (1999) and Röpcke et al. (2001). Röpcke
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et al. (2001) found different PD parameters during surgical stimulation of

the patient and during times without surgical stimulation. The range of the

PD parameters for desflurane based anaesthesia for the parameter estimation

problem are taken from Rehberg et al. (1999).

Table 5.3.: PD parameter range for desflurane, (Rehberg et al., 1999).

min max

C50,A 1 8

γ 0.5 2

ke0 0.2 1.6

All simulation results and measurements are shown in Figures 5.2 - 5.3.

Table 5.4.: Patients’ characteristics; calculated values of the lung volume
(3.19) and cardiac output (3.18) and estimated PD parameters;
P denotes Patient.

P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 Units

age 55 27 83 54 64 68 32 76 yrs

BMI 28.3 23.5 23.7 21.4 31.0 27.4 21.9 31.7 kg/m2

h 1.88 1.75 1.79 1.81 1.74 1.76 1.85 1.83 m

m 100 72 76 70 94 85 75 106 kg

gender m f m m m m m m m/f

VL 1252 1713 1688 1999 1068 1319 1920 1033 mL

Q̇ 6680 6479 5437 6100 6652 6215 6808 6345 mL/min

C50,A 3.60 1.57 1.56 1.12 2.16 1.31 2.24 2.19 vol %

γ 0.50‡ 0.90 0.50‡ 0.50‡ 0.77 0.50‡ 0.50‡ 0.50‡ -

ke0 0.20‡ 0.20‡ 0.25 0.20‡ 0.28 0.20‡ 0.36 1.60† -

ASA 1 1 3 3 3 2 1 2 -

†Estimate at upper bound; ‡Estimate at lower bound.
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Figure 5.2.: Inspired and expired desflurane concentrations and BIS for Patient
5-7. The measured data points are denoted with (meas), the BIS
for individually estimated PD parameters is denoted with (est).
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Figure 5.3.: Inspired and expired desflurane concentrations and BIS for Patient
8-11. The measured data points are denoted with (meas), the BIS
for individually estimated PD parameters is denoted with (est).
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The prediction of the end-tidal concentration CE by adjusting the PK vari-

ables and parameters according to the pharmacokinetic model presented in

3.1 shows very good accordance with the measurements of the end-tidal con-

centration measurements CE (meas) for Patient 5, Patient 6, Patient 8 and

Patient 11. Also the simulation results of the other patients show a cor-

rect tendency of the measured data. The prediction of the BIS is in good

accordance for individually estimating the PD parameters even though the

estimated values lie at the boundary of the estimation problem, Table 5.4.

This study confirms that C50 is the parameter with the highest influence, not

at the boundary for any patient.

The maintenance of the depth of anaesthesia for Patient 4 in Figure 5.2,

even though the administration of desflurane is stopped, is ensured by an

extra bolus dose of 500 mg 1% solution propofol.

The mismatch of the prediction of the BIS for Patient 10 in Figure 5.3 is

also explained by an extra dose of 150 mg 1% solution of propofol to ensure

a safe depth of anaesthesia. This decision was taken by the anaesthetist to

ensure a safe anaesthesia as a response to the rising BIS measurement.

5.3. Concluding Remarks

The high inter-patient variability of the PD parameters, already observed in

this study for three patients undergoing isoflurane based anaesthesia, is further

confirmed. This shows the need for on-line estimation of the PD parameters.

The PD parameters γ and ke0 do not seem to be essential for the parameter

estimation problem, as they are at their respective bounds, primarily for the

desflurane study. This might be due to the lack of data during induction of

anaesthesia. However, the estimation of C50 is sufficient to obtain a good

match with the clinical data. Therefore, C50 is further recommended to be

estimated on-line.

The strategy of choice to ensure sufficient and correct prediction of the

depth of anaesthesia through the mathematical model is an on-line parameter

estimation (Parker and Doyle, 2001) and is investigated in Chapter 10.



6. Simulation Results

In this chapter the capabilities of using the model presented in Chapter 3

as a teaching tool for the distribution and uptake of volatile anaesthetics are

demonstrated. By applying the model, additional in-sights of drug concentra-

tions in tissues and blood pools that are not accessible by measurement are

possible.

In Figure 6.1 all tissue and blood concentrations for Patient 1 in Table 5.1,

Figure 5.1 are depicted.
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Figure 6.1.: Isoflurane tissue and blood concentrations for Patient 1, Table 5.1,
Figure 5.1.

Figure 6.1 shows that the concentrations in the tissues are considerably

higher than the concentrations in the blood pools, due to the higher capacity of

accumulation and a higher solubility of the volatile anaesthetic agent, (Miller

et al., 2010).

In Figures 6.2 - 6.4 the blood and tissue concentrations of the desflurane

study of Patient 4 in Table 5.4, Figure 5.2 are shown. Figure 6.2 shows that

the concentrations of desflurane are much lower compared to the inspired

concentrations. This is related to the lower solubilities of desflurane in the

73



74 Chapter 6

tissues and blood, Table 5.2.
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Figure 6.2.: Desflurane tissue and blood concentrations for Patient 4, Ta-
ble 5.4, Figure 5.2.

Further a simulation is performed to investigate the influence of body weight

on the induction and wake-up times. As an example a simulation is performed

where Patient 4 is assumed to be obese, 180kg, and underweight, 55kg and

the influence of this change in body weight distribution is shown in Figure 6.3

and Figure 6.4 respectively.
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Figure 6.3.: Desflurane tissue and blood concentrations for obese Patient 4,
Table 5.4, Figure 5.2.
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Figure 6.4.: Desflurane tissue and blood concentrations for underweight Pa-
tient 4, Table 5.4, Figure 5.2.

A comparison of Figure 6.3 and Figure 6.4 shows that the concentration in

the adipose tissue Ct,F in Figure 6.3 is increasing rapidly. This is explained

by the high solubility of desflurane in fat and the comparatively small volume

of the compartment.
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Figure 6.5.: Wake up phase of anaesthesia, u - underweight, o - obese, Ca
arterial concentration, CE end-tidal concentration.

After administration of desflurane the arterial concentration, Ca, and the

end-tidal concentration, CE , of both patients are similar. This is illustrated in

Figure 6.5. This results contradicts the assumption of longer wake-up times

in obese patients, because of anaesthetic accumulation in the fatty tissue and

reintroduction into the circulatory system, when the arterial concentration

of the anaesthetic drops after anaesthetic administration. Clinical studies by

Cork et al. (1981) confirm the simulation results. Cork et al. also found similar

wake-up times for normal and obese patients. This is further confirmed by the

global sensitivity analysis, Section 4.2 Table 4.2. The low SI of Vt,F indicates

that the volume of the fatty tissue has a relatively low impact on the BIS and

CE .

6.1. Concluding Remarks

The derived model shows additional features to existing teaching and simu-

lation tools to contribute to better understanding of anaesthesia and enables

predictions of the drug concentrations in the various tissue parts of the patient.



Part II:

Optimisation and Model

Predictive Control
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Objective and Summary

The objective of Part II is to design a control strategy based on the system

model derived in Part I, which is able to handle the uncertainty through inter-

patient variability identified in Part I.

Model Analyis

Control
Closed-Loop

Control System

Validation

Robust Control

Strategies

(Chapter 9 and 10)

Validation and testing of the

designed control strategy

with ‘real’ patient models.

(Chapter 9 and 10)

Off-set free control strate-

gies adjusting to the indi-

vidual patient’s dynamics.

Figure 6.6.: Control framework and contributions presented in Part II.

The extensive review and analysis of the system model in Part I, Figure 1.4,

help to thoroughly design and validate a control strategy for optimal and

safe closed-loop control under uncertainty. The contributions of this part are

illustrated in Figure 6.6 and are summarised as follows:

I) Design of a closed-loop control strategy for robust off-set free control of

the hypnotic depth of volatile anaesthesia.

▶ Model linearisation.

⪧ Algebraic compensation of the non-linear Hill equation.

⪧ Piece-wise affine linearisation of the non-linear Hill equation.

▶ State estimation by the ‘perfect’ observer and the Kalman filter.

▶ Model predictive control under uncertainty.

⪧ Control strategy able to adjust to the patient’s dynamics.

⪧ On-line parameter estimation of the parameter with the highest

sensitivity: C50 as identified in Part I.
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⪧ Disturbance rejection for an intravenous anaesthesia linear pa-

rameter varying (LPV) system1.

II) Validated closed-loop control strategy for patients undergoing isoflurane

based anaesthesia presented in Part I - Chapter 5.

▶ Testing of nominal, open-loop, mp-MPC control strategies for ‘real’

patients.

▶ Testing and validation of the control strategies with robust set-point

tracking for ‘real’ patients.

▶ Testing of on-line parameter estimation for ‘real’ patients.

1This work, in collaboration with Chang et al. (2013b), was submitted for publication and
is summarised in Appendix D.
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7. Model Predictive Control of

Anaesthesia

In the operating theatre the anaesthetist faces the task of providing sufficient

hypnosis, analgesia and muscle relaxation, while maintaining the vital func-

tions of the patient. The idea of supporting the anaesthetist with decisions on

drug infusion rates and/or to directly automate the amount of infused drug has

been an active research topic since the 1950s, (Chilcoat, 1980). Particularly

in critical situations, model predictive control design is believed to contribute

to safe and optimal anaesthesia, (Hemmerling, 2009).

Before surgery the reference point and the constraints are individually ad-

justed by the anaesthetist to the patient and type of surgery. Given this

information, the control action can be modified according to the patient’s

characteristics and the duration and requirements of surgery. Here the states

of the patient are determined via monitoring devices, whereas non-measurable

states are estimated based on the available measurements. Foreseen and un-

foreseen disturbances such as surgical stimulation might occur during surgery,

which the control strategy has to cope with and reject successfully. Dur-

ing anaesthesia a combination of drugs is administered to assure anaesthesia,

amnesia, muscle relaxation, analgesia and maintain the vital functions. The

combinations of different drugs, e.g. anaesthetics, analgesics and muscle re-

laxants, is big and often a personal choice of the anaesthetists based on their

experience and preference.

The automation of intravenous control of anaesthesia is more advanced,

because the plasma concentration of the intravenous anaesthetic is not directly

measurable and hence drove the search for (i) a measurement device for the

hypnotic depth and (ii) a reliable model to predict the plasma concentration.

An open-loop control example, which is common in clinical practise, for

intravenous anaesthesia, usually using propofol, is target controlled infusion

(TCI). Here, the drug infusion is based on model predictions of the plasma

concentration in the patient’s blood. The hypnotic depth is measured by

the BIS or other measurement devices. Recent advances in total intravenous

anaesthesia (TIVA) are listed in Table 7.1. TIVA is not as common as volatile
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anaesthesia.

Volatile anaesthesia is preferred by most anaesthetists, because of the stan-

dardly available measurement of the end-tidal concentration, which is directly

linked to the arterial drug concentration and the drug concentration in the

brain. Therefore the end-tidal concentration is commonly used as a guideline

to determine the hypnotic depth of the patient, cp. Section 2.2 Figure 2.2.

The automatic drug administration of volatile anaesthetic agents was first

considered by Westenskow et al. (1986) and tested in a dog by Zbinden et al.

(1986). Advances on the control of volatile anaesthesia are given in Table 7.2.

Mansour and Linkens (1989), Behbehani and Cross (1991) and Yu et al. (1992)

used automatic drug infusion devices to maintain the hemodynamic state of

the patient, e.g. the cardiac output or the blood pressure. Since then re-

searchers understood the benefit of automatic control of anaesthesia. In Table

7.3 studies that report a better performance of automatic control compared

to manual control are summarised. Due to the multiple-input multiple-output

character of the system, where the inputs are the various drug infusions and

the outputs are the anaesthetic states of the patient and/or the vital functions,

different model predictive control (MPC) methods such as explicit MPC, gen-

eral predictive control or fuzzy logic control were applied to the system.

The control of the end-tidal concentration is commercially available in the

Zeus® anaesthesia machine. Here the research interest is motivated by patient

safety, reduction of the pollution of the operating theatre with the anaesthetic

agent and reduction of consumption of the anaesthetic agents. A summary is

given in Table 7.4.

Table 7.1.: Closed-loop intravenous anaesthesia in the operating theatre.

Reference Summary

Hemmerling et al. (2013) McSleepy platform: propofol, remifentanil,

rocuronium.

West et al. (2013) closed-loop propofol anaesthesia in children.

Hemmerling et al. (2010) Significantly better control for the closed-loop

propofol administration for 40 patients com-

pared to manual control, measured by BIS.
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Table 7.2.: Closed-loop control of depth of volatile anaesthesia in the operating
theatre.

Reference Summary

Reboso et al. (2012) PI controller for closed-loop propofol infusion
measured by BIS, feasible and safe for a clin-
ical study of 12 patients.

Liu et al. (2006) closed-loop control with propofol outperforms
manual control, assessment of depth of hyp-
nosis by BIS, 163 patients.

Gentilini et al. (2001) Isoflurane based anaesthesia feedback by BIS
for 20 patients.

Lockwood (1998) Closed-loop PID control with isoflurane and
enflurane.

Table 7.3.: Manual vs. closed-loop control.

Reference Summary

Locher et al. (2004),
Stadler (2003)

Performance for closed-loop isoflurane control
in favour for automatic control (23 patients).

Morley et al. (2000) No significant difference between closed-loop
and manual control of (i) propofol/alfentanil
and of (ii) isoflurane anaesthesia.

Table 7.4.: Closed-loop control of end-tidal volatile anaesthetic concentration.

Reference Summary

Singaravelu and Barclay
(2013)

Improved anaesthetic consumption for desflu-
rane and sevoflurane for closed-loop control of
end-tidal concentration.

Lortat-Jacob et al. (2009) Desflurane and oxygen end-tidal concentra-
tion control resulting in economical more ben-
eficial anaesthesia with Zeus® anaesthesia
machine.

Struys et al. (2005) Good performance of desflurane and sevoflu-
rane target end-tidal concentration in a test
lung with Zeus® anaesthesia machine.

Sieber et al. (2000) closed-loop control of end-tidal concentration,
performing better than manual control for
isoflurane anaesthesia.





8. Closed-loop Explicit Model

Predictive Control

8.1. Model Predictive Control

Model predictive control (MPC) uses a process model to compute the op-

timal input sequence by minimising an objective function, while respecting

constraints on the control inputs, the outputs and the states of the system.

The control of volatile anaesthesia system is described as a reference tracking

problem. Here, the objective is to find the optimal input trajectory to steer

the BIS, measuring the anaesthetic depth, to a target reference point. At each

time step the optimal control input u corresponding to the inhaled concen-

tration CI for the patient is calculated. An illustrative figure of the control

objective is given in Figure 8.1. Further notation is given in the nomenclature

in the beginning of this thesis.

t t+1 t+2 t+M t+M+1 t+N-1 t+N

Control horizon M

Output horizon N

PresentPast Future

yR

yR
t+1

yR
t+NyR

t+2

ut+1ut
ut+1

ut+M ut+N-1

ut+2
ut

ym
t

yt+Nyt+M

yt+1

yt+2

yt+N-1

yt

dt

ut-1
ut-2

Figure 8.1.: Illustration of MPC, dotted line: MPC system output (y), dashed
line: real system output (ym), light grey solid line: output refer-
ence point (yR), grey solid line: control input (u).
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The optimal control trajectory u at each point is calculated as the optimal

solution of an objective function. Although the optimal sequence of u for

the entire prediction horizon N is computed, only the control input u0 at the

current time point is implemented and at the next time point the objective

function (8.1) is solved repeatedly.

min
u
J = x′NPxN +

N−1

∑
k=1

x′kQxk +
N

∑
k=1
(yk − y

R
k )
′QR(yk − yRk )

+
M−1

∑
k=0

u′kRuk +
M−1

∑
k=0

∆u′kR1∆uk

s.t. xk+1 = Axk +Buk

yk = Cxk

xmin ≤ x1, . . . xN ≤ xmax

umin ≤ u0, . . . , uM−1 ≤ umax

ymin ≤ y1, . . . , yN ≤ ymax

∆umin ≤ u−1 − u0, . . . , uM−2 − uM−1 ≤∆umax

(8.1)

N output horizon

M control horizon, with M ≤ N

P weight matrix on the final states

Q weight matrix on the states

QR weight matrix on reference tracking error

R weight matrix on control input u

R1 weight matrix on change in control input

A,B,C linear state space system matrices

x states of the system, (Cb,i, Ct,i)

y system output, (CE , BIS)

yR reference point

ymk measured system output

u control input, (CI)

∆u step change in control input, (∆CI)

The application of MPC is restricted by an on-line optimisation step re-

quired to obtain the optimal control inputs at every time point for the given

states and reference trajectory, (Mayne et al., 2006; Sui et al., 2008). For a

complex model with multiple inputs and outputs, and constraints, a fast and

expensive on-line computer is required. In the worst case the optimisation can-
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not be solved in the available time. Explicit MPC overcomes this drawback of

the need for a real-time optimiser, (Bemporad et al., 2002), and furthermore

allows extensive testing of the control action for different scenarios, because

all possible control trajectories are pre-computed off-line.

To obtain an explicit MPC solution, the objective function is formulated

as a multi-parametric quadratic programming (mp-QP) problem, where the

objective function in (8.1) is formulated as a function of the parameters θ

and the optimisation variables U = [u0, u1, . . . , uM−1], which are the control

inputs for the entire control horizon. In the parameter vector all dependent

variables of the objective function are included θ = [x0, u−1, y
R], where x0 are

the states of the system at the start of the horizons, ut−1 is the previous control

input, to obtain ∆u0, and yR is the constant reference trajectory for the entire

prediction horizon N.

This results in the following formulation of the objective function (8.1) as

an mp-QP:

min
U
J(θ) =

1

2
U ′HU + θ′FU +

1

2
θ′Y θ (8.2a)

s.t. GU ≤W +Eθ (8.2b)

with θ = [x0, ut−1, y
R] and Ut = [ut, ut+1, . . . , ut+M−1]. A detailed description of

the reformulation of the MPC objective function as an mp-QP problem with

equality and inequality constraints is given in Appendix A.

The mp-QP problem in (8.2) can now be solved with multi-parametric pro-

gramming techniques, which are implemented in the POP toolbox for MAT-

LAB, (Bemporad et al., 2002; ParOS, 2004). The optimal solution of the

mp-QP problem (8.2) Ut is obtained as a set of continuous piece-wise affine

functions of the parameters θt which are known or measured at the current

time point t and therefore are fixed in the objective function.

Ut =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

K1θt + c1 if H1θt ≤ b1,

⋮

KnCθt + cnC if HnCRθt ≤ bnCR ,

(8.3)

where Ut = Kiθt + ci for i ∈ {1, . . . , nCR} is the optimal solution in the critical

region Hiθt ≤ bi. Here nCR denotes the number of critical regions of the

solution of the mp-QP problem (8.2).

Applying multi-parametric MPC, the expensive on-line computation of the

optimal control function is bypassed (on-line optimisation via off-line optimi-

sation) and the previously computed control law can be implemented low-cost
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on a chip (MPC-on-a-chip), citepPistikopoulos2009. Hence, the optimal con-

trol law is retrievable immediately through simple function evaluations.

Advantages of mp-MPC for drug delivery systems for anaesthesia are:

▶ Hard constraints on states (drug concentrations) and inputs (drug infu-

sion).

▶ Advance testing with respect to high safety standards.

8.2. Robust Control

One of the key challenges for the design of drug delivery systems for anaesthesia

is the high inter-patient and intra-patient variability, which introduces a high

degree of uncertainty into the system. Therefore the control design should be

robust against implying uncertainty and tested for the uncertain system.

In brief, robust control can be defined as the solution of an optimal tra-

jectory of the system under the presence of uncertainty and/or disturbances,

which guarantees constraint satisfaction for all admissible values of uncer-

tainty, and optimally steers the system to the target reference point, (Bempo-

rad and Morari, 1999; Rawlings and Mayne, 2009).

The uncertainty can originate from model-mismatch, non-captured hidden

process dynamics and/or input or output disturbances, (Muske and Badgwell,

2002).

The uncertain system can be described by the linear time invariant (LTI)

system where wk represents the bounded disturbance analogously to noise

entering the system, (Bemporad and Morari, 1999):

xk+1 = Axk +Buk +Gwk

yk = Cxk + Fwk
(8.4)

The bounded disturbance wk belongs to a compact polyhedral set wk ∈ W ⇔

{wLk ≤ wk ≤ w
U
k }, i = 1, . . . ,w, (Sakizlis et al., 2004a). In an alternative

approach, uncertainty is included by considering polyhedral uncertainty on

the system matrices described as follows:

xk+1 = Akxk +Bkuk

yk = Cxk
(8.5)

where [Ak Bk] ∈ Ω and Ω = conv{[A1 B1], . . . , [AM BM ]} is the convex hull

of [Ai Bi], (Bemporad and Morari, 1999).
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Robust control strategies obtain a feasible and optimal solution with respect

to bounded uncertainty of the types described in (8.4) and (8.5).

An open-loop solution is the formulation of a min max optimisation problem,

where the optimal value for u is obtained under the assumption of maximal

uncertainty in wk. This solution is equivalent to the optimisation of the worst-

case scenario, which is often not realistic for the actual system and might

lead to an over-conservative controller, (Kouramas et al., 2008; Sakizlis et al.,

2004a,b).

An extended approach is a closed-loop parametric controller, where the past

uncertainty is included at each step in the computation of the optimal con-

trol law, (Bemporad et al., 2003; Kerrigan and Maciejowski, 2004; Kouramas

et al., 2008; Manthanwar et al., 2005; Pistikopoulos et al., 2009; Sakizlis et al.,

2004a).

In the algorithm presented by Kouramas et al. feasibility and constraint

satisfaction is assured for bounded polytopic uncertainty in the system matri-

ces A and B (8.5) and the objective function is derived based on the nominal

values of the state space system A0 and B0, (Kouramas et al., 2011, 2013;

Panos et al., 2010; Pistikopoulos et al., 2009). These algorithms guarantee

feasibility and constraint satisfaction under the given polytopic or additive

uncertainty.

Robust reference tracking algorithms are required for systems with steady

state disturbances that might otherwise lead to a persisting off-set. Sakizlis

et al. presented an mp-MPC controller with integral action for off-set free

control by adding an integral state defined as follows, (Sakizlis et al., 2002,

2004a),

xq,k+1 = xq,k + (y
R
− yk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error

, ∀k = 1, . . . ,N (8.6)

and added penalties in the objective function (8.1)

min
u
J = x′q,NPqxq,N +

N−1

∑
k=1

x′q,kQqxq,k. (8.7)

To incorporate the disturbance model explicitly in the controller’s dynamics

the input and state disturbance can be determined by a Kalman filter, (Badg-

well and Muske, 2002; Maeder and Morari, 2010; Maeder et al., 2009; Muske

and Badgwell, 2002; Sakizlis et al., 2004b). In this approach the system is
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augmented with an integrating disturbance d

⎡
⎢
⎢
⎢
⎢
⎣

xk+1

dk+1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

A Bd

0 I

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

xk

dk

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

B

0

⎤
⎥
⎥
⎥
⎥
⎦

uk +wk

yk = [C Cd]

⎡
⎢
⎢
⎢
⎢
⎣

xk

dk

⎤
⎥
⎥
⎥
⎥
⎦

+ vk

(8.8)

and a Kalman filter is applied to estimate the states and the disturbances of

the augmented system (8.8). The choice of the matrices Bd and Cd determines

whether the augmented system is observable and depends on the known pro-

cess and the disturbance model. The most common choice is Bd ∈ Rn×nd = 0

and Cd = I ∈ Rnd×nd , where n is the dimension of the state vector and nd the

dimension of added disturbance vector, (Pannocchia and Bemporad, 2007).

An additional condition is that the state space system can reach the target

reference point. For an LTI system of the form in (8.4) the system can reach

a target reference point under any disturbance when Ā, defined in (8.9), has

full rank, (Pannocchia and Bemporad, 2007; Pannocchia and Rawlings, 2003):

rank

⎡
⎢
⎢
⎢
⎢
⎣

I −A −B

HC 0

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ā

= n + nd, (8.9)

If condition (8.9) holds and the system is detectable, off-set free tracking can

be obtained, (Rawlings and Mayne, 2009, p.49), and the closed-loop aug-

mented system, under the condition that no constraints are active, reaches

the reference point without off-set

Hys = y
R, (8.10)

where ys denotes the system output at steady state, (Rawlings and Mayne,

2009, p.49).

For the system of anaesthesia, a control strategy considering polytopic un-

certainty on the system matrices A and B (8.5) or assuming the maximum

possible disturbance (8.4) will result in an off-set, when the optimal control

trajectory is computed based on the nominal system. Hence, robust, off-set

free tracking algorithms should be applied for the control design of anaesthesia.

An alternative for a robust control strategy, describing the system as a

linear time varying system (LPV), is evaluated in Appendix D, (Chang et al.,

2013a,b).
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8.3. State Estimation

State feedback control strategies are relying on full state information. For the

anaesthesia system not all states, which are the drug concentrations in the

compartmental model, can be measured directly. Therefore a state estimator

is required to determine the unmeasured states based on the input, the system

model and the available measurements.

8.3.1. ‘Perfect’ Observer

A straightforward and obvious open-loop control approach to determine the

system’s states is via a copy of the system, where the input of the system uk

is known.

x̂k+1 = Ax̂k +Buk

ŷk = Cx̂k
(8.11)

However, this is only applicable if the system matrices are known with a high

accuracy, the initial states are known and no disturbances are present or the

system is fully observable, hence all states can be measured.

On the contrary, one has to consider that the state feedback controller is

derived based on these system dynamics.

The advantages and disadvantages of the ‘perfect’ observer are summarised

as follows:

4 Simple implementation.

MPC is based on the same model, therefore there is no risk of infeasibil-

ity.

8 No compensation for model uncertainty and/or external disturbances.

8.3.2. Kalman Filter

The state estimation of the linear Kalman filter gives the unconstrained state

estimation by minimising the error covariance. This is the optimal solution for

linear stochastic systems with independent zero mean Gaussian process noise

vk and measurement noise wk, (Kalman, 1960; Rawlings and Mayne, 2009).

xk+1 = Axk +Buk +wk

yk = Cxk + vk,
(8.12)

where wk represents the process noise and vk the measurement noise with

covariance matrix Q̂ and R̂ respectively. The solution of the state estimation
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problem is obtained in a predictor-corrector algorithm, (Rawlings and Mayne,

2009):

1) Time update:

State prediction:

x̂−k = Ax̂k−1 +Buk−1 (8.13)

Projection of the error covariance:

P−k = APk−1A
T
+ Q̂ (8.14)

2) Measurement update:

Computation of the Kalman gain ∶

Kk = P
−
k C

T
(CP−k C

T
+ R̂)−1 (8.15)

State estimate update:

x̂k = x̂
−
k +Kk(yk −Cx̂

−
k) (8.16)

Update of the error covariance:

Pk = (I −KkC)P
−
k (8.17)

The advantages and disadvantages of the Kalman filter are summarised as

follows:

4 Simple implementation, stable and optimal.

8 Not optimal for non-zero mean.

Unconstrained.

8.4. Concluding Remarks

Multi-parametric model predictive control (mp-MPC) techniques and formu-

lations will now be further investigated in the context of drug delivery systems

for anaesthesia. In the next section the control and state estimation strate-

gies, presented in this section, are combined to design and evaluate a control

strategy for volatile anaesthesia.



9. Control Design for Volatile

Anaesthesia

In this chapter the design and evaluation of the closed-loop control strategy

for volatile anaesthesia is presented. A schematic of the closed-loop control

structure is depicted in Figure 9.1.

Set point

selector
MPC Patient

BISR CI

State Estimator

PD

Ce

PK

Cb,i,Ct,i

CE

BIS

Ĉ

Figure 9.1.: Closed-loop control design for volatile anaesthesia.

The control objective is a fast onset and stable maintenance of the desired

depth of hypnosis measured by the BIS. In order to achieve this objective

the MPC manipulates the control input, the inspired concentration CI . The

feedback MPC calculates the optimal control strategy as a function of the

states of the system and the measured outputs.

The available measurements are the BIS and the end-tidal concentration

CE . Given these measurements and the control input CI , the state estimator

obtains the predicted states Ĉ of the system that are not measurable.

For control validation the patient model is simulated with different PK and

PD variables and parameters compared to the nominal values.

9.1. State Estimator

For the applied state feedback MPC design the optimal control law is obtained

as a function of the system’s states. This is indicated by the state estimator

block in Figure 9.1. For the control of volatile anaesthesia the two measurable

outputs are the end-tidal concentration, CE , and the BIS.
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For constant inputs, fR and VT , the system results in a linear state space

system, where the end-tidal concentration is the output,

Ck+1 =ACk +BCI,k

CE,k =CCk.
(9.1)

The state vector C is of dimension n= 7:

C = [Ce CPK
]
′
= [Ce Cb,V RG Ct,V RG Cb,M Ct,M Cb,F Ct,F ]

′ (9.2)

The state space vector C, (9.2), contains 6 pharmacokinetic states (CPK), i.e.

the concentrations in the blood and tissue compartments in the respective

compartments of the PK model and the effect site concentration, Ce, of the

PD model.

Because of the identified higher uncertainty in the pharmacodynamics than

in the pharmacokinetics the strategy of choice is to estimate the states based

on the measurement of the end-tidal concentration, CE , which is a PK vari-

able. The effect site concentration, Ce, cannot be estimated from the mea-

surement of the end-tidal concentration, CE , because the output related to the

effect site concentration is the BIS and not CE , see (3.20) and (3.21). This

can be concluded from the physiological understanding of the system and the

observability matrix O, (Rawlings and Mayne, 2009). The analysis of the ob-

servability matrix for the state space system (9.1) further confirms that an

estimation of the effect site concentration by the end-tidal concentration is

not possible, i.e.

O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

⋮

CAn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.3)

with the state space system matrices A and C, (9.1). Here n denotes the rank

of A in (9.5) for the system including all n= 7 states in (3.8)-(3.10), (3.20),

which are the 6 PK states, CPK and Ce. The rank of O is lower than n, i.e.

rank(O) = 6 < n = 7 (9.4)

Hence, only 6 states of the 7 states are observable based on the measurement

of CE . These are the 6 PK states: the blood and tissue concentrations in the

lumped body compartments, (3.8)-(3.10).

As a result the 6 states of the PK model, CPK, are estimated based on
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the end-tidal concentration, CE , with the linear state space model given as

follows:

ĈPK
k+1 =A ĈPK

k +BCI,k +wk (9.5)

ĈE,k =C ĈPK
k + vk, (9.6)

The 6 PK states, CPK, are estimated by a Kalman filter, described in sec-

tion 8.3.2, with measurement noise covariance matrix R̂ and process noise

covariance matrix Q̂.

The effect site concentration, Ce, is estimated as a function of the estimated

arterial concentration, Ĉa, see Chapter 3, and given by combination of (3.1)-

(3.7) and (3.20):

Ĉa,k = (1 −
Q̇s

Q̇
)(

λ(CIVT + ĈE,kVA)

VA + VT
) −

Q̇s

Q̇
ĈE,k λ, (9.7)

Ĉe,k+1 =AeĈe,k +BeĈa,k (9.8)

where ĈE refers to the estimated end-tidal concentration obtained from (9.6)

and Ae and Be denote the discrete state space system matrices resulting from

(3.20).

An estimation of Ĉe based on the BIS measurement and all PD parameters

of the Hill equation, which would include, all three PD parameters, γ, C50

and ke0, is not performed due to the high uncertainty in the PD parameters

by inter- and intra-patient variability and the possibility of an inaccurate es-

timation. Hence the estimation of Ce is predicted to be more accurate based

on the PK concentration and only one of the PD parameters, i.e. ke0, by the

combination of (9.7) and (9.8).

9.2. Model Linearisation

Under the assumption of constant inputs for the respiratory frequency fR

and the tidal volume VT such as constant PK variables, the model equations

presented in Chapter 3 result in a linear system with the 7 states (9.2).

The only static non-linearity is introduced by the Hill equation (3.21), which

relates the linear PK model to the effect measured by the BIS. In this work we

only consider linear mp-MPC algorithms. The Hill equation is an algebraic

equation and therefore introduces a static non-linearity into the system. Two

options to compensate for the non-linearity are considered in this work.

I) Algebraic inverse of the Hill equation
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II) Linearised Hill equation

i) Linearisation at BIS reference point

ii) Set of piecewise affine functions

Both options and their advantages and disadvantages are discussed in this

section.

I) Algebraic Hill equation

The reference effect site concentration CRe is calculated by the inverse of the

Hill equation for the reference BISR, (Gentilini et al., 2001; Ionescu et al.,

2008; Nascu et al., 2012)

CRe = C50

⎛
⎜
⎝

BISR −BIS0

BISmax −BISR

⎞
⎟
⎠

1/γ

. (9.9)

The control design consisting of the mp-MPC controller, a state estimator,

the patient and the inverse Hill equation is depicted in Figure 9.2.

State Estimator

PK

Est.
Ĉe = f (Ĉa)

Controller

MPC

Patient

PK PD

inverse

Hill equation

BISR

CRe Cme

CI

CI

BISm

CE

ĈPK Ĉ

Ĉe

Figure 9.2.: Control design for algebraic inverse of the Hill equation.

This design requires robustification against the uncertainty in the PD pa-

rameters C50 and γ, which are parameters of the Hill equation (3.21) and (9.9).

For the proposed design of compensating the non-linearity by the inverse of the

Hill equation these parameters are not included in the control design where

they can be compensated by the disturbance rejection formulation in (8.8).

Hence, this design can only compensate uncertainty in the PD parameter ke0.

The advantages and disadvantages of the algebraic inverse of the Hill equa-

tion are summarised as follows:

4 Exact approximation of the Hill equation.
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8 Robustification strategy for inter-patient variability in C50 and γ.

II) Linearised Hill equation

The second design is a linearisation of the Hill equation at the desired reference

point. This control design is depicted in Figure 9.3.

State Estimator

PK

Est.
Ĉe = f (Ĉa)

Controller

MPC

Patient

PK PD

BISR

CI

CI

BISm

CE

ĈPK Ĉ

Ĉe

Figure 9.3.: Control design for linearised Hill equation.

The linearised Hill equation is given by

BIS∣BISlin = aBISlin Ce + bBISlin , (9.10)

where lin denotes the linearisation point. The linearisation constants for a

linearisation at BIS = 50 are:

aBIS50 = (BISmax −BIS0)
⎛
⎜
⎝

γ

4C50

⎞
⎟
⎠

(9.11a)

bBIS50 = BIS0 +
(BISmax +BIS0)

2
− aBIS50 C50 (9.11b)

i) Linearisation at reference point

The linearised Hill equation at the operating point of BIS = 50 was applied

by Gentilini et al. (2001) and Yelneedi et al. (2009). The visualised linearisa-

tion is shown in Figure 9.4 for nominal isoflurane PD parameters.
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Figure 9.4.: Linearised Hill equation at BIS = 50. The dot marks the lineari-
sation point.

However, this approach might not be accurate when the anaesthetist decides

another operating point e.g. BIS = 40 or BIS = 25 as in the case study for

desflurane in Section 5.2. Furthermore the intersection of the linearised Hill

equation and the y-axis does not coincide with the initial condition of the

patient during induction, where BIS = 100. Hence this strategy results in a

large off-set during induction of anaesthesia.

The advantages and disadvantages of the linearisation at a single reference

point are summarised as follows:

4 Good approximation at reference point.

Straight-forward implementation.

8 Large linearisation error outside of the linearisation region.

ii) Set of piecewise affine functions

A safer and more accurate linearisation procedure to achieve a smooth tran-

sition of the non-linearity for the full Hill equation is a set of piecewise linear

approximations, where the Hill equation is linearised at BIS = 60 and BIS = 30

and the controller is switching at the intersection points. The linearisation for

induction is obtained by a line through the points (BIS = 100, Ce = 0) and

(BIS = 60, Ce =Ce,BIS =60), Figure 9.5.
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Figure 9.5.: Piece-wise linearisation of the Hill equation. The dots mark the
intersection of the linearisation functions and the switching points
of the controllers respectively.

The advantages and disadvantages of the piecewise affine linearisation of

the Hill equation are summarised as follows:

4 Linearisation of the full parameter space.

Compensation of uncertainty in C50 and γ.

8 Implementation of controller switching to guarantee stability.

9.3. MPC

The MPC block in Figure 9.1 is based on the derived PK-PD in Chapter 3

for nominal patient parameters. The formulation of the linear MPC objective

function is given as follows, (8.1):

min
u
J =

N

∑
k=1
(yk − y

R
k )
′QR(yk − yRk ) +

M−1

∑
k=0
(u′kRuk +∆u′kR1 ∆uk)

s.t. xk+1 = Axk +Buk

yk = Cxk

xmin ≤ xk ≤ xmax

ymin ≤ yk ≤ ymax

umin ≤ uk ≤ umax

∆umin ≤ uk−1 − uk ≤∆umax

(9.12)

The main objective of this reference tracking control problem is a fast onset

and a stable maintenance of the anaesthetic depth specified by the anaes-

thetist. Therefore the term with the highest weight in the objective function
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(9.12) is the weight matrix QR penalising the error between system output and

reference point. The inlet concentration u = CI is penalised with R, to min-

imise the amount of anaesthetic used. The change in the input ∆u ∶= ut−1 −ut

is penalised with R1. The states x, outputs y, inputs u and the change in

input ∆u are restricted by hard constraints, (9.12).

9.4. Case study: Controller Evaluation for

Isoflurane Based Anaesthesia

In this section the control designs described in the previous chapter are eval-

uated. To motivate for the need of an output feedback controller an open-

loop control design is included in the case study. The control strategies are

presented and compared regarding their performance for a reference point

change for a 60 min isoflurane based anaesthesia. The initial reference point is

BIS = 40 during the initial 30 min and BIS = 60 for the last 30 min. The MPC

is derived based on the model for the nominal patient described in Section 5.1,

MPC block in Figure 9.1.

The linear mp-MPC is evaluated applying

I) the algebraic inverse of the Hill equation or

II) a piecewise affine linear approximation of the Hill equation

in combination with either

i) the ‘perfect’ observer or

ii) the Kalman filter.

Performance measure

The performance error of the controller during induction and maintenance is

assessed by the root mean squared error (RSME) defined as follows:

E =
1

n

n

∑
i=1

¿
Á
Á
ÁÀ(

ymi − yRi
yRi

)

2

, (9.13)

where yR refers to the reference output value and ym to the measured value.

This measure for the evaluation of the control strategy was chosen to include

a measure for oscillations.
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9.4.1. Motivational Example: Nominal mp-MPC

In this section the nominal controller, for both control designs, the algebraic

compensation of the Hill equation and the piecewise linear approximation of

the Hill equation, is evaluated. The perfect observer and the Kalman filter

are applied to obtain the state information of the system. Here, the imple-

mentation with the ‘perfect’ observer is equivalent to an open-loop control

design. The control designs are summarised in Table 9.1 and the MPC design

parameters in (9.12) are summarised in Table 9.2:

Table 9.1.: Control design (CD ) set-up.

MPC State Est PD

CD 1 mp-MPC ‘Perfect’ observer algebraic

CD 2 mp-MPC Kalman filter algebraic

CD 3 mp-MPC ‘Perfect’ observer linearised

CD 4 mp-MPC Kalman filter linearised

Table 9.2.: mp-MPC tuning parameters and specifications.

Variable Value Variable Value Unit

ts 0.1667 ≙ 10 sec ∆umax 0.5 vol %

N 6 ≙ 1 min ∆umin -0.5 vol %

M 3 ≙ 30 sec umax 4 vol %

QR 1000 umin 0 vol %

R 1 Ce,max 3.08 vol %

R1 1 Ce,min 0 vol %

Q̂ 0.3 BISmax 100 -

R̂ 0.03 BISmin 0 -

The mp-MPC (9.12) is evaluated for the patients undergoing isoflurane

based anaesthesia. The designs CD 1-CD 4 are evaluated for the nominal pa-

tient and the three other patients of the clinical study for isoflurane. The

patient block in Figure 9.1 comprises of the model with individualised PK

and PD parameters and variables reported in Table 3.2 and Table 5.1. As a

motivational example for the need of a more advanced than open-loop control

strategy, the control performance for the nominal controller in line with the

‘perfect’ observer (CD 1 ) is shown for all patients in Figures 9.6 - 9.9. The

explicit solution CI by simple function evaluations of the first 6 critical regions

passed is given in Appendix B.
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Figure 9.6.: CI all patients.

The open-loop controller computes the optimal control law entirely based

on the obtained states by the state estimator. There is no output feedback

loop of the actual measurement of the patient. Therefore, an identical control

input for all four patients is computed, Figure 9.6.
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Figure 9.7.: CE all patients.

Figure 9.7 shows a significantly different end-tidal concentration CE for the

same inhaled concentration CI in Figure 9.6 for the four patients. This is a

result of different PK parameters of each patient, which determine a different

uptake and CE of the anaesthetic agent, cp. Table 4.3.
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Figure 9.8.: Measured BIS of all patients.

Figure 9.8 shows the BIS of all four patients. The open-loop, nominal MPC

obtains a good control performance for the nominal patient (Pn) only. The

other patients, in particular Patient 3 (P3), show a significant off-set from the

target BIS.
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Figure 9.9.: Ce all patients.

The results in Figure 9.9 show a satisfactory performance of CD 1 only for

the nominal patient (Pn). The results of the other patients (P1-P3) indicate

the significant off-set from the BIS reference point directly linked to the effect

site concentration in (9.9). Both the off-set from the target BIS and the off-

set from the target effect-site concentration is originated from the high inter-

patient variability especially in the PD parameters, Chapter 4, and motivates

the need for a more advanced control strategy.

Performance analysis of control designs CD 1 - CD 4

The RMSE (9.13) is calculated for all control designs CD 1 - CD 4 during

induction (0 min-5 min), BISR = 40 (20 min - 40 min) and BISR = 60 (50 min -
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60 min), to further analyse the presented control strategies. The results are

shown for all patients and all control designs in Figures 9.10 - 9.11.
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Figure 9.10.: RSME for induction (ind.) of anaesthesia, t = 0-5 min.

During induction all control designs seem to perform better for P1 and P2

even compared to the nominal patient, Pn. However, this is related to the

faster response of the patient given by a different sensitivity to the drug. The

significantly worse performance of all controllers for P3 can be explained by

very different dynamics of the system already observed in Figure 9.8.

An accurate comparison the algebraic compensation of the Hill equation and

the piecewise affine linearisation of the Hill equation can only be obtained for

the performance of Pn, as both controllers are designed with identical dynamics

with the patient. Here the algebraic controller CD 1 and CD 2 performs better,

because of the exact approximation of the Hill equation, whereas CD 3 and

CD 4 suffer from a linearisation error, see Figure 9.5.
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Figure 9.11.: RSME during maintenance at BIS = 40 (20 - 30 min) and
BIS = 60 (50 - 60 min) for CD 1-CD 4 and all patients.

The comparison of the control designs during the maintenance phase gives

further insights in the dynamics of the system. Here, the control design based

on the algebraic inverse of the Hill equation shows an excellent performance

(CD 1, CD 2 ) for the nominal patient Pn. Also during induction of anaesthesia,

the piecewise affine linearisation of the Hill equation suffers form the lineari-

sation error, which is minimal at BIS = 60, but more significant at BIS = 40

for the nominal patient, see Figure 9.5. The state estimation by the Kalman

filter in CD 2 and CD 4 improves the performance of the nominal MPC for all

patients, P1 - P3. This is because of a better mapping of the real system’s

states to the measured end-tidal concentration CE , which also is varying con-

siderably depending on the patient’s individual uptake, Figure 9.7. The state

estimation with the Kalman filter can reduce the maintenance off-set. How-

ever, this control strategy is not satisfactory to compensate for the uncertainty

introduced by inter-patient variability in the PD parameters.

The different off-set for the four patients at the two different reference points

BIS = 40 and BIS = 60 is originated from the individual Hill equation (3.21),

which describes the BIS as a function of the effect site concentration. All

three patients show a deviation from the nominal Hill equation depending on

the reference point. This should be considered for the algebraic inverse of
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the Hill equation as well as for the piecewise affine linearisation of the Hill

equation. The individual Hill equations of the three patients, the nominal and

the piecewise affine linear Hill equation are depicted in Figure 9.12.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Ce [vol%]

B
IS

[-
]

BIS
BISlin

BISP1

BISP2

BISP3

Figure 9.12.: Algebraic and piecewise affine Hill equation of the nominal pa-
tient and Hill equations of the three patients for isoflurane based
anaesthesia.

Furthermore one has to consider that the effect site concentration is chang-

ing with individual patient variables and parameters as a function of the PD

parameter ke0 and the arterial concentration Ca, which is determined by the

possibly uncertain PK parameters.

As a conclusion, control designs (CD 1 - CD 4 ) only lead to satisfactory

results when the patient’s parameters are very well known and model uncer-

tainty can be reduced to a minimum as shown for the results of the nominal

patient Pn. This is further motivated by the performance of all controllers for

Patient 3 in Figures 9.13 - 9.14.
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Figure 9.13.: Inlet concentration all CD patient 3.
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Figure 9.14.: BIS patient 3.

9.4.2. MPC with Output Disturbance

In this section an off-set free output feedback design is presented. The dy-

namics of the controller are adjusted to the system via an output disturbance

d in the system model, (8.1).

Given the derived state space matrices for the piecewise affine system all

matrix pairs (A,C) (9.1) are observable. However, the augmented system

with the choice of Bd = 0, ∈ R7×1 and Cd = 1 with nx = 7 and nd = ny = 1,

is not observable, see (8.8). An alternative choice for Bd is challenging and

difficult to define, because the entries are suffering from uncertainties due

to inter-patient variability in the PK and PD variables and parameters that

might not be linearly related. To test the off-set free method via including an

output disturbance, the disturbance estimation is circumvented by assuming

a constant output disturbance dk for the entire horizon given by the difference

of measured output ymk and predicted output yk of the system model.

dk = y
m
k − yk

dk+1 = dk
(9.14)

This disturbance is then incorporated in the formulation of the objective func-

tion in (8.1) and the mp-QP problem, Appendix A, as an output disturbance

to adjust the controller to the patient’s dynamics, (Rawlings and Mayne, 2009,

p. 49):

min
x,y,u

J =
N

∑
k=1
(yk + dk − y

R
k )
′QR(yk + dk − yRk ) (9.15)

The system matrices of all three piece-wise affine systems were evaluated

and they satisfy the condition for the rejection of all disturbances and off-set
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free control (9.14). The design of the controllers is given in Table 9.3.

Table 9.3.: Control design (CD ) for output disturbance MPC.

MPC State Est PD

CD 5 output feedback MPC ‘Perfect’ observer linearised

CD 6 output feedback MPC Kalman filter linearised

To obtain a stable control performance the sampling time was decreased

to ts = 3 seconds and the control horizon and output horizon were increased

accordingly, Table 9.4. All other parameters were set identical to the specifica-

tion in Table 9.2. Because of the high control and output horizon, no explicit

solution was obtained. Therefore the on-line version of the controller, solving

a QP problem, was applied to obtain the simulation results. The derivations

of the explicit and on-line/conventional controller are given in Appendix A.

Table 9.4.: Control design for CD 5-CD 6.

Variable Value

ts 0.05 ≙3 sec

N 20 ≙ 1 min

M 8 ≙ 24 sec

Performance analysis of control designs CD 5 - CD 6

The output feedback design shows a considerably better performance than de-

signs CD 1-CD 4. The RSME during induction, Figure 9.15, and maintenance

for both reference points is reduced, Figure 9.16. Note the different scale in

comparison to Figures 9.10 - 9.11.
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Figure 9.15.: RSME for induction of anaesthesia from t = 0-5 min CD 5 and
CD 6.
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Figure 9.16.: RSME in the maintenance phase for CD 5 and CD 6 BIS=40 from
20-30 min, BIS=60 from 50-60min of anaesthesia.

The simulation results of the closed-loop control performance are shown

in Figures 9.17 - 9.19. The on-line MPC is adjusting the required input to

the patient’s dynamics, based on the measured BIS and maintains a stable

reference point change for all patients.
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Figure 9.17.: Inlet concentration of all patients for CD 5 and CD 6.
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Figure 9.18.: End-tidal concentration of all patients for CD 5 and CD 6.
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Figure 9.19.: Measured BIS of all patients for CD 5 and CD 6.

9.5. Concluding Remarks

The results clearly confirm the need for a robust control method to adjust

the controller’s dynamics to the patient based on an output feedback strategy.

The presented control strategy, including an output disturbance, shows a good

performance for all patients and is able to reduce the off-set of the controller

to an acceptable limit compared to the nominal mp-MPC.

In the next chapter advances towards on-line estimation of the PD parameter

with the highest sensitivity C50 will be investigated.





10. On-line Parameter Estimation

This chapter presents an on-line estimation of the PD parameter C50 as an

alternative method to cope with the high model uncertainty. The intensive

analysis of the model variables and parameters in Chapter 4 led to the con-

clusion that C50 is the parameter with the highest sensitivity and influence

on the BIS. Furthermore due to correlation with the other PD parameters

an estimation of C50 can compensate for a model mismatch resulting from

uncertainty in the other PD parameters and the PK parameters, Table 4.5

and Table 4.4. Hence, it is believed that an on-line estimation of C50 can

compensate model mismatch and provide off-set free reference tracking of the

BIS. This statement is further investigated and an algorithm to estimate C50

on-line is presented in this Chapter.

The strategy of on-line parameter estimation for anaesthesia control was

performed for Propofol by Sartori et al. (2005) and Robayo et al. (2010). In

Robayo et al. (2010) the authors estimated the slope of the linearised Hill

equation at BIS = 50 as a function of the cross correlation between measure-

ment in the intensive care unit and prediction of the BIS. Sartori et al. (2005)

formulated the non-linear PK-PD system and added the parameters C50 and

ke0 as system states. The resulting system was linearised at every step and

the states and parameters were estimated by a Kalman filter. In Sreenivas

et al. (2009) the authors mention an improved prediction of the BIS, when

estimating C50 for isoflurane based anaesthesia, based on the measurement

during induction. However, no method for the estimation of C50 is described

in Sreenivas et al. (2009).

10.1. Control and Algorithm Design

The proposed control design is based on the control design previously presented

in Figure 9.2. An additional block for the on-line estimation of C50 is added

and the resulting control structure is depicted Figure 10.1. The non-linearity

of the Hill equation is compensated by its inverse (9.9) analogously to the

design in Figure 9.2. Hence the reference point of the effect site concentration

CRe is calculated as a function of the reference point on the hypnotic depth

113
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BISR and the PD parameters C50 and γ in (9.9).

State Estimator

PK

Est.
Ĉe = f (Ĉa)

Controller

MPC
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Hill equation
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Figure 10.1.: Closed-loop control design for on-line parameter estimation of
C50.

The decision process of the on-line estimator block in Figure 10.1 is illus-

trated in Figure 10.2. The on-line parameter estimator can be switched on or

off. If active, C50 is estimated and updated under the conditions depicted in

the flow chart in Figure 10.2.

Estimate C50: on

∆BIS >∆BISt > ton

∆t >∆t

solve (10.2):

Ĉ50,i = min
C50

J
update Ĉ50,i

in (9.9)

∆t = t − t0

yes

yes

yes

yes

t0 = t

no

Figure 10.2.: Decision process of the on-line parameter estimator block.
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The first estimation and update of C50 occurs at least ton min after induction

of anaesthesia, (t > ton). If the on-line parameter estimation is switched on,

the parameter estimation block becomes active, when an error between the

measured BIS, BISm, and the predicted BIS, B̂IS, by the Hill equation with

the current parameters is detected. A mismatch is defined as a deviation of

prediction and measurement of more than ∆BIS during in the last ∆t min,

i.e. ∆BIS >∆BIS.

∆BIS =
1

n

t

∑

i=t−∆t

⎛

⎝
(

BISmi − B̂ISi
BISmi

)

2
⎞

⎠

1
2

(10.1)

This triggers the on-line estimation by solving a constrained non-linear least

squares problem. The solution of C50 is obtained by minimising the error

between B̂IS and BISm:

min
C50

J =
t

∑
i=t−t∆

(BISmi − B̂ISi)
2

s.t. B̂ISi = BIS0 + (BISmax −BIS0)
Cγe,i

Cγ50 +C
γ
e,i

(1 −∆C50) C50,t−1 ≤ C50,t ≤ (1 +∆C50) C50,t−1

C50,min ≤ C50,t ≤ C50,max

(10.2)

Constraints on the change of the estimated value of C50,t aim for a smooth

transition of the parameter to the real value and secure stability against short

term disturbances and/or measurement errors. Before anaesthesia C50,t−1 is

set to its nominal value. Throughout the simulation C50,t is initialised with

its previous estimate C50,t−1. The solution of the estimation problem is con-

strained by ±∆C50 of its previous value C50,t−1 and a lower and upper bound,

C50,min and C50,max, given in Table 3.2. When a feasible and optimal solution

for C50,t of the estimation problem is obtained, the inverse Hill equation (9.9)

is updated with this value after each on-line estimation step. An additional

parameter to enhance a smooth transition of C50 to its real value is the time in-

terval t∆. Only the measurements and predictions in this interval are included

in the on-line parameter estimation problem, (10.2). The least squares esti-

mation problem is solved using GAMS and the global solver BARON (GAMS,

2013). The estimated parameter is send to MATLAB via GDXMRW, (Ferris

et al., 2011).

The design parameters of the presented on-line parameter estimation algo-

rithm and the tuning parameters are summarised in Table 10.1.
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Table 10.1.: On-line parameter estimation tuning parameters and design.

Parameter Value Unit

ton 5 min Minimum time after anesthesia induction

to trigger parameter estimation.

∆BIS 5 % Error to initiate a parameter estimation.

∆t 3 min Time since the last update of the Hill

equation.

t∆ 3 min Past measurements included in the param-

eter estimation problem.

∆C50 20 % vol % Deviation of old and newly estimated

value of C50.

10.2. Evaluation of the On-line Estimation

Algorithm

This strategy is now investigated for Patient 3, because Patient 3 is showing

the highest off-set for all control strategies presented in Chapter 9, Figure 9.8.

The MPC is designed according to the control design CD 1 in Table 9.1. Anal-

ogously to the closed-loop control validation in Section 9.4 the state estimator

and mp-MPC are both based on the derived PK-PD model with nominal pa-

tient values, whereas the patient model is based on individualised variables and

parameters. The control strategy with on-line parameter estimation (ĈD) is

tested for a constant reference point of BISR = 40 for 100 min. The simulation

results are shown in Figures 10.3 - 10.6 for control design CD and ĈD 1.
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Figure 10.3.: Control input for Patient 3 of CD 1 and ĈD.
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During the initial 5 minutes, t < ton, both controllers give an identical input,

while after 5 min the input of ĈD is adjusted according to the update of C50

in Figure 10.6. This update triggers a reference point change on the effect site

concentration CRe as a result of the updated value of C50 in the inverse Hill

equation and a more accurate knowledge of the patient’s individual parame-

ters. Figure 10.3 shows the changing inlet concentration of the controller as a

consequence of this reference point change of CRe depicted in Figure 10.4. The

reference concentration CRe is updated with every new estimate of C50.
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Figure 10.4.: CRe and actual Ce for Patient 3 of CD 1 and ĈD.

Figure 10.4 shows a large off-set, which was also reported in Chapter 9 for

control design CD 1 and emphasises the need of an off-set free control design.

This off-set in the effect site concentration originates from different PK and

PD variables and parameters of the nominal patient and Patient 3 and causes

a further off-set in the BIS shown in Figure 10.5.
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Figure 10.5.: BISR and actual BIS for Patient 3 of CD 1 and ĈD.

By the estimation of C50, ĈD converges to the reference point BIS = 40,

Figure 10.5. Likewise the estimated value of C50 converges to a final value of

Ĉ50= 0.647 [vol%].
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Figure 10.6.: Estimated Ĉ50 of ĈD for Patient 3.

To confirm and validate this result of the least squares parameter estimation

(10.2) with GAMS, (GAMS, 2013), a maximum likelihood parameter estima-

tion for nominal values of all the PK and PD variables and initialised with

the nominal value of C50 was performed with gPROMS (PSE, 2011). The

obtained estimated value was C50 = 0.612 [vol%]. This result is reasonably

close to the result obtained by the solution of the least squares problem and

confirms the accuracy of the parameter estimation result with GAMS (2013).
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10.3. Case study: Controller Evaluation for

Isoflurane Based Anaesthesia

The control design of ĈD is now investigated for all three patients undergoing

isoflurane based anaesthesia and described in Section 5.1 for a reference point

change from BIS = 40 to BIS = 60 after 60 min of anaesthesia. The simulation

results of all three patients are shown in Figures 10.7 - 10.10.

During the initial 5 minutes the MPC computes an identical input for all

three patients. After this short induction time C50 of each patient is estimated

individually based on the obtained measurements of the BIS during the last 3

minutes (10.2). This is depicted in Figure 10.9. The estimation of C50 results

in an update of the reference effect site concentration CRe in Figure 10.8. The
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Figure 10.7.: Control input for Patient 1-3 of ĈD.
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Figure 10.8.: CRe and actual Ce for Patient 1-3 of ĈD.
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Figure 10.9.: BISR and actual BIS for Patient 1-3 of ĈD.
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Figure 10.10.: Estimated Ĉ50 of ĈD for Patient 1-3.

measured BIS of all three patients converges to the reference point BISR in

Figure 10.9. The required target effect site concentration to obtain BISR is

varying significantly between patients due to large inter-patient variability,

discussed in detail in Chapter 4. Figure 10.7 shows the individual control

inputs obtained correctly through the individualised parameter estimation of

C50 shown in Figure 10.10.

The estimated values of C50 converge to a constant value in less than 20 min

of anaesthesia. Due to the change in BISR the estimation of C50 is triggered

repeatedly, Figure 10.10. Here the updated parameter, C50, for Patient 3

converges faster to a steady value. C50 of Patient 1 and Patient 2 is re-

peatedly updated every 3 minutes and at the constraint at the lower bound

C50,t ≥ 0.8C50,t−1 is active. This is originated from the different slope of the
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individual Hill equations in Figure 9.12 and the distinct deviation from the

nominal value at BIS = 40 and BIS = 60.

10.4. Concluding Remarks

The on-line estimation of C50 shows promising results towards an individ-

ualised control strategy of anaesthesia. This strategy allows to adjust the

controller to the individual sensitivity of the patient towards the anaesthetic

agent. Furthermore the anaesthetist gains understanding of the patient’s sen-

sitivity, which could be advantageous for future surgeries of the same patient.

The presented strategy is believed to be safe for the patient ensured by con-

straints in the controller configuration and constraints in the parameter esti-

mation problem.

The tuning parameters of this strategy are (i) the permitted deviation from

the initial value for C50 in the parameter estimation problem, which was set to

∆̂C50 = ±20% in this study, (ii) the percentage of deviation from the measured

BIS, which triggers an estimation of C50, set to ∆̂BIS=5% in this study, and

(iii) ∆t the sampling time between each parameter estimation, which was set

to ∆t=3 min.

A first study to investigate the capabilities of the on-line parameter estima-

tion algorithm to reject disturbances is presented in Appendix C.





11. Conclusions and Future

Directions

The framework presented in this thesis and illustrated anew in Figure 11.1

provided a valuable guideline for model development and analysis when aiming

for a robust control strategy and the design of a safe drug delivery system for

anaesthesia.

Modelling

Control

Model AnalyisModel
Uncertainty

Identification

Closed-Loop

Control System

Validation

Robust Control

Strategies

Figure 11.1.: Framework presented in this thesis for volatile anaesthesia.
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11.2. Key Contributions from this Thesis

Part I: Modelling1

▶ Individualised physiologically based pharmacokinetic-pharmacodynamic

model for volatile anaesthesia.

▶ Insights in the model dynamics via analysis of the individualised param-

eters and variables of the derived model.

⪧ Envelope of model uncertainty.

⪧ Global sensitivity analysis.

⪧ Variability analysis.

⪧ Correlation analysis.

▶ Validation of the pharmacokinetic part of the model with clinical data

for isoflurane and desflurane based anaesthesia.

▶ Individual estimation of the pharmacodynamic parameters for isoflurane

and desflurane of the Hill equation for each patient.

▶ Capabilities of the model to be applied as teaching tool of drug distri-

bution and drug effect modelling for anaesthesia.

Part II: Model Predictive Control

▶ Testing of the consequence of inter- and intra-patient variability for open-

loop nominal mp-MPC.

1The work presented in Part I has been partly published in Krieger et al. (2013).
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▶ Design of an explicit control strategy, which adjusts to the patient’s

dynamics and enables off-set free control for drug delivery systems for

volatile anaesthesia.

▶ Design of a control strategy which adjusts to the patient’s dynamics by

on-line parameter estimation of the parameter with the highest sensitiv-

ity: C50.

▶ Contribution towards personalised health care by taking into account

the individual patient characteristics.

11.3. Summary of this Thesis

The presented model for volatile anaesthesia combined existing ideas of com-

partmental and physiologically based models for the uptake and distribution

of anaesthesia originated from the work of Mapleson (1963) and Eger (1974).

In the derived model the PK variables and parameters where described as a

function of age, weight, height and gender of the patients to account for indi-

vidual patient characteristics. This strategy was validated by the comparison

of the simulation results with clinical studies for 11 patients and 2 different

anaesthetic agents, 3 patients undergoing isoflurane based anaesthesia and 8

patients undergoing desflurane anaesthesia.

The sequential analysis and grouping of the variables and parameters of

the model in their related PK and PD group led to a good understanding

of the model’s dynamics and the influence of the specific parameters on the

measurable outputs, BIS and CE . (i) The lung volume and the cardiac output

mainly determine the uptake of the drug. (ii) The concentration at 50% drug

effect C50 defines the sensitivity of the patient and therefore the resulting effect

for a fixed effect site concentration. The results for tissue concentrations are

in accordance with the literature, (Eger, 1974, p.89).

The considerably more profound uncertainty in the PD parameters in com-

parison with the PK parameters and variables found in this thesis was previ-

ously reported in the literature (Mertens and Vuyk, 1998).

The model showed good capabilities to serve as a teaching tool and examine

the influence of a variable and/or parameter on the internal drug concentra-

tions and the uptake.

With respect to robust model predictive control, the extensive modelling

process proved to be rewarding, as (i) an underlying model of adequate com-

plexity for control, which is still able to capture the individual patient’s charac-

teristics, was found and (ii) the uncertainty the control strategy has to handle
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was identified.

Based on the model the risks of using a nominal open-loop explicit MPC for a

system that is suffering from such high uncertainty was shown. Consequently,

the design of an output feedback controller, including the model mismatch as

an output disturbance, was developed that adjusts to the patients’ dynamics.

The output feedback controller was derived as an on-line controller, which is

solving a QP problem at each iteration step.

An alternative on-line solution to adjust the controller to the patients’ dy-

namics was the combination of the mp-MPC with an on-line parameter estima-

tor of C50. This design additionally provides the anaesthetist with information

about the patient’s sensitivity.

11.4. Ongoing and Future Work

The derived model showed good results for isoflurane and desflurane and can

be adapted to other volatile anaesthetic agents by changing the solubility

coefficients of the blood and tissue, λ and λi. This encourages further testing

and validation with clinical data of other volatile anaesthetics or the extension

of the model to simultaneous administration more than one anaesthetic agent.

11.4.1. Explicit Model Predictive Control Under Uncertainty

The need for an off-set free and robust control method, because of high inter-

patient variability and the probability of changing variables during surgery,

due to e.g. surgical stimulation, blood loss, blood transfusion, was clearly

shown. The explicit MPC solution provides a excellent testing tool or all

possible scenarios that might occur during anaesthesia. Our current work

is dealing with deriving the explicit form of the output-feedback controller,

for which so far the on-line formulation was tested. Additionally an alterna-

tive to estimate the output disturbance is investigated. Further testing will

be performed for disturbance rejection of disturbances often occurring during

anaesthesia, (Dumont et al., 2009; Struys et al., 2004), and tested in Yelneedi

et al. (2009) for isoflurane. First results are summarised in Appendix C. The

testing and validation of the closed loop control algorithm will be performed

with the platform of the derived model for volatile anaesthesia, which also

might lead to the development of other robust control strategies, such as in-

cluding an integral penalty on the reference tracking error.
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11.4.2. Model Predictive Control for Hybrid Systems

The piecewise affine linearisation of the Hill equation results in three different

controllers, which are switching according to the predicted system output. An

alternative is the formulation of the objective function as a hybrid system,

where the optimal control trajectory can be obtained by dynamic program-

ming, (Rivotti et al., 2012a).

11.4.3. Moving Horizon Estimation

Concerning the state estimation, the application of the ‘perfect’ observer in-

herits the advantage that no infeasibilities of the controller can occur, as con-

troller and estimator are based on the same model. The Kalman filter, how-

ever, showed to improve the performance of the mp-MPC because the states

were estimated based on the measured output and, naturally, closer to the

real states, the internal blood and tissue concentrations. The application of

a moving horizon estimator (MHE) for state estimation combines both ad-

vantages, because of constraint handling on the states, at the cost of a more

difficult implementation, i.e.

min
x̂t−N̂ ,{ŵ}t−1

t−N̂

J = ∥x̂t−N̂ − x̄t−N̂∥P−1
t−N̂
+

t−1

∑

k=t−N̂
∥ŵk∥

2
Q−1
k
+

t

∑

k=t−N̂
∥v̂k∥

2
R−1
k

s.t. xt−N̂+k+1 = Axt−N̂+k +But−N̂+k +Gwt−N̂+k,

yt−N̂+k = Cxt−N̂+k +Dut−N̂+k + vt−N̂+k,

(11.1)

where N̂ denotes the estimation horizon. Here the computation of the distur-

bance matrix G involves the highest challenge, because it maps coloured noise

on the states, (Findeisen, 1997). As the system itself is uncertain, the choice

of G is more challenging and the influence of a nominal choice of G on the

closed control loop might lead to an unstable system and needs to be further

investigated. The task of finding G is similar to the challenge of determining

Bd in Section 8.2 (8.8) and estimate the output disturbance’s impact on the

system states.

The simultaneous design of the explicit solution of the MHE and the MPC

Voelker et al. (2010, 2013) offers a full explicit solution of the closed control

loop for anaesthesia control that accomplishes the high safety measures for

testing required for the control of a biomedical system such as anaesthesia.
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11.4.4. Model Reduction

An alternative strategy in order to obtain an explicit mp-MPC, while main-

taining the system’s dynamics of a complex model, is via model reduction

techniques, (Lambert et al., 2013; Rivotti et al., 2012b).

11.4.5. Linear Parameter Varying Systems

The approach presented in Chang et al. (2013a,b) shows promising results for

LPV systems, while maintaining the explicit solution of the nominal mp-MPC.

The extension of the presented method to a time-varying system matrix Ak

and a time varying system matrix Bk,

xk+1 = Akxk +Bkuk

yk = Cxk,
(11.2)

allows to adjust the controller in advance to the varying or knowingly different

PK parameters without the need of deriving an new explicit solution of the

mp-MPC.

11.5. Anaesthesia Automation

Closing the loop of the anaesthetic system implies automatic drug infusion

based on the model predictions and the feedback through the measured patient

variables. Apart from hypnotic depth, anaesthesia is defined by amnesia,

analgesia, muscle relaxation and the maintenance of the vital functions. A

multiple-input multiple-output (MIMO) controller could regulate all of these

variables (Biro, 2013).

11.5.1. Main Challenges

The main challenges to fully automate anaesthesia are, (Absalom et al., 2011;

Struys et al., 2006):

(i) Development of new sensors to measure adequately all variables of inter-

est to the anaesthetist, where challenge is the measurement of amnesia

and analgesia.

(ii) Further evaluation and testing of robust control strategies with respect

to patient safety.

(iii) New development of multiple drug effect interaction models for the design

of MIMO control strategies.
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The lack of reliable sensors is probably the most profound problem. An

adequate measurable signal is essential for the successful design of a process

model; besides the control strategy relies heavily on an accurate feedback of

the patient’s current state. Apart from the BIS, used for most closed loop

applications, the Narcotrend Monitor or auditory evoked potentials are avail-

able. This variety of possible feedback signals and design of models increases

the difficulty of model and control design, because the parameters cannot be

easily projected from one measurement to another, (Bibian et al., 2011; Bruhn

et al., 2006; Kent and Domino, 2009).

The interactions of various drugs administered simultaneously are very com-

plex, anaesthetics e.g suppress awareness and likewise act as a weak analgesic

agent, (Miller et al., 2010). Most simultaneously administered drugs show syn-

ergetic effects, (Hendrickx et al., 2008). These interactions are very different to

distinguish without adequate sensors. Therefore often the desired plasma con-

centration is targeted for the control or modelling strategy, (Kennedy, 2013).

Developed interaction models of two or more drugs, response surface models,

account for synergetic, additive or antagonistic effects, (Minto et al., 2000).

As a natural consequence of the previously mentioned challenges, there are

legitimate safety concerns regarding stability, robustness and disturbance re-

jection with respect to control algorithms designed for anaesthesia, (Luginbühl

et al., 2006).

Nevertheless, Hemmerling et al. (2013) performed a clinical trial, where

anaesthesia, analgesia and muscle relaxation were maintained by automated

simultaneous infusion of propofol, remifentanil and rocuronium, and achieved

a better performance compared to manual control.

The way to the fully automated operation theatre is certainly a long way

to go, but the realisation of an autopilot for anaesthesia drug delivery is ap-

proaching and indeed achievable with a lot of joint research effort in the in-

terdisciplinary areas of sensor development, detailed mathematical modelling

and robust control design.
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A. MPC to mp-QP

A.1. MPC Problem Formulation

The model predictive controller (MPC) is formulated as follows, see also (8.1).

min
x,y,u

J = x′NPxN +
N−1

∑
k=1

x′kQxk +
N

∑
k=1
(yk − y

R
k )
′QR(yk − yRk )

+
M−1

∑
k=0

u′kRuk +
M−1

∑
k=0

∆u′kR1∆uk

s.t. xk+1 = Axk +Buk, A ∈ Rnx×nx , B ∈ Rnu×nx

yk = Cxk, C ∈ Rnx×ny

(A.1)

The MPC problem is formulated as multi-parameteric quadratic programming

(mp-QP) problem of the form:

min
U
J(θ) =

1

2
U ′HU + θ′FU +

1

2
θ′Y θ

s.t. GU ≤W +Eθ

(A.2)

Note: The last term is not a function of the optimisation variable U and can

therefore be neglected to find the optimal value in U.

Note: The indices in θ are assigned in the following order: θ = [x0, ut−1, y
m
t , y

R]

x0 state vector at beginning of the control horizon

ut−1 control input at previous time step

ym measured process output

yR constant reference point

with Q,P ∈ Rnx×nx , QR ∈ Rny×ny , R ∈ Rnu×nu

The states for the output horizon are given as a function of the states at the

beginning of the control horizon x0 and the inputs u.

xn = A
nx0 +

n−1

∑
k=0

An−1−kBuk, ∀n = 1, . . .N − 1 (A.3)
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To reformulate (A.1) as a multi-parametric problem all states are given in the

following matrix form as a function of the optimisation variables U and the

parameters θ in (A.4).

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

xN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0

u1

⋮

uM−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.4)

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0

A2 0

A3 0

⋮ ⋮

AN−2 0

⋯ ⋯

AN 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Ã∈RNnx×nθ

θ +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B 0 ⋯ 0 0

AB B ⋯ 0 0

A2B AB ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮

AM−1B AM−2A ⋯ AB B

⋯ ⋯ ⋯ ⋯

AM−1B AM−2A ⋯ AB B

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=B̃∈RNnx×Mnu

U (A.5)

The matrix 0 in Ã is ∈ R(nθ−nx)×nx . Here the number of tracked outputs is

equal to the number of outputs, in any other case ny is equal to the number

of tracked outputs. The control input is constant for all N>M, therefore the

last row in B̃ is repeated for all N>M, (Goodwin et al., 2005, p. 105).

A.2. Penalty Weights in the Objective Function

The penalty weights on the states x, control inputs u, reference tracking er-

ror (y − yR) and the step change in the input ∆u are added and described

consecutively.

States x

Q̃ = diag(Q, . . . ,Q,P ), ∈ RNnx×Nnx (A.6)
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min
U
J =X ′Q̃X

= (Ãθ + B̃U)′Q̃(Ãθ + B̃U)

= θ′Ã′Q̃Ãθ + θ′Ã′Q̃B̃U +U ′B̃′Q̃Ãθ +U ′B̃′Q̃B̃U

= θ′Ã′Q̃Ãθ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≠f(U)=const

+2θ′Ã′Q̃B̃U +U ′B̃′Q̃B̃U

= 2θ′Ã′Q̃B̃U +U ′B̃′Q̃B̃U

= U[B̃′Q̃B̃]U + θ[2Ã′Q̃B̃]U

(A.7)

Hx = 2B̃′Q̃B̃ (A.8)

Fx = 2Ã′Q̃B̃ (A.9)

Inputs u

R̃ = diag(R, . . . ,R), ∈ RMnu×Mnu (A.10)

min
U
J = U ′R̃U (A.11)

Hu = 2R̃ (A.12)

Reference tracking error (y − yR)

Q̃R = diag(QR, . . . ,QR), ∈ RNny×Nny (A.13)

C̃ = diag(C, . . . ,C),RNny×Mnu (A.14)

Y = C̃X (A.15)

Y ∗ ∶= Y − Y R
= C̃[Ãθ + B̃U] −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ 1

⋮ ⋮ ⋮

0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=K̃∈RN×nθ

θ (A.16)

Y ∗ = [C̃Ã − K̃]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=L̃

θ + C̃B̃
°
∶=M̃

U (A.17)
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Note: The index of 1 in K̃ corresponds to the index of the reference point yR

in the parameter vector θ.

min
U
J = (L̃θ + M̃)′Q̃R(L̃θ + M̃)

= (L̃θ + M̃)′Q̃R(L̃θ + M̃)

= θ′L̃′Q̃RL̃θ + θ′L̃′Q̃RM̃U +U ′M̃ ′Q̃RL̃θ +U ′M̃ ′Q̃RM̃U

= θ′L̃′Q̃RL̃θ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≠f(U)=const

+2θ′L̃′Q̃RM̃U +U ′M̃ ′Q̃RM̃U

= 2θ′L̃′Q̃RM̃U +U ′M̃ ′Q̃RM̃U

= U[M̃Q̃RM̃]U + θ[2L̃
′Q̃RM̃]U

(A.18)

Hy = 2[M̃Q̃RM̃] (A.19)

Fy = 2[L̃′Q̃RM̃] (A.20)

Input step change ∆u

The previous control action u−1 is added to the parameter vector in order to

respect the constraints on ∆u0 with ∆uk ∶= uk − uk−1.

θ = [x0, y
R, u−1]

′ (A.21)

Therefore an additional line is added to K̃ to account for u−1 in θ.

min
u
J =

M−1

∑
k=0

∆u′kR1,k∆uk (A.22)

R̃1 = diag(R1, . . . ,R1), ∈ RMnu×Mnu (A.23)

∆U = [∆u0 ∆u1 ⋯ ∆uM−1]
′

(A.24)
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One extra parameter is added to θ: u−1 to determine ∆u0 = u−1 − u0

θ = [. . . , u−1]

∆U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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⋮ ⋮ ⋮ ⋮ ⋮
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⎥
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⎦
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶= Õ

U (A.25)

The entry of 1 in Õ corresponds to the index of u−1 in the parameter vector

θ.

H∆u = Ñ
′R̃1Ñ (A.26)

F∆u = Ñ
′R̃1Õ (A.27)

Output Disturbance d

A steady-state target calculation is constructed to remove the effects of es-

timated output disturbances, (Muske and Badgwell, 2002; Pannocchia and

Bemporad, 2007). The output disturbance is defined as the difference be-

tween the measurement and the predicted process output and is assumed to

be constant for the entire output horizon.

xk+1 = Axk +Buk

yk = Cxk + dk, with dk = d0,∀k = 0, . . . ,N − 1

d0 = y
m
0 − y0

(A.28)

The process output at the beginning of the control and output horizon ym0 is

added to the parameter vector θ. Equation (A.15) is updated as follows:

Note: D ∶= (Y m
0 − Y0) (A.29)

Y = C̃X, C̃ ∈ RNny×Mnu (A.30)
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Y ∗ ∶= (Y − Y R
) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d

⋮

d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

°
∶=D

= (Y − Y R
) + (Y m

0 − Y0)

= (C̃[Ãθ + B̃U] − Y R
) +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ 1 0

⋮ ⋮ ⋮ ⋮

0 ⋯ 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶= Y m

0

θ −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C ⋯ 0

⋮ ⋮ ⋮

C ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶= Y0

θ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= C̃[Ãθ + B̃U] −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C ⋯ −1 1

⋮ ⋮ ⋮ ⋮

C ⋯ −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=K̃∈RN×nθ

θ

Y ∗ = [C̃Ã − K̃]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=L̃

θ + C̃B̃
°
∶=M̃

U

(A.31)

Hy = 2[M̃Q̃RM̃] (A.32)

Fy = 2[L̃′Q̃RM̃] (A.33)

A.3. Constraints

The generic form of the constraints is

GU ≤W +Eθ. (A.34)

The constraints on the states x, control inputs u, the output y and the step

change in the input ∆u are added and described consecutively.

Constraints on x

xmin ≤ x1, . . . xN ≤ xmax

xmax ≥ Ãθ + B̃

xmin ≤ Ãθ + B̃

(A.35)
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Gx =

⎡
⎢
⎢
⎢
⎢
⎣

B̃

−B̃

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Nnx]×Mnu (A.36)

Wx =

⎡
⎢
⎢
⎢
⎢
⎣

xmax

−xmin

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Nnx]×1 (A.37)

Ex =

⎡
⎢
⎢
⎢
⎢
⎣

−Ã

Ã

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Nnx]×[nx+ny] (A.38)

Constraints on u

umin ≤ u0, . . . , uM−1 ≤ umax

umax ≥ U

umin ≤ U

(A.39)

Gu =

⎡
⎢
⎢
⎢
⎢
⎣

I

−I

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Mnu]×Mnu (A.40)

Wu =

⎡
⎢
⎢
⎢
⎢
⎣

umax

−umin

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Mnu]×1 (A.41)

Eu =

⎡
⎢
⎢
⎢
⎢
⎣

0

0

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Mnu]×[nx+ny] (A.42)

Constraints on y

ymin ≤ y1, . . . , yN ≤ ymax

ymax ≥ C̃X = C̃[Ãθ + B̃U] = C̃Ãθ + C̃B̃U

ymin ≤ C̃X = C̃[Ãθ + B̃U] = C̃Ãθ + C̃B̃U

(A.43)

Gy =

⎡
⎢
⎢
⎢
⎢
⎣

C̃B̃

−C̃B̃

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Nny]×Mnu (A.44)

Wy =

⎡
⎢
⎢
⎢
⎢
⎣

ymax

−ymin

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Nny]×1 (A.45)

Ey =

⎡
⎢
⎢
⎢
⎢
⎣

−C̃Ã

C̃Ã

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Nny]×[nx+ny] (A.46)
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Constraints on ∆uk

∆umin ≤∆u0, . . . ,∆uM−1 ≤∆umax

∆umax ≥∆U

∆umin ≤∆U

(A.47)

G∆uk =

⎡
⎢
⎢
⎢
⎢
⎣

Ñ

−Ñ

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Mnu]×Mnu (A.48)

W∆uk =

⎡
⎢
⎢
⎢
⎢
⎣

∆umax

−∆umin

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Mnu]×1 (A.49)

E∆uk =

⎡
⎢
⎢
⎢
⎢
⎣

Õ

−Õ

⎤
⎥
⎥
⎥
⎥
⎦

, ∈ R[2Mnu]×[nx+ny] (A.50)

A.4. Formulation of the Multi-parametric QP

Problem

The optimisation function A.2 is now formulated as follows

H =Hx +Hy +H∆u

F = Fx + Fy + Fu +H∆u

(A.51)

with the constraints matrices

G = Gx +Gu +Gy +G∆u

W =Wx +Wu +Wy +W∆u

E = Ex +Eu +Ey +E∆u

(A.52)

and can be solved by applying the POP toolbox for MATLAB, (ParOS, 2004).



B. Explicit solution of the mp-MPC

For control design CD 1-CD 2 in Table 9.1 the parameters θ of the mp-QP

problem are defined as follows:

θ = [Ce,0 Cb,V RG,0 Ct,V RG,0 Cb,M,0 Ct,M,0 Cb,F,0 Ct,F,0 CI,−1 CRe ],

(B.1)

where the subscript 0 denotes the start of the control horizon and the sub-

script −1 the previous time point t = 0 − 1. The optimisation variables, for a

control horizon M = 3, are given by

U = [CI,0 CI,1 CI,2]. (B.2)

The solution of the mp-QP problem in (8.1) results in nCR=650 such critical

regions. The function evaluation to obtain the inhaled anesthetic concentra-

tion which is applied, i.e. CI,0, for the initial critical regions passed and a set

point of BISR = 40 are summarised in (B.3), see Figures 9.6, 9.13. All numbers

are rounded to the third decimal place.

CR1,CR9 ∶ CI,0 = CI,−1 + 0.5

CR178,CR215,CR293 ∶ CI,0 = 4

CR211 ∶ CI,0 = −13.325Ce,0 − 0.557Cb,V RG,0 − 0.364Ct,V RG,0

− 0.111Cb,M,0 − 0.075Ct,M,0 − 0.003Cb,F,0

− 0.002Ct,F,0 + 0.224CI,−1 + 15.441CR
e

(B.3)

The critical region CR1 in the 9 dimensional parameter space, θ (B.1), is

given by the polyhedron in (B.4). All numbers are rounded to the third deci-

mal place.
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0.001Cb,V RG,0 + 0.007Cb,M,0 +Ct,M,0 ≤ 9.10

0.001Cb,V RG,0 + 0.009Cb,M,0 +Ct,M,0 + 0.001CI,−1 ≤ 9.12

0.002Cb,V RG,0 + 0.001Ct,V RG,0 + 0.009Cb,M,0 +Ct,M,0 + 0.002CI,−1 ≤ 9.13

0.002Cb,V RG,0 + 0.002Ct,V RG,0 + 0.009Cb,M,0 +Ct,M,0 + 0.004CI,−1 ≤ 9.14

0.003Cb,V RG,0 + 0.003Ct,V RG,0 + 0.009Cb,M,0 +Ct,M,0 + 0.005CI,−1 ≤ 9.14

0.003Cb,V RG,0 + 0.004Ct,V RG,0 + 0.009Cb,M,0 +Ct,M,0 + 0.006CI,−1 ≤ 9.15

0.003Cb,V RG,0 + 0.004Ct,V RG,0 + 0.001Ct,M,0 + 0.011Cb,F,0 +Ct,F,0 + 0.007CI,−1

≤ 10.22

Ce,0 + 0.027Cb,V RG,0 + 0.006Ct,V RG,0 + 0.006Cb,M,0 + 0.001Ct,M,0 + 0.021CI,−1

≤ 2.329

Ce,0 + 0.041Cb,V RG,0 + 0.019Ct,V RG,0 + 0.008Cb,M,0 + 0.004Ct,M,0

+ 0.045CI,−1 ≤ 2.453

Ce,0 + 0.062Cb,V RG,0 + 0.077Ct,V RG,0 + 0.011Cb,M,0 + 0.016Ct,M,0 + 0.137CI,−1

≤ 2.824

0.801Ce,0 + 0.042Cb,V RG,0 + 0.039Ct,V RG,0 + 0.008Cb,M,0 + 0.008Ct,M,0

+ 0.094CI,−1 −C
R
e ≤ −0.108

0.767Ce,0 + 0.044Cb,V RG,0 + 0.048Ct,V RG,0 + 0.008Cb,M,0 + 0.010Ct,M,0

+ 0.121CI,−1 −C
R
e ≤ −0.156

−Ce,0 ≤ 0

CR
e ≤ 2.2

−Cb,V RG,0 ≤ 0

Cb,V RG,0 ≤ 10.717

−Ct,V RG,0 ≤ 0

Ct,V RG,0 ≤ 17.617

−Cb,M,0 ≤ 0

Cb,M,0 ≤ 5.559

−Ct,M,0 ≤ 0

Ct,M,0 ≤ 9.076

−Cb,F,0 ≤ 0

Cb,F,0 ≤ 5.207

−Ct,F,0 ≤ 0

−CI,−1 ≤ 0

CI,−1 ≤ 2.50

(B.4)



C. Disturbance Rejection during

Maintenance of Anaesthesia

During maintenance of anesthesia the aim is stable and constant reference

tracking of the target BIS, BISR, set by the anesthetist. The ability of the

control strategies CD 2 in Chapter 9 and ĈD in Chapter 10 to reject typical

disturbances on the BIS occurring during the course of surgery is presented

in this appendix. These disturbance profiles were published by Dumont et al.

(2009) and Struys et al. (2004) and are shown in Figures C.1 - C.2.
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time [min]

∆
B

IS
[-

]

Figure C.1.: Disturbance profile (Dumont et al., 2009; Hahn et al., 2012): A
arousal reflex due to the first surgical incision; B offset slowly
decreases but settles at an onset of 10% due to continuous normal
surgical stimulations; C withdrawal of stimulations during skin-
closing.
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Figure C.2.: Disturbance profile (Struys et al., 2004): A laryn-
goscopy/intubation; B surgical incision followed by no surgical
stimulation; C abrupt stimulus after a period of low stimulation;
D onset of a continuous normal surgical stimulation; E, F, and
G simulate short-lasting, larger stimulations; H withdrawal of
stimulation during closing.

The tuning parameters of the on-line parameter estimator are summarised

in Table C.1. To enable a faster adjustment of the controller’s dynamics to

the measurement ∆t and t∆ were decreased.

Table C.1.: On-line parameter estimation tuning parameters and design.

Parameter Value Unit

ton 1 min Minimum time after anesthesia induction

to trigger parameter estimation.

∆BIS 2 % Error to initiate a parameter estimation.

∆t 1 min Time since the last update of the Hill

equation.

t∆ 30 sec Past measurements included in the param-

eter estimation problem.

∆C50 20 % vol % Deviation of old and newly estimated

value of C50.

The simulated BIS, optimal control input, CI , and estimated C50 for CD 2

and ĈD and the nominal patient Pn during maintenance of anesthesia under

disturbances in Figures C.1 - C.2 are shown in Figures C.3 - C.8.
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Figure C.3.: BIS for disturbance profile in Figure C.1.

0 20 40 60
0

1

2

3

4

time [min]

C
I

[v
ol

%
]

Pn (CD 2)

Pn (ĈD)

Figure C.4.: CI for disturbance profile in Figure C.1.
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Figure C.5.: Nominal and estimated C50 for Pn for disturbance profile Fig-
ure C.1.
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Figure C.6.: BIS for disturbance profile in Figure C.2.
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Figure C.7.: CI for disturbance profile in Figure C.2.
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Figure C.8.: Nominal and estimated C50 for Pn for disturbance profile in Fig-
ure C.2.

Figure C.3 and Figure C.6 show an improved tracking of the BIS for control

design ĈD compared to the nominal controller CD 2 under external distur-

bances. The control input, CI , is shown in Figure C.4 and Figure C.7. The

varying CI is initiated by estimated value of C50 in Figure C.5 and Figure C.8

and an updated set point.

ĈD shows a better performance for the rejection of both disturbance profiles

compared to the nominal controller, CD 2. For a slowly changing disturbance

ĈD is able to reject the disturbance successfully and steer the system to
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the target reference value, shown in Figure C.3 and Figure C.6. After the

sequences of different disturbances the estimated value of C50 is converging

to its nominal value Figure C.5 and Figure C.8, which further affirms the

accuracy of the on-line parameter estimator.
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C.1. Concluding Remarks

The control strategy ĈD combines mp-MPC and on-line parameter estimation

of C50 to address control of anesthesia under uncertainty.

The control strategy was evaluated in this appendix for disturbance rejection

of commonly occurring disturbances during the course of surgery. Here, the on-

line estimation of C50 showed promising results for slowly varying disturbances.

However, further investigation is needed to guarantee safe and robust control

also during fast acting disturbances.



D. Application of Robust mp-MPC

for LPV systems to Anaesthesia

The work presented in this appendix was submitted for publication in Chang

et al. (2013b). The solution of a multi-parametric model predictive control

(mp-MPC) problem for linear time-invariant (LTI) systems is extended to

discrete-time linear parameter-varying (LPV) systems, (Chang et al., 2013a).

The method presented in Chang et al. (2013a) and in Chang et al. (2013b)

yields a controller that takes parameter changes into account. This work

addresses a robust performance of mp-MPC applied to LPV systems. This

method can be implemented conveniently as an add-on to the mp-MPC design.

No modification of the established mp-MPC algorithm for LTI systems is

required and the simple computational steps can be implemented on-line.

The presented approach for LPV systems is applied to the biomedical ap-

plication of anaesthesia control. The control objective during anaesthesia is to

provide adequate hypnosis for the individual patient undergoing surgery. This

objective is obtained by continuous intravenous infusion of the anaesthetic

agent propofol, while the hypnotic depth is monitored by the Bispectral Index

(BIS). In the presented example for the control of intravenous anaesthesia, the

time varying system matrix mimics an external disturbance on the output.

D.1. Intravenous Anaesthesia Model

The first step in order to derive a model predictive controller is the choice of

an adequate model of the system. The depth of anaesthesia is monitored by

the Bispectral Index (BIS) calculated as a function of the patient’s electroen-

cephalogram. The objective of the model is to link the BIS to the propofol

infusion. The model predictive control strategy optimises the optimal propo-

fol infusion in order to obtain the desired BIS for a safe depth of anaesthesia.

The equation most commonly used to calculate the BIS is the Hill equation:

BIS = BIS0 + (BISmax −BIS0)
(xe)

γ

(C50)
γ + (xe)γ

, (D.1)
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here C50 is the concentration triggering 50% of the total effect and γ the slope

of the Hill equation. BIS0 = 100 describes a fully awake patient at zero drug

concentration and BISmax describes the maximum possible effect, BISmax = 0,

(Schnider et al., 1999). xe denotes the effect-site concentration, which is mim-

icking the delay of the drug effect and determined as follows:

dxe
dt
= ke0(x1 − xe), (D.2)

where the rate constant ke0 describes the time delay between plasma x1 and

effect-site concentration xe. The link of the intravenous propofol infusion to

the plasma concentration x1 is described by a commonly used and validated

pharmacokinetic model for propofol distribution. The individualised model

for the specific patient’s characteristics is adapted from Schüttler and Ihmsen

(2000).

For the presented case study the three compartmental pharmacokinetic

model in Schüttler and Ihmsen (2000) for propofol distribution (PK3) was

reduced to a two compartmental pharmacokinetic model (PK2).

dx1

dt
= −(k01 + k12)x1 + k21x2 +

m

V1
u,

dx2

dt
= k12x1 − k21x2,

(D.3)

where the concentration in the plasma is denoted with x1 and the concen-

tration in the peripheral tissue with x2. The metabolism of propofol in the

plasma is denoted by k10 and the distribution from plasma 1 to peripheral

tissue 2 and vice versa is denoted by k12 and k21, respectively. The volume

of the plasma compartment is denoted by V1 and m is the body weight of the

patient, (Schüttler and Ihmsen, 2000). The parameters k10, k12 and k21 (D.3)

were estimated in order to fit the dynamics of the PK3 model by Schüttler

and Ihmsen (2000). All values of the here presented model for a standard

male patient and the estimated parameter values of the PK2 and the original

parameter values of the PK3 model are summarised in Table D.1.
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Table D.1.: Parameter list of the intravenous anaesthesia model for propofol.

Parameter PK2 PK3 Units Ref.

V1 8840 mL

m 68 kg

age 30 years

k10 0.232 0.162 min−1 Schüttler and Ihmsen (2000)

k12 0.282 0.246 min−1 Schüttler and Ihmsen (2000)

k21 0.041 0.053 min−1 Schüttler and Ihmsen (2000)

ke0 0.456 min−1 Schnider et al. (1999)

γ 3.19 - Schnider et al. (1999)

C50 1.68 µg mL Schnider et al. (1999)

BIS0 100 - Schnider et al. (1999)

BISmax 0 - Schnider et al. (1999)

The output of interest is the effect site concentration xe (D.2), as it is directly

linked to the hypnotic effect and the BIS (D.1); the effect site concentration xe

of the original PK3 model and the reduced PK2 model is shown in Figure D.1.
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Figure D.1.: Effect site concentration xe of the PK3 and PK2 used in this
study. The input profile of u for the shown simulation is u= 50µg
min−1 for 0 min ≤ t ≤ 60 min and u= 0 for 60 min< t≤80 min.
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Figure D.2.: The error of Figure D.1 (i.e. PK3 − PK2) in percentage.
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The continuous state space model for propofol distribution and effect, which

is described by (D.2) and (D.3), is formulated as follows:

ẋ = Ax + Bu

y = Cx,
(D.4)

where the matrices of the continuous state space system are:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(k10 + k12) k21 0

k12 −k21 0

ke0 0 −ke0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B = [
m

V1
0 0]

′
, C = [0 0 1] .

The states of the system x are x = [x1 x2 xe], where x1, the concentration

of the plasma compartment 1, x2, is the concentration of the peripheral com-

partment 2 and xe is the effect site concentration. All concentrations are given

in [µg mL−1]. The propofol infusion u is given in [µg min−1].

In order to bypass for the non-linearity of (D.1), the target effect site con-

centration xe, which leads to the desired BIS, is calculated by the inverse Hill

equation (D.5) for the control strategy described in the next section,

xe = C50 (
BIS −BIS0

BISmax −BIS
)

1/γ
. (D.5)

D.2. Multi-parametric Model Predictive Controller

for the Anaesthesia LTI System

In this section the explicit mp-MPC controller to obtain the desired BIS by

targeting the effect-site concentration xe is derived. The control objective is

to achieve a fast onset of anaesthesia and maintain a stable hypnotic level,

indicated by BIS = 50. The inverse Hill equation (D.5) with the parameters of

the patient in this case study, Table D.1, gives xe = 1.68 [µg mL−1] for BIS = 50

as an equivalent set point (yR).

In order to derive the mp-MPC the continuous-time model (D.4) is first

discretised with sampling time ts = 30 seconds. The resulting discrete time

state space representation is formulated as follows:

x(t + 1) = Âx(t) +Bu(t),

y(t) = Cx(t),
(D.6)
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Â =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.7745 0.0179 0

0.1231 0.981 0

0.179 0.001978 0.7961

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.003493

0.000255

0.0003847

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and C = [0 0 1] ,

where Â denotes the time invariant discrete system matrix.

This linear MPC reference tracking problem for system (D.6) is formulated

as a constrained optimisation problem with constraints on the states x, out-

put y and input u as follows:

min
U
J =min

U
(x′t+NPxt+N +

N−1

∑
k=0

u′t+kRut+k +
N

∑
k=1
(yt+k − yR)′Qy(yt+k − yR))

s.t.

xt+k+1 = Âxt+k +But+k, k = 0, . . . ,N − 1,

yt+k = Cxt+k, k = 1, . . . ,N,

[0 0 0]′ ≤ xt+k ≤ [6 45 6]′, k = 1, . . . ,N,

0 ≤ yt+k ≤ 6, k = 1, . . . ,N,

0 ≤ ut+k ≤ 200, k = 0,1, . . . ,N − 1,

(D.7)

where U = {u(t), u(t+1), . . . , u(t+N −1)}, N = 6 (3 min), Qy = 106, R = 1, and

P the solution of the algebraic Riccati equation, P = Â′PÂ−(Â′PB)(B′PB+
I)−1(Â′PB)′.

The constrained optimisation problem (D.7) is reformulated as an mp-QP

problem (8.2). The optimal control law u is obtained as by affine functions

of the parameters, the system states and the set-point (yR), by the POP

MATLAB toolbox, (ParOS, 2004). The solution of the mp-QP problem results

in 108 polyhedral critical regions, (8.3).
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Figure D.3.: Closed loop response for the reference tracking linear MPC of the
LTI system as a solution of the mp-QP in (D.7).

The closed loop response for the reference tracking linear MPC of the LTI

system is shown in Figure D.3. The optimal control trajectory for u is cal-

culated by affine functions of the system states as a solution of the mp-QP

(D.7) from initial condition x(0) = [x1(0) x2(0) xe(0)]
′ = [0 0 0]′ and set-

point BIS = 50, Figure D.3(c)). The control objective of a fast induction, low

overshoot and stable maintenance of a BIS = 50 is successfully achieved by a

fast regulation of the effect site-concentration xe to the calculated set-point

xe,SP = 1.68 [µg mL−1], Figure D.3(a) and Figure D.3(b)), respectively.

D.3. LPV for Disturbance Rejection During

Anaesthesia

During anaesthesia surgical stimulation might act as an external disturbance

on the controlled variable, the BIS. For this case study the disturbance is

modelled by a slowly time-varying matrix A(t) of the system (D.6), where

element A1,1(t) is given as a function of time, i.e.

A(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1(t) 0.0179 0

0.1231 0.981 0

0.179 0.001978 0.7961

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (D.8)

The slow change of the system parameter A1,1 of up to 50% in magnitude
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is given by as follows

A1,1(t) = Â1,1 (1 − 0.5 sin(
πt

30
)) , 15 ≤ t ≤ 45

A1,1(t) = Â1,1, t < 15, t > 45. (D.9)

The change of the value of A1,1 in matrix A(t) is shown in Figure D.4.
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Figure D.4.: Change of A1,1(t) of the LPV system.

The emerging disturbance profile of the BIS which results from (D.9) is

shown in Figure D.5(a). The effect of the variation on the states x is shown

in Figure D.5(b) and D.5(c).
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Figure D.5.: Disturbance profile of BIS and effect on system states x for the
given variation in A1,1(t) (D.9). The system is initialised at
steady state for a constant propofol infusion of u= 50µg min−1.

The error compensation scheme for LPV systems presented in Chang et al.
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(2013b) is applied to assure safe hypnosis, indicated by a BIS = 50, for this

LPV system.
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Figure D.6.: Closed loop response of the mp-MPC for LTI systems (LTI) and
the mp-MPC for LPV systems (LPV) for the LPV system (D.6)
with A(t) (D.8).

Figure D.6 shows the closed loop response for LPV system with time-varying

matrix A(t) for the LTI and LPV mp-MPC. Analogously to the simulation

shown Figure D.3, all states are initialised with zero and the set-point is

BIS = 50. The proposed error compensation mp-MPC is able to cope with

the LPV system and maintains the system closer to the set-points compared

to the LTI mp-MPC. Overall the proposed method shows promising results

for a 50% reduction in A1,1. The application of the mp-MPC for LPV im-

proved the control performance by approximately 60% compared to the LTI

mp-MPC.

D.4. Concluding Remarks

The LPV mp-MCP framework was tested for a case study for depth of anaes-

thesia control by intravenous anaesthesia, where the time variation in the

system matrix A described a disturbance due to surgical simulation. The

proposed LPV mp-MPC framework showed promising results and steered the

system closer to the target set-points compared to the LTI based mp-MPC.

The LPV method shows a 60% improvement compared to the mp-MPC for

LTI systems.

The presented LPV mp-MPC framework will be further tested in our future
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work for a more complex model of anaesthesia, including a wider range of

disturbances modelled as variations in the system matrix A that are known to

occur during surgery.
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