8,190 research outputs found

    Applications of Stochastic Control to Portfolio Selection Problems

    Get PDF
    Portfolio selection is an important problem both in academia and in practice. Due to its significance, it has received great attention and facilitated a large amount of research. This thesis is devoted to structuring optimal portfolios using different criteria. Participating contracts are popular insurance policies, in which the payoff to a policyholder is linked to the performance of a portfolio managed by the insurer. In Chapter 2, we consider the portfolio selection problem of an insurer that offers participating contracts and has an S-shaped utility function. Applying the martingale approach, closed-form solutions are obtained. The resulting optimal strategies are compared with two portfolio insurance hedging strategies, e.g. Constant Proportion Portfolio Insurance strategy and Option Based Portfolio Insurance strategy. We also study numerical solutions of the portfolio selection problem with constraints on the portfolio weights. In Chapter 3, we consider the portfolio selection problem of maximizing a performance measure in a continuous-time diffusion model. The performance measure is the ratio of the overperformance to the underperformance of a portfolio relative to a benchmark. Following a strategy from fractional programming, we analyze the problem by solving a family of related problems, where the objective functions are the numerator of the original problem minus the denominator multiplied by a penalty parameter. These auxiliary problems can be solved using the martingale method for stochastic control. The existence of a solution is discussed in a general setting and explicit solutions are derived when both the reward and the penalty functions are power functions. In Chapter 4, we consider the mean-risk portfolio selection problem of optimizing the expectile risk measure in a continuous-time diffusion model. Due to the lack of an explicit form for expectiles and the close relationship with the Omega measure, we propose an alternative optimization problem with the Omega measure as an objective and show the equivalence between the two problems. After showing the solution for the mean-expectile problem is not attainable but the value function is finite, we modify the problem with an upper bound constraint imposed on the terminal wealth and obtain the solution via the Lagrangian duality method and pointwise optimization technique. The global expectile minimizing portfolio and efficient frontier are also considered in our analysis. In Chapter 5, we consider the utility-based portfolio selection problem in a continuous-time setting. We assume the market price of risk depends on a stochastic factor that satisfies an affine-form, square-root, Markovian model. This financial market framework includes the classical geometric Brownian motion, the constant elasticity of variance (CEV) model and the Heston's model as special cases. Adopting the Backward Stochastic Differential Equation (BSDE) approach, we obtain the closed-form solutions for power, logarithm, or exponential utility functions, respectively. Concluding remarks and several potential topics for further research are presented in Chapter 6

    Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure

    Full text link
    The discrete-time mean-variance portfolio selection formulation, a representative of general dynamic mean-risk portfolio selection problems, does not satisfy time consistency in efficiency (TCIE) in general, i.e., a truncated pre-committed efficient policy may become inefficient when considering the corresponding truncated problem, thus stimulating investors' irrational investment behavior. We investigate analytically effects of portfolio constraints on time consistency of efficiency for convex cone constrained markets. More specifically, we derive the semi-analytical expressions for the pre-committed efficient mean-variance policy and the minimum-variance signed supermartingale measure (VSSM) and reveal their close relationship. Our analysis shows that the pre-committed discrete-time efficient mean-variance policy satisfies TCIE if and only if the conditional expectation of VSSM's density (with respect to the original probability measure) is nonnegative, or once the conditional expectation becomes negative, it remains at the same negative value until the terminal time. Our findings indicate that the property of time consistency in efficiency only depends on the basic market setting, including portfolio constraints, and this fact motivates us to establish a general solution framework in constructing TCIE dynamic portfolio selection problem formulations by introducing suitable portfolio constraints

    Continuous time mean-variance portfolio selection with nonlinear wealth equations and random coefficients

    Full text link
    This paper concerns the continuous time mean-variance portfolio selection problem with a special nonlinear wealth equation. This nonlinear wealth equation has nonsmooth random coefficients and the dual method developed in [7] does not work. To apply the completion of squares technique, we introduce two Riccati equations to cope with the positive and negative part of the wealth process separately. We obtain the efficient portfolio strategy and efficient frontier for this problem. Finally, we find the appropriate sub-derivative claimed in [7] using convex duality method.Comment: arXiv admin note: text overlap with arXiv:1606.0548

    Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters

    Full text link
    This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations

    Continuous-time mean-variance efficiency: the 80% rule

    Full text link
    This paper studies a continuous-time market where an agent, having specified an investment horizon and a targeted terminal mean return, seeks to minimize the variance of the return. The optimal portfolio of such a problem is called mean-variance efficient \`{a} la Markowitz. It is shown that, when the market coefficients are deterministic functions of time, a mean-variance efficient portfolio realizes the (discounted) targeted return on or before the terminal date with a probability greater than 0.8072. This number is universal irrespective of the market parameters, the targeted return and the length of the investment horizon.Comment: Published at http://dx.doi.org/10.1214/105051606000000349 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Efficient Frontier for Robust Higher-order Moment Portfolio Selection

    Get PDF
    This article proposes a non-parametric portfolio selection criterion for the static asset allocation problem in a robust higher-moment framework. Adopting the Shortage Function approach, we generalize the multi-objective optimization technique in a four-dimensional space using L-moments, and focus on various illustrations of a four-dimensional set of the first four L-moment primal efficient portfolios. our empirical findings, using a large European stock database, mainly rediscover the earlier works by Jean (1973) and Ingersoll (1975), regarding the shape of the extended higher-order moment efficient frontier, and confirm the seminal prediction by Levy and Markowitz (1979) about the accuracy of the mean-variance criterion.Efficient frontier, portfolio selection, robust higher L-moments, shortage function, goal attainment application.
    • ā€¦
    corecore