1,553 research outputs found

    Explicit constructions of RIP matrices and related problems

    Get PDF
    We give a new explicit construction of n×Nn\times N matrices satisfying the Restricted Isometry Property (RIP). Namely, for some c>0, large N and any n satisfying N^{1-c} < n < N, we construct RIP matrices of order k^{1/2+c}. This overcomes the natural barrier k=O(n^{1/2}) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredients in our proof are new estimates for sumsets in product sets and for exponential sums with the products of sets possessing special additive structure. We also give a construction of sets of n complex numbers whose k-th moments are uniformly small for 1\le k\le N (Turan's power sum problem), which improves upon known explicit constructions when (\log N)^{1+o(1)} \le n\le (\log N)^{4+o(1)}. This latter construction produces elementary explicit examples of n by N matrices that satisfy RIP and whose columns constitute a new spherical code; for those problems the parameters closely match those of existing constructions in the range (\log N)^{1+o(1)} \le n\le (\log N)^{5/2+o(1)}.Comment: v3. Minor correction

    Computational Complexity of Certifying Restricted Isometry Property

    Get PDF
    Given a matrix AA with nn rows, a number k<nk<n, and 0<δ<10<\delta < 1, AA is (k,δ)(k,\delta)-RIP (Restricted Isometry Property) if, for any vector x∈Rnx \in \mathbb{R}^n, with at most kk non-zero co-ordinates, (1−δ)∥x∥2≤∥Ax∥2≤(1+δ)∥x∥2(1-\delta) \|x\|_2 \leq \|A x\|_2 \leq (1+\delta)\|x\|_2 In many applications, such as compressed sensing and sparse recovery, it is desirable to construct RIP matrices with a large kk and a small δ\delta. Given the efficacy of random constructions in generating useful RIP matrices, the problem of certifying the RIP parameters of a matrix has become important. In this paper, we prove that it is hard to approximate the RIP parameters of a matrix assuming the Small-Set-Expansion-Hypothesis. Specifically, we prove that for any arbitrarily large constant C>0C>0 and any arbitrarily small constant 0<δ<10<\delta<1, there exists some kk such that given a matrix MM, it is SSE-Hard to distinguish the following two cases: - (Highly RIP) MM is (k,δ)(k,\delta)-RIP. - (Far away from RIP) MM is not (k/C,1−δ)(k/C, 1-\delta)-RIP. Most of the previous results on the topic of hardness of RIP certification only hold for certification when δ=o(1)\delta=o(1). In practice, it is of interest to understand the complexity of certifying a matrix with δ\delta being close to 2−1\sqrt{2}-1, as it suffices for many real applications to have matrices with δ=2−1\delta = \sqrt{2}-1. Our hardness result holds for any constant δ\delta. Specifically, our result proves that even if δ\delta is indeed very small, i.e. the matrix is in fact \emph{strongly RIP}, certifying that the matrix exhibits \emph{weak RIP} itself is SSE-Hard. In order to prove the hardness result, we prove a variant of the Cheeger's Inequality for sparse vectors
    • …
    corecore