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Abstract

Portfolio selection is an important problem both in academia and in practice. Due to
its significance, it has received great attention and facilitated a large amount of research.
This thesis is devoted to structuring optimal portfolios using different criteria.

Participating contracts are popular insurance policies, in which the payoff to a policy-
holder is linked to the performance of a portfolio managed by the insurer. In Chapter 2,
we consider the portfolio selection problem of an insurer that offers participating contracts
and has an S-shaped utility function. Applying the martingale approach, closed-form so-
lutions are obtained. The resulting optimal strategies are compared with two portfolio
insurance hedging strategies, e.g. Constant Proportion Portfolio Insurance strategy and
Option Based Portfolio Insurance strategy. We also study numerical solutions of the port-
folio selection problem with constraints on the portfolio weights.

In Chapter 3, we consider the portfolio selection problem of maximizing a performance
measure in a continuous-time diffusion model. The performance measure is the ratio of the
overperformance to the underperformance of a portfolio relative to a benchmark. Following
a strategy from fractional programming, we analyze the problem by solving a family of
related problems, where the objective functions are the numerator of the original problem
minus the denominator multiplied by a penalty parameter. These auxiliary problems can
be solved using the martingale method for stochastic control. The existence of a solution
is discussed in a general setting and explicit solutions are derived when both the reward
and the penalty functions are power functions.

In Chapter 4, we consider the mean-risk portfolio selection problem of optimizing the
expectile risk measure in a continuous-time diffusion model. Due to the lack of an explicit
form for expectiles and the close relationship with the Omega measure, we propose an
alternative optimization problem with the Omega measure as an objective and show the
equivalence between the two problems. After showing the solution for the mean-expectile
problem is not attainable but the value function is finite, we modify the problem with an
upper bound constraint imposed on the terminal wealth and obtain the solution via the
Lagrangian duality method and pointwise optimization technique. The global expectile
minimizing portfolio and efficient frontier are also considered in our analysis.

In Chapter 5, we consider the utility-based portfolio selection problem in a continuous-
time setting. We assume the market price of risk depends on a stochastic factor that
satisfies an affine-form, square-root, Markovian model. This financial market framework
includes the classical geometric Brownian motion, the constant elasticity of variance (CEV)
model and the Heston’s model as special cases. Adopting the Backward Stochastic Differen-
tial Equation (BSDE) approach, we obtain the closed-form solutions for power, logarithm,
or exponential utility functions, respectively.

Concluding remarks and several potential topics for further research are presented in
Chapter 6.
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Chapter 1

Introduction

1.1 Background

Portfolio selection is an important problem for market participants. Facing various kinds
of risk, the participants, based on their preferences, construct the portfolio so as to meet
their needs. To be mathematically precise, the portfolio selection problem is formulated as
an optimization problem in most of research literature and the decision marker’s preference
is reflected by the objective function in the optimization problem. Due to the great im-
portance of portfolio selection, it has received significant attention and facilitated a great
amount of research.

Portfolio selection problems can be roughly categorized into two classes. The first cat-
egory is the mean-risk model. Ever since the classical mean-variance model was proposed
by Markowitz (1952), a large amount of research has been conducted to investigate the
property of the proposed mean-variance strategy and extend the model to a multi-period
framework or continuous-time framework. In addition, due to the criticism on the vari-
ance as a risk measure, incorporation of an alternative risk measure or another measure of
performance into the model has been discussed in the literature as to determine the port-
folio by minimizing the risk measure or maximizing the performance measure. Examples
of risk measure include Value at Risk (VaR) and Conditional Value-at-Risk (CVaR); see
Alexander and Baptista (2002), Rockafellar and Uryasev (2000) etc. The second category
is based on a utility objective function. The well-known Merton’s portfolio problem in Mer-
ton (1969) followed this direction and adopted a power-form utility function to structure
both the dynamic trading strategy and consumption strategy by maximizing the expected
utility. Furthermore, other than the power utility function, both the exponential utility
function and log utility function are widely used in the literature. The choice of utility
function reveals the different preference of the investors toward gains and losses.
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1.2 Methods for Portfolio Selection Problems

The primary goal of solving the portfolio selection problem is to characterize the value
function, i.e. the optimal value of the objective function, and an optimal trading strategy
that leads to it. In the literature, there are three methods that are commonly used,
namely, the Hamilton-Jacobi-Bellman (HJB) Approach, the Martingale Approach and the
Backward Differential Stochastic Equation (BSDE) Approach. We briefly review these
methods since they all are utilized in this thesis.

1.2.1 Hamilton-Jacobi-Bellman Approach

A classical and powerful tool is by using the Dynamic Programming Principle, which
typically yields a partial differential equation or an ordinary differential equation. Both
equations are referred to as the HJB equation. The derivation of an HJB equation is
normally heuristic and it relies on several assumptions such as the smoothness of the
unknown value function. The basic idea of the method is to consider a family of optimal
control problems with different initial times and states so as to establish the relationships
among those problems via the HJB equation. If the HJB equation is solvable, assuming the
smoothness of the solution, one can show that the solution to the HJB equation is indeed the
value function. Although this verification procedure is somewhat straightforward by Itô’s
formula, the reliance on the smoothness assumption of the solution to the HJB equation
is critical.

Note that the lack of smoothness assumption is common in the literature depending
on the problem formulation. However, the theory of viscosity solutions, which weakens
the smoothness assumption, can be applied. The equivalence between the value function
and the viscosity solution to the HJB equation can be proved. References regarding the
viscosity solution can include Crandall et al. (1992), etc.

However, in order to capture the complexity of the actual financial market, the under-
lying financial market model becomes complicated. In this case, the closed-form solution
to the HJB equation, either a smooth one or a solution in viscosity sense, rarely exists.
Therefore, resorting to a numerical method is the only option. Numerical methods for the
HJB equation can be found in Forsyth and Labahn (2007).

To be specific, for instance, suppose an investor considers the following classical ex-
pected utility maximization portfolio selection problem:

sup
π∈C

E[U(Xπ
T )].

where π is a stochastic process defining a trading strategy, Xπ
T is the corresponding terminal

wealth and C is the feasible set depending on the problem formulation. The dynamic of
wealth process is specified as follows:

dXπ
t = b(Xπ

t , πt)dt+ σ(Xπ
t , πt)dWt

2



where W := {Wt}t is one dimensional Brownian motion. The associated HJB adopting
the Dynamic Programming Principle is given in the following form:−vt − sup

a∈A

[
b(x, a)vx +

1

2
σ2(x, a)vxx

]
= 0, ∀(t, x) ∈ [0, T )× R,

v(T, x) = U(x).

where A is the set that the trading strategy takes values in. Notice that we only take the
finite time horizon formulation and one dimensional Brownian motion as an example. The
infinite time horizon case will result in an ordinary differential equation instead, which is
beyond the scope of this thesis. In addition, we omit several regularity conditions here for
the purpose of presentation; details can be found in Chapter 3 of Pham (2009) or Chapter
4 of Yong and Zhou (1999).

1.2.2 Martingale Approach

Another useful tool for the portfolio selection problem is the martingale approach. This
approach is widely used in the literature on contingent claims. It relies on Girsanov’s
Theorem to change processes into martingales and the Martingale Representation Theorem
to create a replicating strategy for each claim in a complete market. Using the martingale
approach, we are able to transform the original problem into a static one in which we find
the optimal attainable payoff and then create a trading strategy to replicate the optimal
payoff.

The difference between the HJB approach and the martingale approach is that the
former method characterizes the value function with an HJB equation and then obtains
the optimal trading strategy. Instead, the martingale approach solves an optimal attainable
payoff and then constructs a trading strategy that leads to the optimal payoff. In a case
where the objective function is not smooth, the martingale approach has its advantages
since it is most likely that the value function will not be smooth. Although the theory of
viscosity solution can be applied in the HJB approach, presumably it it hardly to obtain
a closed-form solution. However, the martingale approach is working to our advantage by
providing an alternative way to characterize the optimal attainable payoff, through which
we can obtain an optimal strategy.

To be specific, for example, suppose an agent considers the following classical expected
utility maximization portfolio selection problem:

sup
π∈C1

E[U(Ψ(Xπ
T ))],

where we recall that π is a stochastic process defining a trading strategy, Xπ
T is the corre-

sponding terminal wealth and C1 is the feasible set depending on the formulation. Mean-
while, Ψ is a function that presents the payoff to the agent. Notice that in a case where Ψ is

3



a piecewise linear function, the objective function U(Ψ(x)) is not smooth. The martingale
approach proceeds to solve the following problem first:

sup
Z∈C2

E [U (Ψ(Z))] ,

where Z is a random variable and C2 denotes a set of random variables reflecting the
relevant constraints imposed on Z. Suppose the optimal Z∗ exists. Then the next step is
to structure π∗ such that Xπ∗

T = Z∗ a.s. where Girsanov’s Theorem and the Martingale
Representation Theorem play a critical role. The remaining step is to ensure the existence
of the optimal Z∗, in which the Lagrangian duality method and pointwise optimization
technique can be applied. For presentation purpose, we also ignore several regularity
assumptions here. Details on martingale method can be found in Karatzas and Shreve
(1998), where the objective function U(x) only considers the utility from the wealth. The
reader can also refer to Carpenter (2000), He and Kou (2018) and Lin et al. (2017) for
a non-smooth objective function U(Ψ(x)), where the utility comes from decision marker’s
payoff that might be not smooth.

1.2.3 Backward Stochastic Differential Equation Approach

The third method widely used for portfolio selection problems is the BSDE approach. In
obtaining the optimum of a finite-dimensional function, one relies on the zero-first-order-
derivative condition for an unconstrained case or Kuhn-Tucker condition for a constrained
case. Both conditions state the necessary condition for optimality. As stated earlier, port-
folio selection problems are formulated as optimization problems in most of the literature,
typically under the framework of infinite-dimensional spaces. With the theory of variation,
one can slightly perturb an optimal trading strategy, assuming its existence, and end up
with forward-backward stochastic differential equations. By solving the equations, one
can show the sufficiency of these solutions for optimality of the original formulation with
enough regularity. Therefore, the remaining critical problem is the solvability of BSDEs.
The pioneer work Pardoux and Peng (1990) has shown the existence and uniqueness of
the solution to a certain type of BSDE. Since then, the BSDE approach has become very
useful and also facilitated a large amount of research on the existence and uniqueness of
the solution to other types of BSDE.

For the BSDE approach, the necessary condition for optimality of a trading strategy
is obtained by using the Maximum Principle, in contrast to the HJB approach, which
relies on the Dynamic Programming Principle. Both approaches are closely related and
can be regarded as certain necessary conditions of the optimal trading strategy, whereas
the martingale approach transforms the decision variable instead of working directly on
the trading strategy. However, there are differences between the HJB approach and the
BSDE approach. For example, if the objective function contains random parameters and
we are not provided with any information on any dynamics leading to these parameters, the
usual HJB approach cannot be applied since the terminal boundary condition is stochastic.
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In other words, the HJB equation becomes even more complicated and difficult to solve
when random parameters are included in the controlled process. However, the BSDE ap-
proach allows us to derive an optimal solution by solving a backward stochastic differential
equation.

The reader can refer to Chapter 6 in Pham (2009) and Chapters 3-7 in Yong and Zhou
(1999) for the BSDE approach as well as the relationship between the HJB approach and
the BSDE approach. The application of the BSDE approach to portfolio selection problems
can be also found in the books, as well as the literature such as Lim and Zhou (2002).

1.3 Structure of The Thesis

This thesis is devoted to structuring optimal portfolios using different criteria for specific
market participants. In most of the problems studied, the closed-form optimal investment
strategies are obtained by one of the aforementioned methods. Numerical methods for the
HJB equations are adopted for some problems. More specifically, Chapter 2 studies the
optimal investment strategy for an insurer who is selling participating contracts. Chapter
3 concerns performance ratio maximization. Chapter 4 investigates the Mean-Expectile
portfolio selection problem. Chapter 5 considers the utility maximization problem with
a square-root factor process. Finally, Chapter 6 presents some possible topics for future
work arising from the results in this thesis. An executive summary is provided for each of
Chapters 2-5 in the rest of the section.

1.3.1 Optimal Investment Strategies for Participating Contracts

Recently, participating contracts have enjoyed great popularity in many countries and have
become an important part of the insurance market. The history of participating contracts
is traced back to the policies offered by Equitable life in the UK in the 18th century; see
Consiglio et al. (2006). Modern participating contracts have become more complicated
as the insurance company has sought to be innovative in the competitive market. The
contracts now appear with minimum guarantees, options and other benefit features that
are attractive to the policyholders.

Participating contracts are constructed to allow policyholders to share in the profits
of the investment portfolio, while simultaneously receiving a guarantee that provides a
protection against the downside risk. The policyholders pay premiums to the insurer and
the collected premiums are pooled into a general account of the insurance company. The
contract payoffs are linked to the performance of this account. The insurance company
manages the fund in order to hedge its liabilities, and to maximize the performance of its
residual share of the portfolio after the liabilities have been paid.

Participating contracts are subject to various risks and so their modeling, pricing, valu-
ation and asset liability management are significant subjects for investigation and analysis.
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Most of the existing literature focuses either on the pricing aspect of participating con-
tracts or certain characterizations of the risks which the insurance companies are exposed
to from writing these contracts. Other literature focuses on asset liability management un-
der a discrete time framework, for which the disadvantages include the lack of closed-form
solutions and computational challenges in implementing the resulting investment strate-
gies. Therefore, in Chapter 2, we consider the continuous time setting and study the
portfolio selection problem for insurance companies managing portfolios supporting the
participating insurance contracts. The insurance company manages the fund in order to
hedge its liabilities, and maximize the performance of its residual share of the portfolio
after the liabilities have been paid. Under this framework, the closed-form solution to the
problem as well as the analytical optimal investment strategies are obtained. In addition,
we also consider the same problem with certain bounded control constraints. By adopting
a numerical method for the HJB equation, we are able to obtain an approximate solution.

1.3.2 Portfolio Optimization with Performance Ratios

The mean-variance model of Markowitz (1952) is popular both in academia and in practice.
However, it is subject to the criticism that the mean-variance model is not good enough
to capture important risk and reward features of portfolio performance except in the case
where the portfolio return is normally distributed. Much research has been devoted to the
creation of alternative performance measures. One such measure is the Omega measure
proposed by Keating and Shadwick (2002). The Omega measure considers both the upper
reward and downside risk defined with respect to a threshold.

Numerous authors have considered the problem of optimizing Omega over a single-
period investment horizon; see Mausser et al. (2006), Kapsos et al. (2014), Avouyi-Dovi
et al. (2004) and Kane et al. (2009) etc. Our research extends this research to a continuous
time framework. Our results show that simply borrowing the idea of the Omega measure
and fitting it in a continuous time framework results in an unbounded problem. Therefore,
in Chapter 3, we consider the portfolio selection problem based on a generalized version
of the Omega measure in which we embed two functions, a utility function and a penalty
function. Proposing such a generalized Omega measure allows us to obtain a meaningful
solution to the portfolio selection problem. Moreover, this generalized measure of per-
formance ratio weighs upper tails and lower tails not necessarily to the same degree and
reveals a meaningful economic interpretation on the behavior of market participants since
investors tend to have different preferences towards positive return and negative return.

1.3.3 Mean-Expectile Portfolio Selection Model

The shortcomings of the mean-variance model have motivated a large amount of research
focusing on incorporating risk measures other than variance. Among others, Value-at-
Risk (VaR) and Conditional Value-at-Risk (CVaR), i.e. Expected Shortfall (ES), are two
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alternatives that enjoy great popularity; see example in Alexander and Baptista (2002),
Rockafellar and Uryasev (2000) etc.

The Expectile was introduced by Newey and Powell (1987) as the minimizer of piecewise
quadratic loss function. In recent years, there has been increasing interest in using expec-
tiles as alternative risk measures, because expectiles are indeed the only law-invariant and
coherent elicitable risk measures; see Ziegel (2016). In practice, elicitability corresponds
to the existence of a natural backtesting methodology and it makes it possible to compare
between different statistical methods when estimating risk from historical data.

To our knowledge, only a small number of papers have investigated the Mean-Expectile
portfolio selection problem. For example, Jakobsons (2016) uses scenario aggregation
method for expectile optimization. However, applications of optimizing expectiles in other
areas have been investigated, such as optimal reinsurance in Cai and Weng (2016). In
Chapter 4, we consider a Mean-Expectile portfolio choice problem in a dynamic contin-
uous time framework. In addition, we present an optimization problem with the Omega
measure as an objective and show the equivalence between the two optimization prob-
lems. By showing the solution for the Mean-Expectile problem is not attainable but the
value function is finite, following the literature, we modify the Mean-Expectile problem by
imposing a terminal wealth bound constraint and at the end, we derive the closed-form
solution as well as the efficient frontier.

1.3.4 BSDE Approach to Utility Maximization with A Square-
root Factor Process

Utility maximization is one of the most common problems in mathematical finance. How-
ever, most of literature concerning the utility maximization investment problem adopting
the BSDE approach only considers the existence and uniqueness of the solution to the
resulting BSDE without presenting a closed-form solution. In addition, the couple solu-
tions to the BSDE, typically denoted as (Y, Z), are within a space where Y is a uniformly
bounded process. Therefore, in Chapter 5, we consider the utility-based continuous-time
portfolio selection problem and formulate the problem under a framework, in which we
assume the market price of risk depends on a stochastic factor following an affine-form,
square-root, Markovian model. This financial market setting includes the classical ge-
ometric Brownian motion model, the CEV model and Heston’s model as special cases.
Additionally, we relax the boundedness assumption on Y . The utility function we choose
includes three widely used functions, namely the power utility function, the log utility
function, and the exponential utility function. Within each case, the closed-form solution
can be obtained under some mild regularity conditions.
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Chapter 2

Optimal Investment Strategies for
Participating Contracts

2.1 Introduction

We study the continuous time portfolio selection problem for insurance companies man-
aging portfolios supporting participating insurance contracts. Participating contracts are
constructed to allow policyholders to share in the profits of the investment portfolio, while
simultaneously receiving a guarantee that limits their downside. The policyholders pay
premiums to the insurer and the collected premiums are pooled within the insurance com-
pany’s general account. The contract payoffs are linked to the performance of this account.
The insurance company manages the fund in order to hedge its liabilities, and maximize
the performance of its residual share of the portfolio after the liabilities have been paid.

The objective of the present chapter is to develop optimal asset management strate-
gies for the insurance companies, whereas most of the existing literature focuses either
on the pricing aspect of participating contracts or certain characterizations of the risks
which the insurance companies are exposed to from writing these contracts. For example,
Briys and De Varenne (1994) derive a closed-form valuation based on an option pricing
approach for the participating contract, where the policyholder receives a guaranteed rate
of interest (a point-to-point basis guarantee) and some bonuses determined as a fraction
of financial gains at the maturity of the contract. Other work on pricing includes Grosen
and Jørgensen (2002), Siu (2005), and Fard and Siu (2013). The literature that focuses
on the characterization of insurance companies’ risk exposure includes Kling et al. (2007),
Gatzert and Kling (2007), and Bernard and Le Courtois (2012), among others. Kling
et al. (2007), and Gatzert and Kling (2007) investigate some standard risk measures of
the participating contracts known as cliquet-style guarantees, for which the policyholder is
credited with a certain rate of return every year. Bernard and Le Courtois (2012) study
the resulting risk profile of both the insurance company and policyholders under two well-
known portfolio insurance strategies, i.e. Constant Proportion Portfolio Insurance (CPPI)
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strategy and Option Based Portfolio Insurance (OBPI) strategy. Earlier work on asset
and liability management for participating contracts has often focused on the problem in
discrete time with a finite scenario set. The advantage of this setting is that it allows
one to consider more complex and flexible contract structures. Its disadvantages include a
lack of closed-form solutions, and computational challenges in generating and working with
scenario trees. Examples include Consiglio et al. (2008) and Consiglio et al. (2006), both of
which employ scenario optimization in discrete time to analyze problems faced by insurers
offering participating contracts with minimum guarantees. For a general stochastic control
formulation of the problem facing an insurer maximizing expected utility of the surplus of
assets net of liabilities, see Rudolf and Ziemba (2004).

Utility based portfolio selection problems have been intensively studied in the literature
on mathematical finance and economics; see, for example, Cvitanić and Karatzas (1992),
Karatzas et al. (1991) and Karatzas and Shreve (1998). Our problem differs due to the
inclusion of a liability consisting of a participating contract in the investment portfolio.
Moreover, decision-makers are taken to be risk averse with respect to gains and risk seeking
with respect to losses, which results in an S-shaped power utility function. This utility
function is exploited in our problem to reflect this behavioral perspective for the insurance
company, which plays the role of the asset manager, to derive explicit optimal investment
strategies for two participating contracts with point-to-point basis guarantees, which we
call (following Bernard et al. (2010)) the defaultable participating contract and the fully
protected participating contract. The solutions provide insights for the insurance company
in constructing portfolios to serve its purposes.

Our derivation of the optimal solutions relies on a combination of a martingale approach
and a pointwise optimization technique. The legitimacy of the martingale approach follows
from the completeness of the market model we consider. The approach entails determining
the best terminal portfolio value and recovering the dynamic investment strategies from
this payoff. In the pointwise optimization procedure, we adopt a concavification technique,
which has been used by Carpenter (2000) and later by He and Kou (2018).

As we previously noted, one payoff function we consider in this chapter is based on
a point-to-point basis guarantee, following Briys and De Varenne (1994), and its shape is
similar to that of the first-loss fee scheme for hedge funds studied by He and Kou (2018).
However, in our problem the positive payoff for the insurance company consists of two
pieces with a kink point, while in He and Kou (2018) the positive part of payoff is smooth
without any kink. Therefore, the use of an S-shaped utility function in our problem results
in an objective function different from that considered by He and Kou (2018). Moreover
He and Kou (2018) consider a liquidation barrier for the fund. When the portfolio drops
below this boundary, the fund is liquidated immediately. In contrast, we do not employ
a liquidation barrier. These problem characteristics significantly complicate the analysis,
and the final form of the optimal solutions.

The completeness of the financial market is a key assumption for our derivation of
explicit optimal solutions by the martingale approach. In practice, however, regulatory
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requirements aimed at controlling solvency risk may prevent the insurance company from
investing more than a certain fraction of total wealth in the risky assets. In the presence of
such regulatory restrictions, the market is no longer complete for the insurance company,
and analytical solutions of the control problem are in general no longer attainable. In
this chapter, we resort to a numerical procedure to compute the optimal solutions in the
constrained case to facilitate comparison with the solutions derived by the martingale
approach for the unconstrained case.

The remainder of the chapter is structured as follows. Section 2.2 describes participating
contracts and presents the formulation of the stochastic control problem. Auxiliary problem
formulations are also given in this section. In Section 2.3, we solve the auxiliary problems
using Lagrangian duality and the pointwise optimization technique. The justification for
the concavification technique is included in this section as well. Section 2.4 presents the
optimal portfolio value processes and optimal trading strategies for the stochastic control
problems. Section 2.5 presents numerical examples for the solutions from Section 2.4. In
Section 2.6, we consider the constrained portfolio problem with bounded control. The last
section provides further discussion and concludes the chapter.

2.2 Participating Contracts and Problem Formulation

2.2.1 Basics of Participating Contracts

Let L0 be the policyholder’s total contribution and α be the initial liability-to-asset ratio
of the insurer so that the initial capital in the insurer’s general account is x0 := L0/α > 0.

We assume that the capital in the general account is invested in a risky asset S and a
risk-free bond B with price processes as follows:{

dBt = rBtdt,

dSt = µStdt+ σStdWt,

where r is the risk-free rate, µ > r is the growth rate of the risky asset, σ > 0 is the volatility,
and W := {Wt, t ≥ 0} is a standard Brownian motion under the physical measure P defined
over a probability space (Ω,F). We use F := {Ft, t ≥ 0} to denote the P-augmentation of
the natural filtration FWt = σ(W (s), 0 ≤ s ≤ t) of the Brownian motion W .

We consider a finite investment time horizon [0, T ] with T > 0. Let πt denote the
amount of capital invested in the risky asset S at time t, t ≥ 0. With a trading strategy
π := {πt, 0 ≤ t ≤ T}, the total portfolio value process, denoted by Xπ

t , evolves as follows:

dXπ
t = [rXπ

t + πt(µ− r)]dt+ σπtdWt. (2.1)

It is natural to assume that the trading strategy π is F-progressively measurable and
satisfies

∫ T
0
π2
t dt < ∞ a.s., which guarantees the existence and uniqueness of a strong

solution to (2.1).
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The terminal portfolio value Xπ
T is shared between the policyholder and the insurer

according to a pre-described scheme with certain guarantee features in favor of the poli-
cyholder. Below, we introduce two participating contracts with terminal guarantees: (1)
a defaultable participating contract; and (2) a fully protected participating contract. In
both contracts, the policyholder is guaranteed a minimum growth rate g (see Briys and
De Varenne (1994)) and the guaranteed amount at maturity time T is LgT = L0e

gT , where
L0 is the initial liability of the insurer. g is set lower than the risk-free rate.

In the defaultable participating contract, the payoff to the policyholder is given as
follows:

Θ(Xπ
T ) = LgT + δ(αXπ

T − L
g
T )+ − (LgT −XT )+ =


Xπ
T , Xπ

T < LgT ,

LgT , LgT ≤ Xπ
T ≤

LgT
α
,

δαXπ
T + (1− δ)LgT , Xπ

T >
LgT
α
,

(2.2)
where (x)+ = max{x, 0} for a real number x and the liability-to-asset ratio α ∈ (0, 1).
The payoff for the policyholder is equal to the guaranteed amount LgT , plus a scaled long
position in a call option and a short position in a put. When the terminal portfolio value
is less than the guaranteed amount LgT , the contract ‘defaults’, and the policyholder only
receives the portfolio value as payoff. With the amount of Θ(Xπ

T ) paid to the policyholder,
the insurer retains a payoff as follows

Ψ(Xπ
T ) = Xπ

T −Θ(Xπ
T ) =


0, Xπ

T < LgT ,

Xπ
T − L

g
T , LgT ≤ Xπ

T ≤
LgT
α
,

(1− δα)Xπ
T − (1− δ)LgT , Xπ

T >
LgT
α
,

(2.3)

Note that for the defaultable policy, the payoff of the policyholder is not really guaran-
teed at LgT . Instead, when the terminal portfolio value Xπ

T is smaller than the guaranteed
amount, the policyholder is only entitled to the portfolio value. In contrast, following the
work by Bernard et al. (2010), we also investigate the fully protected participating contract
that entitles the policyholder to a payoff as follows:

Θ̂(Xπ
T ) = LgT + δ(αXπ

T − L
g
T )+ =


LgT , Xπ

T < LgT ,

LgT , LgT ≤ Xπ
T ≤

LgT
α
,

δαXπ
T + (1− δ)LgT , Xπ

T >
LgT
α
,

(2.4)

which differs from the payoff structure in equation (2.2) only in the first case where XT <
LgT . Correspondingly, the payoff of the insurer becomes

Ψ̂(Xπ
T ) = Xπ

T − Θ̂(Xπ
T ) =


Xπ
T − L

g
T , Xπ

T < LgT ,

Xπ
T − L

g
T , LgT ≤ Xπ

T ≤
LgT
α
,

(1− δα)Xπ
T − (1− δ)LgT , Xπ

T >
LgT
α
.

(2.5)
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While the worst payoff to the insurer in the defaultable contract is zero, the payoff
could be negative for the fully protected contract, which occurs whenever the portfolio
value becomes less than the guaranteed amount LgT . The payoff curves for both policies
are illustrated in Figure 2.1.
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value x for the fully protected participating
contract.

Figure 2.1: Insurer’s payoff for the two participating contracts.

2.2.2 Problem Formulation

We formulate the decision of the insurer as an expected utility maximization problem
with an S-shaped utility function from prospect theory, for which decision-makers are risk
averse with respect to gains and risk seeking with respect to losses. More specifically, the
utility function is continuous, and increasing, concave on [0,∞), and convex on (−∞, 0]
and assumes the following form:

U(x) =

{
xγ, x ≥ 0,

−λ(−x)γ, x < 0,
(2.6)

where 0 < γ < 1 measures the degree of risk aversion from gain and risk seeking when loss
occurs. The parameter λ > 1 is called loss aversion degree, and it measures the extent to
which individuals are loss averse, see Tversky and Kahneman (1992).

The functions U [Ψ(x)] and U [Ψ̂(x)] are depicted in Figure 2.2.

Definition 2.1. A trading strategy π := {πt, 0 ≤ t ≤ T} is called admissible with initial
wealth x0 > 0 if it belongs to the following set:

A(x0) := {π ∈ S : Xπ
0 = x0 and Xπ

t ≥ 0, a.s., ∀ 0 ≤ t ≤ T}, (2.7)
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Figure 2.2: Insurer’s utility level for the two participating contracts.

where S denotes the set of F-progressively measurable processes π such that
∫ T

0
π2
t dt < ∞

a.s.

To proceed, we define the the market price of risk, i.e. “relative risk”, as

ζ :=
µ− r
σ

,

and the price density process as

ξt := exp

{
−
(
r +

ζ2

2

)
t− ζWt

}
. (2.8)

Further, for t ≤ s, we define

ξt,s = ξ−1
t ξs = exp

[
−
(
r +

ζ2

2

)
(s− t)− ζ(Ws −Wt)

]
, (2.9)

which is independent of Ft. Note that ξt = ξ0,t.

We apply Itô’s formula in conjunction with equations (2.1) and (2.8) to obtain

ξtX
π
t = x0 +

∫ t

0

ξs(σπs − ζXπ
s )dWs, t ∈ [0, T ]. (2.10)

The right-hand side is a non-negative local martingale and thus a super-martingale,
which implies E[ξTX

π
T ] ≤ x0; see Proposition 1.1.7 in Pham (2009) or Chapter 1, Problem

5.19 in Karatzas and Shreve (1991). As a consequence, we formulate the insurer’s optimal
investment decisions for the two participating contracts as follows:
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• Defaultable participating insurance contract: sup
π∈A(x0)

E[U(Ψ(Xπ
T ))],

subject to E[ξTX
π
T ] ≤ x0.

(2.11)

• Fully protected participating insurance contract: sup
π∈A(x0)

E
[
U(Ψ̂(Xπ

T ))
]
,

subject to E[ξTX
π
T ] ≤ x0.

(2.12)

Since the payoff Ψ(Xπ
T ) is non-negative in every state, the S-shaped utility is the same as

a power utility U(x) = xγ, x ≥ 0, for problem (2.11). In contrast, for the fully protected
participating contract, the insurer may suffer from a loss and therefore, the negative part
of the S-shaped utility U(·) does play a role in problem (2.12).

2.2.3 Auxiliary Problems

We will adopt a martingale approach to solve problems (2.11) and (2.12). LetM+ denote
the set of non-negative FT -measurable random variables, and consider the following two
auxiliary problems:  sup

Z∈M+

E[U(Ψ(Z))],

subject to E[ξTZ] ≤ x0,
(2.13)

and  sup
Z∈M+

E
[
U(Ψ̂(Z))

]
,

subject to E[ξTZ] ≤ x0.

(2.14)

An optimal solution can be obtained for each of these two auxiliary problems such that the
constraint is binding at the solution; see Lemma 2.3 and Proposition 2.6 in Section 2.3.

From the solutions of auxiliary problems, we can construct optimal trading strategies
for problems (2.11) and (2.12) as explained below. Let Z∗ and Ẑ respectively denote

optimal solutions to the above two problems with E[ξTZ
∗] = E[ξT Ẑ] = x0, and define

Y ∗t := ξ−1
t E[ξTZ

∗|Ft] and Ŷt := ξ−1
t E[ξT Ẑ|Ft], 0 ≤ t ≤ T. (2.15)

Obviously, both {ξtY ∗t , 0 ≤ t ≤ T} and {ξtŶt, 0 ≤ t ≤ T} are F-martingales under P. Thus,
they admit the following representation by the Martingale Representation Theorem (see
Chapter 3, Theorem 4.15 and Problem 4.16 in Karatzas and Shreve (1991) or Theorem
1.2.9 in Pham (2009)):

ξtY
∗
t = x0 +

∫ t

0

θ∗sdWs and ξtŶt = x0 +

∫ t

0

θ̂sdWs, 0 ≤ t ≤ T, (2.16)
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for some R-valued Ft-progressively measurable processes {θ∗t , 0 ≤ t ≤ T} and {θ̂t, 0 ≤ t ≤
T} satisfying

∫ T
0

(θ∗t )
2dt <∞ and

∫ T
0

(θ̂t)
2dt <∞, a.s. In particular, both {ξtY ∗t , 0 ≤ t ≤ T}

and {ξtŶt, 0 ≤ t ≤ T} are continuous, a.s.

Proposition 2.1. Let Z∗ and Ẑ respectively denote optimal solutions to problems (2.13)

and (2.14). For the two processes {θ∗t , 0 ≤ t ≤ T} and {θ̂t, 0 ≤ t ≤ T} given in equation
(2.16), define

π∗t = σ−1ξ−1
t θ∗t + σ−1ζY ∗t and π̂t = σ−1ξ−1

t θ̂t + σ−1ζŶt. (2.17)

Then, π∗ := {π∗t , 0 ≤ t ≤ T} ∈ A(x0) and π̂ := {π̂t, 0 ≤ t ≤ T} ∈ A(x0) solve problems
(2.11) and (2.12), respectively, and the optimal portfolio values at time t, 0 ≤ t ≤ T , are

given by Xπ∗
t = Y ∗t and X π̂

t = Ŷt for the two problems, respectively.

Proof. We only show the properties of π∗ for problem (2.11), because the result follows in
parallel for π̂. From expressions (2.15) and (2.16),

d (ξtY
∗
t ) = θ∗t dWt, Y

∗
0 = x0, and Y ∗T = Z∗, a.s. (2.18)

where the price density process ξt is defined in (2.8) satisfying dξ−1
t = ξ−1

t [(r + ζ2)dt+ ζdWt].
Therefore, applying the Itô product rule yields

dY ∗t = ξ−1
t dξtY

∗
t + ξtY

∗
t dξ

−1
t + dξ−1

t dξtY
∗
t

=
[
Y ∗t (r + ζ2) + ξ−1

t ζθ∗t
]
dt+

[
ξ−1
t θ∗t + Y ∗t ζ

]
dWt

= [rY ∗t + π∗t (µ− r)]dt+ σπ∗t dWt, (2.19)

where the last step follows from (2.17).

Since
∫ T

0
(θ∗t )

2dt < ∞ a.s., the solution to the stochastic differential equation (SDE)
(2.19) admits the representations given as follows:

Y ∗t = ξ−1
t E[ξTZ

∗|Ft]

as its unique solution which is continuous almost surely. The SDE (2.19) agrees with (2.1).
Thus, by the uniqueness of strong solutions, we have P

(
Xπ∗
t = Y ∗t , t ∈ [0, T ]

)
= 1. In

addition, it is obvious that Xπ∗
t = Y ∗t ≥ 0 a.s., t ∈ [0, T ].

Moreover,∫ T

0

(π∗t )
2 dt =

∫ T

0

(
σ−1ξ−1

t θ∗t + σ−1ζY ∗t
)2
dt

≤2σ−2 · max
0≤t≤T

|ξ−2
t | ·

∫ T

0

(θ∗t )
2 dt+ 2σ−2ζ2T · max

0≤t≤T

∣∣ (Y ∗t )2
∣∣ <∞, a.s.,

where we use the inequality (a + b)2 ≤ 2a2 + 2b2 and the fact that {ξt,∀0 ≤ t ≤ T} is
a strictly positive process and the almost sure continuity of both {ξ−2

t ,∀0 ≤ t ≤ T} and
{(Y ∗t )2,∀0 ≤ t ≤ T}. Therefore, π∗ ∈ A(x0).
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On the other hand, any Xπ
T is FT -measurable and thus, Xπ

T ∈ M+, ∀π ∈ A(x0).
Consequently, the optimality of Z∗ for problem (2.13) implies

E[U(Ψ(Xπ∗

T ))] = E[U(Ψ(Z∗))] ≥ E[U(Ψ(Xπ
T ))], ∀π ∈ A(x0),

which means that π∗ solves problem (2.11). The claim about the optimal portfolio value
follows immediately.

2.3 Optimal Solutions to Auxiliary Problems

The analysis in the last section motivates us to focus on the two auxiliary problems (2.13)

and (2.14). Once we solve these problems, we can find θ∗s and θ̂s via equations (2.15) and
(2.16) and eventually apply Proposition 2.1 to derive the optimal trading strategies π∗ and
π̂.

2.3.1 Lagrangian Duality and Pointwise Optimization Problems

We solve the two auxiliary problems (2.13) and (2.14) by a Lagrangian duality method and
show that an optimal solution can be obtained such that the constraint is binding at the
solution. This entails introducing the following Lagrange dual problems with multipliers
β and ν:

sup
Z∈M+

E[U(Ψ(Z))− βξTZ], β > 0, (2.20)

and
sup
Z∈M+

E
[
U(Ψ̂(Z))− νξTZ]

]
, ν > 0. (2.21)

To study the above problems, we resort to a pointwise optimization procedure which in-
volves solving the following two problems indexed by y > 0:

sup
x∈R+

[U(Ψ(x))− yx] , (2.22)

and
sup
x∈R+

[
U(Ψ̂(x))− yx

]
, (2.23)

where R+ denotes the set of nonnegative real numbers.

Lemma 2.2. Let x∗(y) and x̂(y) be two Borel measurable functions such that x∗(y) solves
(2.22) and x̂(y) solves (2.23) for each y > 0. Define

Z∗β := x∗(βξT ) and Ẑν := x̂(νξT ).

Then, Z∗β and Ẑν solve problems (2.20) and (2.21) respectively.
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Proof. We only show the optimality of Z∗β. Indeed, we obviously have Z∗β ∈ M+, and
moreover, by the optimality of the function x∗(y) for problem (2.22), for any Z ∈M+ and
β > 0 we obtain

E[U(Ψ(Z))− βξTZ] =

∫
[U(Ψ(Z))− βξTZ] dP

≤
∫

[U (Ψ(x∗(βξT )))− βξTx∗(βξT )] dP

=

∫ [
U
(
Ψ(Z∗β)

)
− βξTZ∗β

]
dP

= E[U(Ψ(Z∗β))− βξTZ∗β],

by which the proof is complete.

Lemma 2.3.

(a) Assume that there exists a constant β∗ > 0 such that Z∗β∗ ∈ M+ solves (2.20) with
β = β∗ and E[ξTZ

∗
β∗ ] = x0. Then, Z∗ := Z∗β∗ solves problem (2.13).

(b) Assume that there exists a constant ν̂ > 0 such that Ẑν̂ ∈ M+ solves (2.21) with

ν = ν̂ and E[ξT Ẑν̂ ] = x0. Then, Ẑ := Ẑν̂ solves problem (2.14).

Proof. We only show part (a). Let v(x0) denote the supreme value of problem (2.13) with
initial wealth x0. Then, it follows

v(x0) = sup
Z∈M+

E[ξTZ]≤x0

E[U(Ψ(Z))] = sup
Z∈M+

E[ξTZ]≤x0

{E[U(Ψ(Z))] + β∗ (E[x0 − ξTZ])}

≤ sup
Z∈M+

{E[U(Ψ(Z))] + β∗ (E[x0 − ξTZ])}

= E[U(Ψ(Z∗β∗))]− β∗
(
E[ξTZ

∗
β∗ ]− x0

)
= E[U(Ψ(Z∗β∗))] ≤ v(x0),

where the last step is due to the fact that Zβ∗ is feasible for problem (2.13). Hence,
Z∗ ≡ Z∗β∗ solves problem (2.13).

2.3.2 Solutions of The Pointwise Optimization Problems

The payoff structures for the defaultable and protected policies, Ψ(x) and Ψ̂(x), are given
in (2.3) and (2.5). With U(·) given by (2.6), U [Ψ(x)] is zero for x 6 LTg , and concave for

x > LTg , while U [Ψ̂(x)] is convex when x < LgT and concave for x ≥ LgT . The utility of the
insurance company’s payoff in each case is illustrated in Figure 2.2.
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We employ the concavification technique from Carpenter (2000) (see also He and Kou
(2018)) to find optimal solutions of problems (2.22) and (2.23). We denote the concave
envelope of a function f with domain D by f c.

f c(x) := inf{g(x) : D → R | g(t) is a concave function, g(t) ≥ f(t), ∀t ∈ D}, x ∈ D

We consider the following concavificated versions of problems (2.22) and (2.23):

sup
x∈R+

[(U ◦Ψ)c(x)− yx] , y > 0, (2.24)

and
sup
x∈R+

[
(U ◦ Ψ̂)c(x)− yx

]
, y > 0. (2.25)

Proposition 2.4. For each y > 0, let x∗(y) and x̂(y) be solutions to problems (2.24) and

(2.25), respectively. If (U ◦Ψ)c(x∗(y)) = (U ◦Ψ)(x∗(y)) and (U ◦Ψ̂)c(x̂(y)) = (U ◦Ψ̂)(x̂(y)),
then x∗(y) and x̂(y) solve the problems (2.22) and (2.23), respectively.

Proof. We only show the property of x∗(y). Given y > 0, ∀x ∈ R+, we have

(U ◦Ψ)(x∗(y))−y ·x∗(y) = (U ◦Ψ)c(x∗(y))−y ·x∗(y) > (U ◦Ψ)c(x)−yx > (U ◦Ψ)(x)−yx.

The derivation of solutions for the above problems employs the one-sided derivatives

of G(x) = U(Ψ(x)) and Ĝ(x) = U
(

Ψ̂(x)
)

at x = α−1LgT . It is easy to verify that

m := G′−(α−1LgT ) = Ĝ′−(α−1LgT ) = γ(α−1LgT − L
g
T )γ−1, and G′+(α−1LgT ) = Ĝ′+(α−1LgT ) =

(1− δα)m.

Proposition 2.5.

(a) The following function x∗(y) solves both problems (2.22) and (2.24):

Case A1 If 1− α > γ, then

x∗(y) = f1(y; z̃, k) :=



[
y

γ(1−δα)

] 1
γ−1

+ (1− δ)LgT
1− δα

, 0 < y < (1− δα)m,

LgT
α
, (1− δα)m ≤ y ≤ m,(
y

γ

) 1
γ−1

+ LgT , m < y < k,

0, y ≥ k,

(2.26)

where z̃ =
LgT
1−γ and k = γ(z̃ − LgT )γ−1.
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Case A2 If (1− δα)γ > 1− α, then

x∗(y) = f2(y; z̃, k) :=


[

y
γ(1−δα)

] 1
γ−1

+ (1− δ)LgT
1− δα

, 0 < y < k,

0, y ≥ k,

(2.27)

where z̃ =
(1−δ)LgT

(1−δα)(1−γ)
and k = γ(1− δα)[(1− δα)z̃ − (1− δ)LgT ]γ−1.

Case A3 If γ ≥ 1− α ≥ (1− δα)γ, then

x∗(y) = f3(y; z̃, k) :=



[
y

γ(1−δα)

] 1
γ−1

+ (1− δ)LgT
1− δα

, 0 < y < (1− δα)m,

z̃, (1− δα)m ≤ y < k,

0, y ≥ k,

(2.28)

where z̃ =
LgT
α

and k = (1− α)γ (z̃)γ−1.

(b) The following function x̂(y) solves both problems (2.23) and (2.25):

Case B1 If λ > γ+α−1
α

(
1−α
α

)γ−1
, then there exists a unique solution z̃ ∈ (LgT ,

LgT
α

)
satisfying

[(γ − 1)z̃ + LgT ](z̃ − LgT )γ−1 − λ(LgT )γ = 0. (2.29)

The optimal solution is given by x̂(y) = f1(y; z̃, k), where k = γ(z̃ − LgT )γ−1 and the
function f1(y; z̃, k) is defined in (2.26).

Case B2 If λ < (1−δα)γ+α−1
α

(
1−α
α

)γ−1
, then there exists a unique solution z̃ ∈

(
LgT
α
,∞) of

[(1− δα)(γ − 1)z̃ + (1− δ)LgT ]× [(1− δα)z̃ − (1− δ)LgT ]γ−1 − λ(LgT )γ = 0. (2.30)

The optimal solution is given by x̂(y) = f2(y; z̃, k), where k = γ(1− δα)[(1− δα)z̃ −
(1− δ)LgT ]γ−1 and the function f2(y; z̃, k) is defined in (2.27).

Case B3 If (1−δα)γ+α−1
α

(
1−α
α

)γ−1 ≤ λ ≤ γ+α−1
α

(
1−α
α

)γ−1
, then the optimal solution

x̂(y) = f3(y; z̃, k) with z̃ =
LgT
α

and k = α
[(

1−α
α

)γ
+ λ
]

(LgT )γ−1, where the function
f3(y; z̃, k) is defined in (2.28).
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Proof. The concave envelopes of U(Ψ(x)) and U
[
Ψ̂(x)

]
are given in Lemmas A.2 and A.3

in Appendix A.1. To find a maximizer of h(x) := (U ◦Ψ)c(x)− yx, for a given y, one then
simply needs to find the points x∗(y) for which 0 is in the superdifferential of h, which is
determined by straightforward calculation. Then, observing that (U ◦Ψ)(x) = (U ◦Ψ)c(x)
when x ∈ {0}∪ [z̃,∞) and that x∗(y) ∈ {0}∪ [z̃,∞) ⊆ {U ◦Ψ = (U ◦Ψ)c} yields the result
in part(a). The results of part(b) follow in the same manner.

2.3.3 Derivation of The Solutions to Auxiliary Problems (2.13)
and (2.14)

For each β > 0, define Z∗β := x∗(βξT ) with function x∗ given in equations (2.26), (2.27)
and (2.28) for the three distinct cases respectively. Then, combining Lemma 2.2 and

Proposition 2.5, Z∗β solves problem (2.20). Similarly, for each ν > 0, define Ẑν := x̂(νξT )

where the function x̂ is given in part (b) of Proposition 2.5. Then, Ẑν solves problem
(2.21). Consequently, by Lemma 2.3, if there exists a nonnegative constant β∗ satisfying
E[ξTx

∗(β∗ξT )] = x0, then Z∗ = Z∗β∗ solves the auxiliary problem (2.13). Similarly, if there

exists a nonnegative constant ν̂ satisfying E[ξT x̂(ν̂ξT )] = x0, then Ẑ := Ẑν̂ solves problem
(2.14). Proposition 2.6 below guarantees the existence of such β∗ > 0 and ν̂ > 0.

We use Φ and φ to denote the standard normal distribution function and its density
function. Further, define

d1,t(β) :=
ln β − ln ξt + (r − 1

2
ζ2)(T − t)

ζ
√
T − t

,

d2,t(β) := d1,t(β) +
ζ
√
T − t

1− γ
,

K(β) := φ[d1,t(β)]

(
1 +

ζ
√
T − t

1− γ
Φ[d2,t(β)]

φ[d2,t(β)]

)
.

(2.31)

Proposition 2.6.

(a) There exists a constant β∗ > 0 such that Z∗β∗ := x∗(β∗ξT ) and E[ξTZ
∗
β∗ ] = x0, where

the function x∗ is given in part (a) of Proposition 2.5.

(b) There exists a constant ν̂ > 0 such that Ẑν̂ := x̂(ν̂ξT ) and E[ξT Ẑν̂ ] = x0, where the
function x̂ is given in part (b) of Proposition 2.5.

Proof. We only prove part (a), because part (b) can be proved in a similar way. Define
H(β) = E[ξTZ

∗
β] ≡ E[ξTx

∗(βξT )]. We first show the continuity of H(β) with respect to
β for β > 0. As shown in (2.26), (2.27) and (2.28), for each of the three Cases A1, A2,
and A3, we can write x∗(·) as a piecewise function such that x∗(βξT ) is the summation of
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c11{βξT≤c2} and c3(βξT )
1

γ−1 1{βξT≤c4} with appropriate choices of non-negative constants c1,
c2, c3 and c4. We can then use the formula in Appendix A.2 to obtain{

c1E
[
ξT1{βξT≤c2}

]
= c1e

−rTΦ[d1,0(c2/β)],

c3E
[
ξT (βξT )

1
γ−1 1{βξT≤c4}

]
= c3e

−rT φ[d1,0(1/β)]

φ[d2,0(1/β)]
Φ[d2,0(c4/β)],

(2.32)

where d1,0(·) and d2,0(·) are defined in (2.31) with t = 0. The continuity of H(β) follows
immediately.

For each of the three cases (Cases A1, A2, and A3), H(β) is a continuous function
for β > 0, and moreover, ξTx

∗(βξT ) tends to 0 and ∞ respectively as β goes to ∞ and
0. Further, noticing the monotonicity of the function x∗ (see Proposition 2.5), we get
limβ→∞H(β) = 0 and limβ→0+ H(β) = ∞, and thus, there must be a constant β > 0
satisfying E[ξTZ

∗
β∗ ] = x0.

Remark 2.7. The proof of Proposition 2.6 also implies that H(β) ≡ E[ξTZ
∗
β] is non-

decreasing as a function of β over the interval (0,∞). We solve for β∗ numerically, and
the observed monotonicity of H(β) is a useful property in the root-finding procedure.

2.4 Optimal Trading Strategies

In this section, we explore the optimal trading strategies π∗ and π̂ based on the results
obtained in the previous sections. We shall follow the martingale approach as outlined in
the beginning of section 2.2.3, which entails computing both Y ∗t (resp. Ŷt) and θ∗t (resp.

θ̂t) defined in equations (2.15) and (2.16) for the defautable policy (resp. full protected
policy) and eventually obtaining the optimal trading strategy π∗t (resp. π̂t) via equation
(2.17).

Hereafter, we use β∗ and ν̂ to denote two constants that satisfy E[ξTx
∗(β∗ξT )] = x0 and

E[ξT x̂(ν̂ξT )] = x0 with the existence guaranteed by Proposition 2.6.

2.4.1 Optimal Trading Strategy for The Defaultable Participat-
ing Contract

The derivation of the optimal solution and portfolio value relies on the sequence of propo-
sitions and lemmas that we established in Sections 2 and 3. By part (a) of Proposi-
tion 2.5, the function x∗(·) defined there solves problem (2.22), and thus, by Lemma
2.2 and 2.3, Z∗ ≡ Z∗β∗ = x∗(β∗ξT ) solves problem (2.13). Further, by Proposition 2.1,
π∗ = {π∗t , 0 ≤ t ≤ T} solves problem (2.11) with an optimal portfolio value at time t given
by Xπ∗

t = Y ∗t , t ∈ [0, T ] where π∗t = σ−1ξ−1
t θ∗t + σ−1ζY ∗t and Y ∗t := ξ−1

t E[ξTZ
∗|Ft]. The

following proposition summarizes our results for the defaultable participating contract.
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Proposition 2.8. For the defaultable participating contract, the optimal portfolio value,
the optimal trading strategy and the corresponding terminal portfolio value are given as
follows with β∗ satisfying E[ξTX

∗
T (β∗)] = x0:

Case A1 If 1 − α > γ, we define z̃ =
LgT
1−γ and k = γ(z̃ − LgT )γ−1. Then, the optimal

portfolio value at time t, 0 ≤ t < T , is given by

X∗t (β∗) = e−r(T−t)(A1 + A2 + A3 + A4 + A5),

A1 =

(
k

γ

) 1
γ−1 φ[d1,t(k/β

∗)]

φ[d2,t(k/β∗)]
(Φ[d2,t(k/β

∗)]− Φ [d2,t (m/β∗)]) ,

A2 = LgT (Φ[d1,t(k/β
∗)]− Φ [d1,t (m/β∗)]) ,

A3 =
LgT
α

(Φ [d1,t (m/β∗)]− Φ [d1,t ((1− δα)m/β∗)]) ,

A4 = (1− δα)
γ

1−γ

(
k

γ

) 1
γ−1 φ[d1,t(k/β

∗)]

φ[d2,t(k/β∗)]
Φ [d2,t ((1− δα)m/β∗)] ,

A5 =
LgT (1− δ)

1− δα
Φ [d1,t ((1− δα)m/β∗)] .

(2.33)

π∗t given below is an optimal amount to invest in the risky asset at time t, for 0 ≤ t < T .

π∗t (β
∗) =

e−r(T−t)

σ
√
T − t

(a1 + a2 + a3 + a4 + a5),

a1 =

(
k

γ

) 1
γ−1

K(k/β∗)−
(
m

γ

) 1
γ−1

K (m/β∗) ,

a2 = LgT (φ[d1,t(k/β
∗)]− φ [d1,t (m/β∗)]) ,

a3 =
LgT
α

(φ [d1,t (m/β∗)]− φ [d1,t ((1− δα)m/β∗)]) ,

a4 = (1− δα)−1

(
m

γ

) 1
γ−1

K [(1− δα)m/β∗] ,

a5 =
LgT (1− δ)

1− δα
φ [d1,t ((1− δα)m/β∗)] .

(2.34)

Finally, the optimal terminal portfolio value is

X∗T (β∗) =

[(
β∗ξT
γ

) 1
γ−1

+ LgT

]
1{m/β∗<ξT≤k/β∗} +

LgT
α

1{(1−δα)m/β∗≤ξT≤m/β∗}

+

[
(1− δα)

γ
1−γ

(
β∗ξT
γ

) 1
γ−1

+
(1− δ)LgT

1− δα

]
1{ξT<(1−δα)m/β∗}.

(2.35)
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Case A2 If (1− δα)γ > 1− α, we define z̃ =
(1−δ)LgT

(1−δα)(1−γ)
and k = γ(1− δα)[(1− δα)z̃ −

(1− δ)LgT ]γ−1. Then, the optimal portfolio value at time t, 0 ≤ t < T , is

X∗t (β∗) = e−r(T−t)(B1 +B2),

B1 = (1− δα)
γ

1−γ

(
k

γ

) 1
γ−1 φ[d1,t(k/β

∗)]

φ[d2,t(k/β∗)]
Φ[d2,t(k/β

∗)],

B2 =
LgT (1− δ)

1− δα
Φ[d1,t(k/β

∗)].

(2.36)

π∗t given below is an optimal amount to invest in the risky asset at time t, for 0 ≤ t < T .

π∗t (β
∗) =

e−r(T−t)

σ
√
T − t

(b1 + b2),

b1 = (1− δα)
γ

1−γ

(
k

γ

) 1
γ−1

K(k/β∗),

b2 =
LgT (1− δ)

1− δα
φ[d1,t(k/β

∗)].

(2.37)

Finally, the optimal terminal portfolio value is

X∗T (β∗) =

[
(1− δα)

γ
1−γ

(
β∗ξT
γ

) 1
γ−1

+
(1− δ)LgT

1− δα

]
1{ξT<k/β∗}. (2.38)

Case A3 If γ ≥ 1 − α ≥ (1 − δα)γ, we define z̃ =
LgT
α

and k = (1 − α)γ (z̃)γ−1. Then,
the optimal portfolio value at time t, 0 ≤ t < T , is

X∗t (β∗) = e−r(T−t)(C1 + C2 + C3),

C1 = (1− δα)
γ

1−γ

(
k

γ

) 1
γ−1 φ[d1,t(k/β

∗)]

φ[d2,t(k/β∗)]
Φ [d2,t ((1− δα)m/β∗)] ,

C2 =
LgT (1− δ)

1− δα
Φ [d1,t ((1− δα)m/β∗)] ,

C3 =
LgT
α

(Φ[d1,t(k/β
∗)]− Φ [d1,t ((1− δα)m/β∗)]) .

(2.39)

π∗t given below is an optimal amount to invest in the risky asset at time t, for 0 ≤ t < T .

π∗t (β
∗) =

e−r(T−t)

σ
√
T − t

(c1 + c2 + c3),

c1 = (1− δα)−1

(
m

γ

) 1
γ−1

K [(1− δα)m/β∗] ,

c2 =
LgT (1− δ)

1− δα
φ [d1,t ((1− δα)m/β∗)] ,

c3 =
LgT
α

(φ[d1,t(k/β
∗)]− φ [d1,t ((1− δα)m/β∗)]) .

(2.40)
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Finally, the optimal terminal portfolio value is

X∗T (β∗) =

[
(1− δα)

γ
1−γ

(
β∗ξT
γ

) 1
γ−1

+
(1− δ)LgT

1− δα

]
1{ξT<(1−δα)m/β∗}

+
LgT
α

1{(1−δα)m/β∗≤ξT≤k/β∗}.

(2.41)

Proof. Step 1. Obtain the terminal portfolio value X∗T (β∗) := Xπ∗
T (β∗) = Z∗β∗ ≡

x∗(β∗ξT ) and the portfolio value at t, i.e.

X∗t (β∗) := Xπ∗

t (β∗) ≡ Y ∗t = ξ−1
t E[ξTZ

∗
β∗|Ft] ≡ ξ−1

t E[ξTx
∗(β∗ξT )|Ft].

In this step, the formulas given in Appendix A.2 are useful. The obtained X∗t (β∗)
depends on t and ξt, and thus we can write X∗t (β∗) = q(t, ξt), where q is a C2 function
as one can see from equations (2.33), (2.36), and (2.39).

Step 2. We note that {ξtY ∗t ,∀0 ≤ t ≤ T} is a martingale with ξ0Y
∗

0 = x0 so that it
has a zero drift. Thus, from equation (2.8), we obtain dξt = −rξtdt − ζξtdWt, and
further apply Itô’s formula to get the diffusion term of ξtY

∗
t as follows

θ∗t = −ζξt
(
Y ∗t + ξt

∂q(t, ξt)

∂ξt

)
.

Step 3. Apply equation (2.17) to obtain the optimal trading strategy by the formula

π∗t = σ−1ξ−1
t θ∗t + σ−1ζY ∗t = −ζξt

σ

∂q(t, ξt)

∂ξt
.

The specific implementation of the above three-step procedure for results in case A1
is demonstrated in Appendix A.3, and the results for the other two cases can be obtained
similarly.

2.4.2 Optimal Trading Strategy for Fully Protected Participat-
ing Contract

Proposition 2.9. For the fully protected participating contract, the optimal portfolio value,
the optimal trading strategy and the corresponding terminal portfolio value are given as
below with ν̂ satisfying E[ξTX

∗
T (ν̂)] = x0:

Case B1 If λ > γ+α−1
α

(
1−α
α

)γ−1
, let z̃ be the unique solution of equation (2.29) over the

interval (LgT ,
LgT
α

) and let k = γ(z̃ − LgT )γ−1 as in Case B1, part (b) of Proposition 2.5.
Then, the optimal portfolio value at time t, 0 ≤ t < T , is X∗t (ν̂) given by (2.33), the
optimal trading strategy is π∗(ν̂) given by (2.34), and the optimal terminal portfolio value
is X∗T (ν̂) given by (2.35).
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Case B2 If λ < (1−δα)γ+α−1
α

(
1−α
α

)γ−1
, then let z̃ be the unique solution to equation (2.30)

over the interval (
LgT
α
,∞), and define k = γ(1− δα)[(1− δα)z̃ − (1− δ)LgT ]γ−1 as in Case

B2, part (b) of Proposition 2.5. Then the optimal portfolio value at time t, 0 ≤ t < T
is X∗t (ν̂) given by (2.36), the optimal trading strategy is π∗(ν̂) given by (2.37), and the
optimal terminal portfolio value is X∗T (ν̂) given by (2.38).

Case B3 If (1−δα)γ+α−1
α

(
1−α
α

)γ−1 ≤ λ ≤ γ+α−1
α

(
1−α
α

)γ−1
, define

z̃ =
LgT
α

and k = α

[(
1− α
α

)γ
+ λ

]
(LgT )γ−1.

Then the optimal portfolio value at time t, 0 ≤ t < T , is X∗t (ν̂) given by (2.39), the optimal
trading strategy is π∗(ν̂) given by (2.40), and the optimal terminal portfolio value is X∗T (ν̂)
given by (2.41).

Proof. For each of Cases B1, B2, and B3, the results can be derived following a three-step
procedure in a similar way as in Proposition 2.8.

Remark 2.10. For both the defaultable and protected policies, both X∗T (β∗) and X∗T (ν̂) are
sums of indicator functions, which are non-negative. The non-negativity of both X∗t (β∗)
and X∗t (ν̂) follows from their derivation as in Proposition 2.1. Meanwhile, π∗t and π̂t are
actually non-negative as well; see Appendix A.4 for a more detailed explanation.

2.5 Numerical Examples

In this section, we numerically implement the results obtained in Propositions 2.8 and 2.9
for illustration. For notational convenience, we suppress the argument β∗ and write X∗t (β∗)
and π∗t (β

∗) as simply X∗t and π∗t respectively. We consider parameters chosen as follows:

x0 T r g µ σ
100 5 0.03 0.0175 0.07 0.3

Table 2.1: Parameter for Numerical Illustration

We select T = 5 instead of a longer term since constant parameters are assumed.
Because the condition for each case in Propositions 2.8 and 2.9 varies, we conduct the
numerical illustration based on different choices of α, δ, γ, and λ that result in the different
cases. The results are given in Figure 2.3.

The left panel of Figure 2.3 shows the optimal terminal value X∗T versus the price
density process ξT . Recall from (2.35), (2.38), and (2.41) that X∗T is the summation of
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(a) Case A1: α = 0.4 (b) Case A1: α = 0.4

(c) Case A2: α = 0.9 (d) Case A2: α = 0.9

(e) Case A3: α = 0.75 (f) Case A3: α = 0.75

Figure 2.3: Defaultable participating contract with γ = 0.5, δ = 0.8727. Left panel:
optimal terminal value versus price density process. Right panel: Optimal amount of
investment in the risky asset versus optimal asset value.
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indicator functions and when ξT > k/β∗, X∗T = 0. The figures in the left panel reveal the
value of k/β∗ for each case. Meanwhile, as expected, we can obtain the solutions β∗ to
E[ξTX

∗
T ] = x0 for Cases A1, A2, and A3, which are 0.053, 0.0296, and 0.0387 respectively.

Mathematical speaking, the vertical distance of the drop in value X∗T corresponds to the
tangent point when we construct the concave envelop. It is intuitive that if we incorporate
the transaction cost in our model, the vertical distance of the drop will become small and
the discontinuity shown in the left panel of the figure will disappear if we take a large
transaction cost into consideration.

The right panel of Figure 2.3 illustrates the optimal investment amount in the risky
asset π∗t versus the total optimal portfolio value X∗t at time t = 4, i.e., one year before
maturity. As revealed by the figures, π∗t versus the optimal value Xt for Cases A1, A2, and
A3 (Figures 2.3b, 2.3d and 2.3f) exhibits a “peak-and-valley” pattern with distinct kink
points. X∗t is non-negative, coinciding with our theoretical finding in Proposition 2.8; (see
Remark 2.10). When the optimal value X∗t is close to zero, the optimal investment amount
in the risky asset stays close to zero as well. When X∗t is large enough, at least larger than
the value of the second turning point shown in the figures, the optimal investment amount
in the risky asset π∗t increases with X∗t .

Figure 2.4 provides numerical illustrations for the protected policy. From the figures,
we can see that different cases exhibit similar patterns with slight differences depending
on the choices of parameters.

To gain insight of the insurer’s investment behavior, we obtain Figure 2.5 where we
use optimal weight of investment in the risky asset instead of the dollar amount for one
specific case of defaultable participating contract. As we can see from Figure 2.5, when the
portfolio portfolio is large, the insurer has certain belief that the market is in a good state
and then invests a certain weight in risky asset, while the small portfolio value corresponds
to a bad market condition, in this case, the insurer exhibits a risk seeking attitude by
investing a high proposition of portfolio in the risky asset. The similar pattern shown in
Figure 2.5 can be also found if one performs numerical experiments considering other cases
of both the defaultable participating contract and the fully protected policy.

2.5.1 Comparison with CPPI Strategy

Bernard and Le Courtois (2012) considered the Constant Proportion Portfolio Insurance
(CPPI) strategy for asset management with participating contracts. In theory as well
as in practice, CPPI has shown its advantage in that the strategy not only guarantees a
minimum level of wealth over a pre-specified time horizon, but also allows potential upward
return. In this respect, it is well-designed because it protects investors from downside risk
and provides an opportunity to earn excess return when the market performs well. At
each time, the discounted guarantee is called the floor, and the investment in the risky
asset is proportional to the cushion value, defined as the portfolio value less the floor. The
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(a) Case A: λ = 2.25 (b) Case A: λ = 2.25

(c) Case B: λ = 1.1 (d) Case B: λ = 1.1

(e) Case C: λ = 1.3 (f) Case C: λ = 1.3

Figure 2.4: Protected policy with α = 0.9, γ = 0.5, δ = 0.1. Left panel: optimal terminal
value versus price density process. Right panel: Optimal amount of investment in the risky
asset versus optimal asset value.
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Figure 2.5: Optimal weight of investment in the risky asset versus optimal asset value for
the defaultable participating contract with γ = 0.5, δ = 0.8727, and α = 0.75.

proportional factor is called the multiplier of CPPI. See Chapter 9 in Prigent (2007) for
more technical details regarding the CPPI strategy.

Under a geometric Brownian motion model for the risky asset, the value process of a
CPPI portfolio, as shown in Prigent (2007), is as follows:

V CPPI
t (m,St) = F0e

rt + C0 exp

{[
r −m

(
r − 1

2
σ2

)
− m2σ2

2

]
t

}(
St
S0

)m
, 0 ≤ t ≤ T,

where, m is the multiplier for CPPI, C0 and F0 are the initial cushion and initial floor,
respectively. The value process Vt := V CPPI

t (m,St), floor process Ft and cushion process
Ct are related by Vt = Ft + Ct for t ∈ [0, T ].

For comparison, we set the guarantee floor as FT = F0e
rT = L0e

gT . Since St is assumed
to follow a geometric Brownian motion, it is easy to verify that

E
[
V CPPI
t (m,St)

]
= F0e

rt + C0 exp

{[
r −m

(
r − 1

2
σ2

)
− m2σ2

2

]
t

}
exp(µcppi +

1

2
σ2

cppi)√
V ar [V CPPI

t (m,St)] = C0 exp

{[
r −m

(
r − 1

2
σ2

)
− m2σ2

2

]
t

}√(
eσ

2
cppi − 1

)
e2µcppi+σ

2
cppi

where µcppi = (µ− 1

2
σ2)mT and σcppi = σm

√
T .

With Xt = V CPPI
t (m,St),∀0 ≤ t ≤ T , we have no analytical formula for E [U(Ψ(XT ))]

and E
[
U(Ψ̂(XT ))

]
. We rely on simulation to estimate these values.

The parameters are specified in Table 2.2. Similarly, T = 5 is selected instead of a
longer term since we assume constant parameters. λ = 2.25 is set following the paper by
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He and Kou (2018). The number of simulations is set to be N = 10000. Additionally, we
choose σ = 0.1, σ = 0.3 and σ = 0.5 to represent markets with different volatility levels. As
for the CPPI strategy, m = 0.5, m = 1 and m = 1.5 are selected to represent a conservative
strategy, moderate strategy and aggressive strategy, respectively. The parameters used in
the examples are summarized in Table 2.2.

x0 T r g µ α δ γ λ N
100 5 0.03 0.0175 0.07 0.9 0.8727 0.5 2.25 10000

Table 2.2: Parameter for Comparison

Volatility Strategy E [U(Ψ(XT ))] E
[
U(Ψ̂(XT ))

]

σ = 0.1
CPPI

m = 0.5 3.5820 3.5820
m = 1 3.6424 3.6424
m = 1.5 3.7016 3.7016

DP 6.5364 ×
PP × 4.5237

σ = 0.3
CPPI

m = 0.5 3.5701 3.5701
m = 1 3.518 3.518
m = 1.5 3.3388 3.3388

DP 3.9592 ×
PP × 3.6105

σ = 0.5
CPPI

m = 0.5 3.4827 3.4827
m = 1 3.1642 3.1642
m = 1.5 2.6563 2.6563

DP 3.7072 ×
PP × 3.5685

Table 2.3: Comparison Statistics with x0e
rT = 116.1834 and L0e

gT = 98.2298: DP (resp.
PP) stands for our strategy in defaultable policy (resp. protected policy); “×” stands for
“not applicable”.

The numerical results are shown in Table 2.3. As would be expected (since we are
looking at in-sample results), the expected utility from the optimal strategy in both the
defaultable and protected policies is always greater than that from the standard CPPI
strategy across all the three levels of volatility.

Secondly, notice that in the stable market, i.e. σ = 0.1, the expected utility from the
standard CPPI strategy increases with m. However, when σ = 0.3 and σ = 0.5, as m
increases, the insurance company will be less satisfied, i.e. the expected utility decreases.
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Therefore, adopting more aggressive CPPI strategy, i.e. a large m, will result in less
satisfaction in the presence of a large σ.

Thirdly, note that when σ changes from 0.1 to 0.3, our strategy both in the defaultable
and protected policies results in the decrease of expected utility by roughly 2.57 and 0.91,
respectively. As well, the CPPI strategy leads to decrease of expected utility by 0.012, 0.12,
and 0.36 for m = 0.5, m = 1 and m = 1.5, respectively. But when σ changes from 0.3 to
0.5, the expected utility for the insurance using our strategy in the two policies decreases
by approximately 0.25 and 0.05, respectively. For the CPPI strategy, the expected utility
decreases by 0.08, 0.35, and 0.68 for m = 0.5, m = 1, and m = 1.5, respectively.

In short, theoretically it is possible that the portfolio value may fall below the guarantee
level, resulting in nothing for the insurance company selling defaultable participating con-
tracts and a negative payoff for the one selling protected policies, compared with the CPPI
strategy which always leads to an asset value above the guarantee level. When employing
CPPI in practice, one cannot continuously rebalance the portfolio. Consequently, it is pos-
sible that the portfolio value may fall below the guarantee level when using a discretized
CPPI strategy. The difference between the optimal utility and the CPPI utility is more
pronounced when σ ∈ (0.1, 0.3) than when σ ∈ (0.3, 0.5).

2.5.2 Comparison with OBPI Strategy

Another approach considered by Bernard and Le Courtois (2012) is the Option Based
Portfolio Insurance (OBPI) strategy. Its goal is to guarantee the investor a terminal port-
folio value never below a certain level for a given time horizon. In theory, this is a strategy
constructed via purchasing European put options and the corresponding underlying assets,
or buying bonds and call options. However, in practice, the strategy is often impossible to
implement because there are in general no available options for a given maturity. One pos-
sibility is to use Equity Default Swaps (EDSs) which have longer maturities than standard
options. This is examined in Bernard and Le Courtois (2012) and Bernard et al. (2010).

EDSs are created for the similar reason as Credit Default Swaps (CDSs), which protect
against severe events on bonds. The investor in EDSs pays a fee periodically, typically
semi-annually. When an equity falls by 100d% of its initial value then the severe event
occurs and the investor will be given a rebate. A common choice of barrier level (i.e.
(1 − 100d%)) is 70%. For the rebate setting, in Bernard et al. (2010), they chose 50% of
initial value as the rebate, i.e. 50% × S0, while Bernard and Le Courtois (2012) use 50%
of the dropped value, i.e. 50%× 100d%×S0. We follow the latter reference. The maturity
of EDSs varies, and is typically set equal to 5 years.

Note that the EDSs terminate at the first time τ such that Sτ = (1 − d)S0. If the
underlying does not touch the barrier level (1− d)S0, the investor in EDSs ends up with a
zero payoff at maturity. The density gτ (t) of the first-hitting time τ is given by

gτ (t) =
| ln(1− d)|
σ
√

2πt3
exp

(
−(| ln(1− d)| − |r − 0.5σ2|t)2

2σ2t

)
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This is an Inverse Gaussian distribution with λ =
[

ln(1−d)
σ

]2

and µ =
∣∣∣ ln(1−d)
r−0.5σ2

∣∣∣, denoted

as IG(λ, µ). Here we set S0 = x0 = 100. The rebate is set to 50%× 100d%× S0 = 0.5dS0,
thus the expected discounted payoff is

E(0.5dS0e
−rτ1τ<T ) = 0.5dS0

∫ T

0

e−rτgτ (t)dt = 0.5dS0 exp

[
λ

µ

(
1−

√
1 +

2µ2r

λ

)]∫ T

0

gτeds(t)dt

where τeds follows IG(λeds, µeds) with λeds = λ and µeds = µ√
1−2µ2t/λ

. Therefore, we can

solve it explicitly.

The portfolio consists of n shares of stock S and EDSs, i.e. x0 = n×[S0+E(0.5dS0e
−rτ1τ<T )].

Following the parameters specified above and in Table 2.2, we choose d = 1 − L0egT

S0
=

0.0177, d = 0.3, and d = 0.5 representing the barrier level to be the guarantee liability,
70% of the initial equity value and 50% of the initial equity value, respectively. We assume
that when the stock price hits the barrier level, all the money, including the rebate and
the amount of money from the sale of stock, will be invested in the risk-free asset.

Volatility Strategy E [U(Ψ(XT ))] E
[
U(Ψ̂(XT ))

]

σ = 0.1
EDS

d = 0.0177 3.7407 3.7407
d = 0.3 3.7337 3.2129
d = 0.5 3.9278 3.5685

DP 6.5364 ×
PP × 4.5237

σ = 0.3
EDS

d = 0.0177 3.5967 3.5967
d = 0.3 2.1714 -2.3837
d = 0.5 2.6529 -2.2039

DP 3.9592 ×
PP × 3.6105

σ = 0.5
EDS

d = 0.0177 3.5691 3.5691
d = 0.3 1.2512 -5.3787
d = 0.5 1.8190 -6.3325

DP 3.7072 ×
PP × 3.5685

Table 2.4: Comparison Statistics with x0e
rT = 116.1834 and L0e

gT = 98.2298: DP (resp.
PP) stands for our strategy in defaultable policy (resp. protected policy); “×” is short for
“not applicable”.

The numerical results are shown in Table 2.4. The OBPI strategy has a lower utility
than the optimal strategy (as is to be expected, since we are looking at in-sample results),
with the difference being larger at a high volatility level.
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In addition, given a volatility level, when the barrier level is set close to the initial
equity value, which means it is easy to reach the barrier level, the portfolio consists of only
the risk-free asset after touching the barrier level. In this case, the portfolio evolves like
the risk-free asset. Although the EDS protects the portfolio from falling below the barrier
level, it does not allow potential upward return once it touches the barrier level. The utility
in this case is close to that from simply investing in the risk-free asset. However, when
the barrier level is set far below the initial equity value, the premium of the EDS is high.
The investment shares in both the equity and EDSs are small due to the budget. In the
future, if the price of the stock declines to the barrier level, the rebate will be returned to
the insurer, otherwise the insurance company will get no payoff from the EDSs. In other
words, the expected utility is not very high mainly due to the small value of the terminal
portfolio resulting from the small shares in both the stock and EDSs, although the upside
return of the equity might be large.

The (in-sample) out-performance of the optimal strategy in terms of utility confirms the
analytical results given earlier. Furthermore, when the volatility level is changing but still
stays high, the optimal strategy performs better due to the small change of the expected
utility level. As we will see in the next section, when σ is high, the expected utility from
the optimal strategy is close to that with a bounded constraint on the control. In other
words, when σ is high, the optimal strategy dynamically chooses not to invest too much
money in the risky asset, which is different from the standard CPPI and OBPI strategy
where the multiplier m is set to be constant at the beginning.

2.6 Constrained Optimization Problem with Bounded

Control

For both the defaultable and protected policies, our numerical experiments (Figures 2.3
and 2.4) show that it is possible to have π∗t > X∗t for some t ∈ [0, T ], i.e. the amount of
money invested in the risky asset is greater than the total portfolio value at time t. In other
words, the insurance company takes a leveraged position in the risky asset by borrowing
money. This increases expected utility and expected return, but produces a riskier portfolio
and may violate investment policies. In this section, we consider the utility maximization
problem with a constraint placing an upper bound on the control.

2.6.1 Formulation

We rewrite the dynamics for the portfolio given in (2.1) by introducing the portfolio weight
in the risky asset ηt to obtain

dXη
t = [r + ηt(µ− r)]Xη

t dt+ σηtX
η
t dWt. (2.42)
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We consider the constraint set of the control Σ := [0, ηmax] where we set ηmax = 0.4. We
denote C as the set of F-progressively measurable processes η such that ηt ∈ Σ,∀0 ≤ t ≤ T
a.s. Then the constrained optimization problems for the defaultable and protected policies
can be written as

sup
η∈A(x0)∩C

E[U(Ψ(Xη
T ))] and sup

η∈A(x0)∩C
E[U(Ψ̂(Xη

T ))], (2.43)

where A(x0) is given in (2.7).

Denote by v(t, x) the optimal objective value of the problem, evaluated at time t given
that Xπ

t = x. It can be shown that the solution to the following HJB equation coincides
with v(t, x) (see Chapter 3 in Pham (2009)):{

vt + xvxr + supηt∈Σ{xvxηt(µ− r) + 1
2
x2σ2η2

t vxx} = 0,

v(T, x) = U(Ψ(x)).
(2.44)

It can be proved that the optimal objective value function v(t, x) is the viscosity solution
to the above HJB equation by Pham (2009), Theorems 4.3.1 and 4.3.2, pp. 68-69). The
uniqueness of the viscosity solution to the above HJB equation can be justified by Flem-
ing and Soner (2006). Similarly, the constrained optimization problem for the protected
contract can be formulated and we will have the same partial differential equation as the
above with Ψ(·) replaced by Ψ̂(·) in the boundary condition.

2.6.2 Optimal Value under Constrained Optimization

To solve the HJB equation numerically, we use the scheme proposed by Forsyth and Labahn
(2007). Using the parameter values in Table 2.1, we solve the constrained optimization
problems varying the choices of α, δ, γ, and λ for comparison.

We define a grid by discretizing both the state space and time. Following the parameters
in Table 2.2, we carry out a numerical experiment to find out the optimal value v(0, x0)
for three distinct values of σ, as shown in Table 2.5. x-nodes refers to the discretized
state space, while time steps is the total number discretized time steps. We conduct our
numerical experiment using the fully implicit scheme and Crank-Nicolson scheme. The
results for both schemes are similar, thus we only report the result from the fully implicit
method with constant time-step.

Firstly, as the numbers of x-nodes and time steps increase, the number of iterations
taken until convergence increases. Here, we discretize the control space and obtain the π-
nodes. We use a linear search method to determine the optimal control value (see Sections
4 and 7 in Wang and Forsyth (2008)) because of the complexity of the form of the HJB
equation and the Positive Coefficient condition. Note that we keep the number of π-nodes
constant. Increasing the number of π-nodes and yields similar results.
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Defaultable Policy Protected Policy

number of
time steps

number of
iterations

E [U(Ψ(XT ))]
iterations

E
[
U(Ψ̂(XT ))

]
x-nodes π-nodes constrained constrained

σ = 0.1, x0 = 100, E [U(Ψ(XT ))] = 6.5342, E
[
U(Ψ̂(XT ))

]
= 4.5237 (unconstrained case)

73 60 1000 178 3.781671 185 3.781658
145 120 1000 312 3.779824 346 3.779669
289 240 1000 542 3.775911 607 3.775515
577 480 1000 1004 3.773042 1087 3.77247
1153 960 1000 1975 3.771647 2042 3.770973
2305 1920 1000 3907 3.77092 3954 3.770191
4609 3840 1000 7769 3.770584 7782 3.769826

σ = 0.3, x0 = 100, E [U(Ψ(XT ))] = 3.9592, E
[
U(Ψ̂(XT ))

]
= 3.6105 (unconstrained case)

73 60 1000 190 3.604185 192 3.604098
145 120 1000 350 3.604694 373 3.60466
289 240 1000 584 3.605178 653 3.605159
577 480 1000 1052 3.605903 1122 3.605892
1153 960 1000 2037 3.606696 2056 3.60669
2305 1920 1000 4009 3.607194 3942 3.607191
4609 3840 1000 7906 3.607708 7714 3.607706

σ = 0.5, x0 = 100, E [U(Ψ(XT ))] = 3.7072, E
[
U(Ψ̂(XT ))

]
= 3.5685 (unconstrained case)

73 60 1000 194 3.55641 200 3.555774
145 120 1000 360 3.560061 379 3.560002
289 240 1000 619 3.56047 656 3.560446
577 480 1000 1094 3.560912 1109 3.5609
1153 960 1000 2105 3.561317 2035 3.561311
2305 1920 1000 4098 3.561609 3877 3.561605
4609 3840 1000 8001 3.561886 7708 3.561884

Table 2.5: Fully Implicit Method with constant time steps for constrained optimization
with a bounded control. The portfolio weight ηt ∈ [0, 0.4], ∀t ∈ [0, T ].
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Secondly, as expected, the optimal value under the constrained optimization problem
obtained via the numerical PDE method is always smaller than the optimal value for
the unconstrained optimization problem using simulation given the analytical solution for
optimal terminal wealth derived in the previous sections.

Thirdly, it is worth mentioning that the optimal value for the unconstrained optimiza-
tion problem can also be obtained via the numerical PDE method. We have also carried
out the numerical experiment by choosing ηmax to be large enough and attain values very
close to those derived from the analytical solution.

Finally, when σ increases, it seems that the difference of optimal values between the
constrained and unconstrained problems becomes smaller. In other words, the portfolio
evolves as if it is unconstrained. When σ is large, a small change of σ does not cause too
much difference in the optimal value. Therefore, the strategy is less sensitive to σ in a
volatile market, which agrees with our previous finding.

2.6.3 Portfolio Weight under Constrained Optimization

The results are shown in Figures 2.6 and 2.7. Figure 2.6 exhibits a three-dimensional
graph of the optimal portfolio weight in the risky asset at time t = 4, one year before
maturity of the contract over all possible portfolio values X∗t . When the portfolio value
is large enough, the exhibited patterns are similar, while they are slightly different when
the portfolio values are roughly between 0 to 200, which is the area of our interest because
the insurance company is endowed with 100 initially. Notice that the weight is capped at
0.4, which is different from the unconstrained problem in which there is no bound on the
control.

To better illustrate the difference from unconstrained optimization, Figure 2.7 shows
the optimal amount invested in the risky asset at t = 4 for both the constrained and
unconstrained problems. As shown in Figure 2.6, the graph exhibits a slight difference when
the asset value is between 0 and 200. However, most of the figures show a “peak-and-valley”
pattern and π∗t increases with X∗t when X∗t is larger than the value of the second of the
“turning points”. It is worth mentioning that for the unconstrained optimization problem,
the result is obtained using (2.34), (2.37), and (2.40) by simulation, therefore the range
of the value X∗t differs from the constrained optimization problem, in which we manually
select the range of X∗t while implementing the numerical PDE method. Furthermore,
as was pointed out previously by Barles et al. (1995) and Forsyth and Labahn (2007),
the possible maximum value of X∗t should be set to be large enough as to make the error
incurred from the approximating boundary condition to be small in the area of our interest.
The similarity of the patterns when the portfolio value is large in Figures 2.6 and 2.7 is
due to our choice of approximating boundary condition, which is set to be independent of
time.
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(a) Case A1: α = 0.4, γ = 0.5, δ =
0.8727

(b) Case B1: λ = 2.25,α = 0.9, γ =
0.5, δ = 0.1

(c) Case A2: α = 0.9, γ = 0.5, δ =
0.8727

(d) Case B2: λ = 1.1, α = 0.9, γ = 0.5,
δ = 0.1

(e) Case A3: α = 0.75, γ = 0.5, δ =
0.8727

(f) Case B3: λ = 1.3, α = 0.9, γ = 0.5,
δ = 0.1

Figure 2.6: Optimal weight under constrained optimization. Left panel: Defaultable par-
ticipating contract. Right panel: Protected participating contract.
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(a) Case A1: α = 0.4, γ = 0.5, δ =
0.8727

(b) Case B1: λ = 2.25,α = 0.9, γ =
0.5, δ = 0.1

(c) Case A2: α = 0.9, γ = 0.5, δ =
0.8727

(d) Case B2: λ = 1.1, α = 0.9, γ = 0.5,
δ = 0.1

(e) Case A3: α = 0.75, γ = 0.5, δ =
0.8727

(f) Case B3: λ = 1.3, α = 0.9, γ = 0.5,
δ = 0.1

Figure 2.7: Optimal amount of investment in the risky asset versus portfolio value. Left
panel: Defaultable participating contract. Right panel: Protected participating contract.
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2.7 Discussion

In this chapter, we consider a portfolio selection problem for a utility maximizing insurance
company selling participating contracts. Relying on the martingale approach and the
pointwise optimization technique, we are able to obtain a closed-form solution. In the
pointwise optimization procedure we adopt a concavification technique to transform the
problem to a solvable one. With the optimal solution, we present numerical examples as
well as comparisons with the standard CPPI and OBPI strategies. Finally, we consider
a constrained version of the optimization problem with the bounded control, obtain the
solution by employing a numerical method, and compare the solutions of the constrained
and unconstrained problems.
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Chapter 3

Portfolio Optimization with
Performance Ratios

3.1 Introduction

The mean-variance model of Markowitz (1952) is popular both in academia and in practice.
Closely related to the mean-variance model is the performance ratio known as the Sharpe
ratio (Sharpe (1966)), which measures performance as the expected excess return of an
investment above the risk-free interest rate divided by the standard deviation of its returns.
Since these seminal works, a large literature on performance ratios has developed, see, for
example, Prigent (2007).

A performance measure that has been popular recently, particularly in the evaluation
of alternative investments, is the Omega measure, introduced by Keating and Shadwick
(2002). This measure shares the basic structure of most performance measures, consisting
of a measure of reward divided by a measure of risk. In the case of the Omega, the reward
and risk are defined with respect to an exogenously specified benchmark return. Unlike
many performance measures, such as the Sharpe ratio, Sortino ratio (Sortino and Price
(1994)) or the kappa ratios of Kaplan and Knowles (2004), the Omega does not require
the assumption of the existence of higher moments to be well-defined.1

A number of recent papers have investigated portfolio selection problems using the
Omega measure as the objective function. For example, Mausser et al. (2006) employ a
technique from fractional linear programming to transform the portfolio selection problem
into a linear program. The transformation only works when the optimal Omega is greater
than 1. Kapsos et al. (2014) also introduce a transformation technique by changing the
original problem to a family of linear programming problems or a linear fractional pro-
gramming problem. Avouyi-Dovi et al. (2004) apply a Threshold Accepting algorithm to

1A finite mean, and a positive probability of underperforming the benchmark are necessary.
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solve the Omega optimization problem. Kane et al. (2009) use the Multi-level Co-ordinate
Splitting method to optimize the Omega.

The above-mentioned literature considers optimizing the Omega measure in a discrete
time framework, typically on a finite sample space. Bernard et al. (2017) show that the
Omega optimization problem is unbounded in a continuous time financial model. We
present a related result in the classical diffusion-based Merton (1969) framework in Sec-
tion 3.2. In order to reflect different attitudes towards reward and risk, we modify the
Omega ratio to include a utility function for overperformance and a penalty function for
underperformance in the definition of the performance ratio. With this modified defini-
tion, we consider the portfolio selection problem of maximizing the performance ratio and
structuring the optimal trading strategy.

Difficulties arise as the objective function of our problem is a ratio, and is neither
concave nor convex. Following classical methods in fractional programming (Dinkelbach
(1967)), as well as more recent work on the continuous time mean-variance stochastic con-
trol problem by Zhou and Li (2000), we transform the original portfolio selection problem
to a family of solvable ones, where one of the reformulated problems recovers the solution
to the original problem. More specifically, we optimize the ratio by considering a family of
“linearized” problems in which the objective function is the numerator of the original prob-
lem minus the denominator multiplied by a penalty parameter. To solve the transformed
problems, we apply the martingale approach and convex duality methods (see Karatzas
and Shreve (1998) for more details). As the objective in each “linearized” maximization
problem is still not concave, we apply the concavification technique used in Carpenter
(2000), He and Kou (2018) and Chapter 2 (also see Lin et al. (2017)).

This chapter proceeds as follows. Section 3.2 presents the formulation of the portfolio
selection problem, rules out ill-posed problems, introduces the linearized problems and
discusses properties of their optimal values as a function of the penalty parameter. In
Section 3.3, we solve the linearized problems using Lagrangian duality and the pointwise
optimization technique. Section 3.4 presents the explicit optimal solutions of the original
portfolio selection problem for power penalty and utility functions, and provides some
numerical examples. Further sensitivity analysis of the optimal solutions with respect to
the model parameters is presented in Section 3.5. Section 3.6 concludes the Chapter.
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3.2 Model Formulation and Preliminary Analysis

3.2.1 Financial Market Model

We assume that an agent, with initial wealth x0 > 0, invests capital in a risk-free bond B
and p risky assets with price processes as follows:

dBt = rBtdt,

dS
(i)
t = S

(i)
t

[
µ(i)dt+

p∑
j=1

σijdW
(j)
t

]
, i = 1, · · · , p,

(3.1)

where r > 0 is the risk-free rate, µ(i) > r is the expected return rate of the risky asset i, for
i = 1, · · · , p, and we let µ = (µ(1), · · · , µ(p))> be the vector of expected returns of the risky
assets. σ = {σij}1≤i,j6p is the corresponding volatility matrix, which is invertible with in-

verse σ−1. W ≡ {Wt, t > 0} := {(W (1)
t , · · · ,W (p)

t )>, t > 0} is a standard Brownian motion
valued on Rp under the physical measure P defined over a probability space (Ω,F). We
use F := {Ft, t ∈ [0, T ]} to denote the P-augmentation of the natural filtration generated
by the Brownian motion W .

We consider a finite investment time horizon [0, T ] with T > 0. Let πt := (π
(1)
t , · · · , π(p)

t )>,

where π
(i)
t denotes the dollar amount of capital invested in the ith risky asset at time t, for

t > 0 and i = 1, . . . , p. With the trading strategy π := {πt, 0 6 t 6 T}, the portfolio value
process, denoted by Xπ

t , evolves according to the following stochastic differential equation
(SDE):

dXπ
t = [rXπ

t + π>t (µ− r1)]dt+ π>t σdWt, t > 0, (3.2)

where 1 denotes the p-dimensional column vector with each element equal to 1. It is
natural to assume that the trading strategy π is F-progressively measurable and satisfies∫ T

0
‖πt‖2dt <∞ a.s. so that a unique strong solution exists for the SDE (3.2), where ‖ · ‖

denotes the usual L2-norm and thus ‖πt‖2 =
∑p

i=1 (πit)
2
.

Definition 3.1. A trading strategy π := {πt, 0 6 t 6 T} is called admissible with initial
wealth x0 > 0 if it belongs to the following set:

A(x0) := {π ∈ S : πt ∈ Rp, Xπ
0 = x0 and Xπ

t > 0, a.s., ∀ 0 6 t 6 T},

where S denotes the set of F-progressively measurable processes π such that
∫ T

0
‖πt‖2dt <∞

a.s.

We consider the market price of risk defined as:

ζ ≡ (ζ1, . . . , ζp)
> := σ−1(µ− r1),

42



and the state-price density process given by:

ξt := exp

{
−
(
r +
‖ζ‖2

2

)
t− ζ>Wt

}
. (3.3)

We also employ the notation:

ξt,s = ξ−1
t ξs = exp

[
−
(
r +
‖ζ‖2

2

)
(s− t)− ζ>(Ws −Wt)

]
, t 6 s. (3.4)

Note that ξt = ξ0,t and ξt,s is independent of Ft under P.

3.2.2 Performance Ratios and Problem Formulation

The performance ratio considered in this chapter is similar to the Omega measure intro-
duced by Keating and Shadwick (2002). Given a benchmark return level l, the Omega for
a random return R is defined as:

Ωl(R) =
E
[
(R− l)+

]
E
[
(l −R)+

] ,
where (x)+ := max{x, 0} for x ∈ R. Considering Omega as a performance measure for
optimization of the portfolio with value process Xπ

t defined in equation (3.2) leads to the
problem:

max
π∈A(x0)

{
ΩL(Xπ

T ) :=
E
[
(Xπ

T − L)+

]
E
[
(L−Xπ

T )+

]} (3.5)

for a given constant benchmark L ∈ R. It is noted that the Omega ratio was originally
defined in terms of returns, whereas the formulation in (3.5) is specified in terms of terminal
wealth.

• For simple returns Rπ
T =

Xπ
T

Xπ
0
− 1, we have

ΩL(Rπ
T ) =

E[(Rπ
T − L)+]

E[(L−Rπ
T )+]

=
E[(Xπ

T − L̃)+]

E[(L̃−Xπ
T )+]

= ΩL̃(Xπ
T ).

where L̃ = (1 + L)Xπ
0 . The optimization problems in terms of both return and

terminal value are equivalent.

• For log returns, Rπ
T = log

(
Xπ
T

Xπ
0

)
, we also have

ΩL(Rπ
T ) =

E[(Rπ
T − L)+]

E[(L−Rπ
T )+]

=
E[(logXπ

T − L̃)+]

E[(L̃− logXπ
T )+]

.
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where L̃ = logXπ
0 +L in this case. It is obvious that the two optimizations in terms

of both return and terminal value are not equivalent. In fact, in this case of log
return, one can adopt the same techniques outlined in the sequel to solve the the
optimization problem and the resulted value function is bounded.

As we will see shortly in Proposition 3.3, optimizing the Omega ratio in equation (3.5)
is not well-posed due to the linear growth of its numerator. Consequently, we introduce
two weighting functions and consider performance measures of the form:

R(XT ) =
E
{
U
[
(XT − L)+

]}
E
{
D
[
(L−XT )+

]}
where U : R+ 7→ R and D : R+ 7→ R are two measurable functions. The numerator
E
{
U
[
(XT − L)+

]}
measures the benefit from exceeding the benchmark wealth L, while

the denominator E
{
D
[
(L−XT )+

]}
penalizes shortfalls. For this reason, we refer to U as

the reward function and D as the penalty function throughout the chapter.

We formulate the agent’s portfolio selection problem as: sup
π∈A(x0)

E
{
U
[
(Xπ

T − L)+

]}
E
{
D
[
(L−Xπ

T )+

]} ,
subject to E[ξTX

π
T ] 6 x0.

(3.6)

Hereafter, we assume that the threshold L > 0. The budget constraint E[ξTX
π
T ] 6 x0

restricts the initial portfolio value to cost no more than x0. Indeed, we apply Itô’s formula
in conjunction with equations (3.2) and (3.3) to obtain:

ξtX
π
t = x0 +

∫ t

0

ξs(π
>
s σ − ζ>Xπ

s )dWs, t ∈ [0, T ]. (3.7)

The right-hand side in the above equation is a non-negative local martingale and thus a
super-martingale, which implies E[ξTX

π
T ] 6 E[ξ0X

π
0 ] = x0; see Proposition 1.1.7 in (Pham,

2009) or Chapter 1, Problem 5.19 in (Karatzas and Shreve, 1991).

3.2.3 Optimal Payoff Problem

In problem (3.6), we consider maximizing a performance ratio over all admissible trading
strategies. Each admissible trading strategy produces a nonnegative terminal wealth, and
the objective function only depends on this terminal wealth. Furthermore, it is well-known
from the theory of derivatives pricing (e.g. Karatzas and Shreve (1998)) that a large class
of nonnegative terminal payoffs can be replicated through admissible trading strategies.
Consequently, in relation to (3.6), it is natural to consider the following problem, which
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we refer to as the optimal payoff problem: sup
Z∈M+

E
{
U
[
(Z − L)+

]}
E
{
D
[
(L− Z)+

]} ,
subject to E[ξTZ] 6 x0,

(3.8)

where M+ denotes the set of non-negative FT -measurable random variables. We denote
the feasible set of the above problem by C(x0):

C(x0) = {Z ∈M+ | E[ξTZ] 6 x0} =
{
Z ∈M+ | EQ[Z] 6 x0e

rT
}
, (3.9)

where Q is defined by dQ
dP = erT ξT . Note that Q(Z < L) > 0 and therefore P(Z < L) > 0

for all Z ∈ C(x0) whenever x0 < e−rTL.

The following proposition reveals the relationship between the portfolio optimization
problem (3.6) and the optimal payoff problem (3.8).

Proposition 3.1. Suppose there exists ΛT ∈ M+ such that E[ξTΛT ] = x0. Then there
exists a process π := {πt, 0 6 t 6 T} ∈ A(x0) satisfying Xπ

T = ΛT a.s.

Proof. The result is a multidimensional generalization of Proposition 2.1 in Chapter 2
(see Lin et al. (2017) as well). The proof can be obtained in parallel and is therefore
omitted.

Under certain conditions an optimal solution can be obtained for the optimal payoff
problem (3.8) such that the constraint is binding (see Proposition 3.17), and from such a
solution, we can construct an optimal trading strategy for the portfolio optimization prob-
lem (3.6) by invoking Proposition 3.1. Let Z∗ be a solution to (3.8) satisfying E[ξTZ

∗] = x0.
Define

Y ∗t := ξ−1
t E[ξTZ

∗|Ft], 0 6 t 6 T. (3.10)

Then it is easy to verify that {ξtY ∗t , t ≥ 0} is a martingale relative to the filtration F, and by
the Martingale Representation Theorem (see Karatzas and Shreve (1991)), there exists an

Rp-valued F-progressively measurable process {θ∗t , 0 6 t 6 T} satisfying
∫ T

0
‖θ∗t ‖2dt < ∞,

a.s., and

ξtY
∗
t = x0 +

∫ t

0

(θ∗s)
>dWs, 0 6 t 6 T. (3.11)

We further denote

(π∗t )
> = ξ−1

t (θ∗t )
>σ−1 + Y ∗t ζ

>σ−1, 0 6 t 6 T. (3.12)

Proposition 3.2. π∗ := {π∗t , 0 6 t 6 T} ∈ A(x0) given in (3.12) solves the portfolio
optimization problem (3.6), and the optimal portfolio value at time t, 0 6 t 6 T , is given
by Xπ∗

t = Y ∗t , where Y ∗t is defined in equation (3.10).
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Proof. Xπ
T is FT -measurable and thus Xπ

T ∈ M+ for any π ∈ A(x0). By following exactly
the same lines in the proof Proposition 2.1 in Chapter 2 (see Lin et al. (2017) as well),
we can prove that Xπ∗ = Z∗ a.s, and consequently the optimality of Z∗ for problem (3.8)
implies

E
{
U
[(
Xπ∗
T − L

)
+

]}
E
{
D
[
(L−Xπ∗

T )+

]} =
E
{
U
[
(Z∗ − L)+

]}
E
{
D
[
(L− Z∗)+

]} >
E
{
U
[
(Xπ

T − L)+

]}
E
{
D
[
(L−Xπ

T )+

]} , ∀π ∈ A(x0),

which means that π∗ solves problem (3.6). The claim about the optimal portfolio value
also follows in parallel from the proof of Proposition 2.1 in Chapter 2 (see Lin et al. (2017)
as well), and thus is omitted.

3.2.4 Ill-posedness of The Portfolio Selection Problem for Some
Performance Measures

Without additional assumptions, problem (3.6) may be unbounded. In this section, we
study such cases and establish the framework that we will use to study (3.6) in the re-
mainder of the Chapter. We begin by making the following assumption:

H1. U and D are strictly increasing and twice differentiable with U(0) = 0 and D(0) = 0.

The monotonicity of both U and D in assumption H1 is natural from the interpretation of
E
{
U
[
(XT − L)+

]}
and E

{
D
[
(L−XT )+

]}
as the reward for outperformance and penalty

for underperformance, respectively. The condition U(0) = D(0) = 0 mimics the definition
of the Omega measure in the sense that outperformance and underperformance are both
zero if the portfolio value is exactly equal to the benchmark.

Under the above assumption, it clearly only makes sense to consider the optimization
problem when x0 < e−rTL, as otherwise investing all wealth in the risk-free asset (set-
ting πt ≡ 0) leads to zero underperformance and a zero denominator in the performance
measure. The following proposition specifies another situation in which problem (3.6) is
unbounded.

Proposition 3.3. Suppose that x0 < e−rTL, and H1 holds. If the reward function U is a
convex function, then problem (3.6) is unbounded.

Proof. Note that since U is convex and strictly increasing, limy→∞ U(y) = ∞. Jin and
Zhou (2008) show how to construct a sequence of positive random variables Zn such that
E[ξTZn] = x0 and E[Zn]→∞. Applying Jensen’s inequality then implies that E{U [(Zn −
L)+]} > U(E[(Zn − L)+]) > U(E[Zn] − L) → ∞. Problem (3.8) is thus unbounded since
for any Z ∈M+,

E
{
U
[
(Z − L)+

]}
E
{
D
[
(L− Z)+

]} >
1

D(L)
E
{
U
[
(Z − L)+

]}
.
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By Proposition 3.1, for any integer n > 1 we can construct a trading strategy π to attain
Xπ
T = Zn a.s., and thus problem (3.6) is also unbounded.

Proposition 3.3 excludes convex reward functions U for problem (3.6) to be well-posed.
We consider concave reward functions instead, and impose the following two specific con-
ditions on U :

H2. The reward function U satisfies the Inada condition, meaning that lim
x↘0

U ′(x) = ∞
and lim

x→∞
U ′(x) = 0;

H3. The reward function U is strictly concave, with U ′′(z) < 0 for all z ∈ (0,∞).

The Inada condition given in H2 is a common technical assumption in the literature on
utility maximization problems. In the sequel, we allow the penalty function D to be either
concave or strictly convex, with certain mild conditions. A convex penalty function places
more severe penalties on extreme events, and reflects a greater aversion to large losses.

3.2.5 Linearization of The Optimal Payoff Problem

Since the optimal payoff problem (3.8) involves a non-convex objective function, it is dif-
ficult to solve directly. In order to reformulate it into a tractable problem, we set up the
following family of linearized problems2 parameterized by λ > 0:

v(λ;x0) = sup
Z∈C(x0)

E
{
U
[
(Z − L)+

]}
− λE

{
D
[
(L− Z)+

]}
. (3.13)

Remark 3.4. Jin and Zhou (2008) consider a problem which has a related and seemingly
more general objective function than (3.13). In their paper, they include probability weight-
ing functions on both the positive and negative parts, and when both weighting functions
are the identity function, the objective function reduces to the one given in equation (3.13).
Although adding probability weighting functions generalizes the model, problem (3.13) dif-
fers from theirs in at least two aspects. First, every feasible decision variable Z in problem
(3.13) is non-negative, whereas there is no pre-specified lower bound on the terminal portfo-
lio value in the model of Jin and Zhou (2008). In their paper, they do require the terminal
portfolio value to be bounded from below, but the lower bound depends on the trading strat-
egy under consideration. Consequently, their solution does not work for the problem with a
lower bound specified as a constraint. Second, because there is no pre-specified lower bound
on the terminal portfolio value in their model, their problem is unbounded if the probability
weighting function on the negative part is an identity function, which means that their
model does not encompass problem (3.13) as a special case.

2The ratio has been linearized. The optimization problem is still non-linear in Z.
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The following proposition provides the justification for considering the linearized prob-
lem (3.13) in solving problem (3.8).

Proposition 3.5. Assume x0 < e−rTL. For each λ > 0, let Z∗λ be a solution to problem
(3.13), and suppose there exists a constant λ∗ > 0 such that

λ∗ =
E
{
U
[
(Z∗λ∗ − L)+

]}
E
{
D
[
(L− Z∗λ∗)+

]} . (3.14)

Then Z∗ := Z∗λ∗ solves problem (3.8), and λ∗ is the optimal value.

Proof. The proof is similar to the proof of the analogous result for nonlinear fractional
programs in Dinkelbach (1967). By the optimality of Z∗λ∗ for problem (3.13), for ∀Z ∈M+

satisfying E[ξTZ] 6 x0, we have:
0 = E

{
U
[
(Z∗λ∗ − L)+

]}
− λ∗E

{
D
[
(L− Z∗λ∗)+

]}
> E

{
U
[
(Z − L)+

]}
− λ∗E

{
D
[
(L− Z)+

]}
= E

{
U
[
(Z − L)+

]}
−

E
{
U
[
(Z∗λ∗ − L)+

]}
E
{
D
[
(L− Z∗λ∗)+

]}E{D [(L− Z)+

]}
.

Furthermore, E[ξTZ] 6 x0 implies that Z < L holds with some positive probability;
otherwise, x0 > E[ξTZ] > E[ξT ]L = e−rTL, contradicting the assumption that x0 < e−rTL.
Thus E

{
D
[
(L− Z)+

]}
> 0 and

λ∗ =
E
{
U
[
(Z∗λ∗ − L)+

]}
E
{
D
[
(L− Z∗λ∗)+

]} >
E
{
U
[
(Z − L)+

]}
E
{
D
[
(L− Z)+

]}
for any Z ∈M+ satisfying E[ξTZ] 6 x0.

Remark 3.6. Note that at optimality the budget constraint must be binding, i.e. we must
have E[ξTZ

∗
λ] = x0, for if E[ξTZ

∗
λ] < x0, then Z̃ := Z∗λ + erT (x0 − E[ξTZ

∗
λ]) would still be

feasible and yields a larger objective value. We can thus apply Proposition 3.2 to obtain an
optimal trading strategy π∗ with initial value x0.

In the rest of the section, we study the existence of λ∗ satisfying the conditions in
Proposition 3.5. This study requires certain preliminary analysis on relevant properties of
the value function v defined in (3.13). To this end, we further impose the following addi-
tional assumption on the asymptotic behavior of the “Arrow-Pratt relative risk aversion”
of U :

H4. lim inf
x→∞

(
−xU ′′(x)

U ′(x)

)
> 0.

Proposition 3.7. Suppose that x0 < e−rTL and assumptions H1-H4 hold.

(a) 0 < v(0;x0) <∞.
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(b) v is non-increasing in λ.

(c) v(λ;x0) is convex in λ for each fixed x0 > 0.

(d) v(·;x0) is Lipschitz continuous.

Proof. The proof is provided in Section B.2 of Appendix B.

We are seeking a λ∗ such that v(λ∗;x0) = 0 in order to apply Proposition 3.5 and obtain
a solution of problem (3.8). To do so, we show that limλ→∞ v(λ;x0) = −∞ and invoke
the Intermediate Value Theorem. We define Ceq(x0) := {Z ∈ M+ | E[ξTZ] = x0} = {Z ∈
M+ | EQ[Z] = erTx0}.

Proposition 3.8. Let M = supZ∈Ceq(x0) E[U((Z − L)+)] and m = infZ∈Ceq(x0) E[D((L −
Z)+)]. Then M <∞, and m > 0.

Proof. The proof is provided in Section B.3 of Appendix B.

Corollary 3.9. limλ→∞ v(λ;x0) = −∞.

Proof. It was noted in Remark 3.6 that the budget constraint is binding at optimality.
Thus v(λ;x0) = supZ∈Ceq(x0) E[U((Z − L)+) − λD((L − Z)+)] 6 M − λm, which implies
the result.

Combining Proposition 3.7 and Corollary 3.9 yields the existence of the multiplier λ∗

satisfying (3.14) as shown in the proposition below.

Proposition 3.10. Under assumptions H1–H4, there exists a λ∗ > 0 such that (3.14)
holds.

3.3 Optimal Solutions to Problems (3.8) and (3.13)

Henceforth, we assume that H1-H4 hold and x0 < e−rTL. We will first analyze problem
(3.13), and then summarize the optimal solution to problem (3.8) at the end of this section.
Our analysis will focus on the cases of either a concave penalty function D or a strictly
convex D.
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3.3.1 Lagrangian Duality and Pointwise Optimization

The analysis in the last section motivates us to focus on the linearized optimal payoff prob-
lem (3.13), which we solve by a Lagrangian duality method and a pointwise optimization
procedure. This entails introducing the following optimization problems with multipliers
β, for each λ > 0:

sup
Z∈M+

E {hλ(Z)− βξTZ} , β > 0, (3.15)

where hλ(x) := U
[
(x− L)+

]
− λD

[
(L− x)+

]
, x ∈ R. We solve the above problem by

resorting to a pointwise optimization procedure and consider the following problem indexed
by λ > 0 and y > 0:

sup
x∈R+

{hλ(x)− yx} , (3.16)

where R+ denotes the set of nonnegative real numbers.

Lemma 3.11.

(a) Let x∗λ(y) be a Borel measurable function such that x∗λ(y) is an optimal solution to
problem (3.16) for each y > 0 and λ > 0. Then, Z∗λ,β := x∗λ(βξT ) solves problem
(3.15).

(b) Assume that, given λ > 0, there exists a constant β∗ > 0 such that Z∗λ,β∗ ∈ M+

solves problem (3.15) for β = β∗ and satisfies E[ξTZ
∗
λ,β∗ ] = x0. Then, Z∗λ := Z∗λ,β∗

solves problem (3.13).

Proof. The proof is in parallel with those of Lemmas 2.2 and 2.3 in Chapter 2 (see Lin
et al. (2017) as well), and thus omitted.

3.3.2 Solutions to The Pointwise Optimization Problem

Figure 3.1 presents the curve of the function hλ for λ = 0.5, L = 40 and some special
forms (power or linear) for the functions U and D. As can be seen from the figure, hλ is
not globally concave, but concave for sufficiently large input values. In order to maximize
hλ(x)− yx with respect to x, it is convenient to employ the concavification method (e.g.,
Carpenter (2000), and He and Kou (2018)). We denote the concave envelope of a given
function f with a domain G by f c.

f c(x) := inf{g(x) | g : G→ R is a concave function, g(t) > f(t), ∀t ∈ G}, x ∈ G.

Note that for a, b ∈ R, the concave envelope of f(x) + ax + b is f c(x) + ax + b. Thus,
the concavified version of (3.16) is:

sup
x∈R+

[hcλ(x)− yx] , λ > 0 and y > 0. (3.17)
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Figure 3.1: Examples of hλ(x) with L = 40.

The following result provides a connection between the solutions to problems (3.17) and
(3.16).

Lemma 3.12. Given λ > 0 and y > 0, if x∗λ(y) is a solution to problem (3.17) and
hcλ(x

∗
λ(y)) = hλ(x

∗
λ(y)), then x∗λ(y) solves problem (3.16).

Proof. The proof is straightforward; see Proposition 2.4 in Chapter 2 and also Lin et al.
(2017) for details.

Based on the shape of hλ, the following two lemmas may be employed to calculate hcλ.

Lemma 3.13. Suppose f : [0,∞) → [0,∞) is continuous and satisfies f(0) = 0; f is

concave on [z̃,∞) with z̃ > 0; f(x) 6 kx on [0, z̃] with f ′+(z̃) 6 k := f(z̃)
z̃

> 0. Then the
concave envelope of f is given by

f c(x) =

{
kx, x ∈ [0, z̃),

f(x), x ∈ [z̃,∞).
(3.18)

Proof. See Lemma A.1 of Appendix A (also see Lin et al. (2017)).

Lemma 3.14. Suppose f : [0,∞)→ [0,∞) is continuous and satisfies:

(1) f(0) = 0;

(2) f is concave on [0, z̃1] and [z̃2,∞), with z̃2 > z̃1 > 0;
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(3) f(x) 6 kx+ c on [z̃1, z̃2], with k = f(z̃2)−f(z̃1)
z̃2−z̃1 > 0 and c = z̃2f(z̃1)−z̃1f(z̃2)

z̃2−z̃1 ;

(4) f ′+(z̃2) 6 k 6 f ′−(z̃1).

Then the concave envelope of f is given by

f c(x) =

{
f(x), x ∈ [0, z̃1] ∪ [z̃2,∞),

kx+ c, x ∈ (z̃1, z̃2).
(3.19)

Proof. The proof is given in Section B.4 of Appendix B.

The above lemmas yield the following result.

Lemma 3.15. Let f(x) := hλ(x) + λD(L), and ẑ > L be the unique solution to

p1(ẑ) := U (ẑ − L) + λD(L)− U ′ (ẑ − L) · ẑ = 0. (3.20)

on (L,∞). Then, the concave envelope of f is given as follows.

(a) If D is an increasing concave function, then f c is given by equation (3.18) with z̃ = ẑ
and k = f ′(z̃).

(b) If D is an increasing strictly convex function with f ′(ẑ) > f ′+(0) = λD′(L), then
f c(x) is given by equation (3.18) with z̃ = ẑ and k = f ′(z̃).

(c) If D is an increasing strictly convex function with limx↘0D
′(x) = 0, and f ′(ẑ) <

f ′+(0) = λD′(L). Then, f c(x) is given by equation (3.19) with k = f ′(z̃1) = f ′(z̃2) =
λD′(L − z̃1) = U ′(z̃2 − L) and c = f(z̃2) − kz̃2, where the pair (z̃1, z̃2) is the unique
solution on [0, L)× (L,∞) to the system of equations:{

p2(z̃1, z̃2) :=U ′(z̃2 − L)− λD′(L− z̃1) = 0,

p3(z̃1, z̃2) :=U(z̃2 − L) + λD(L− z̃1)− U ′(z̃2 − L) · (z̃2 − z̃1) = 0.
(3.21)

Proof. The proof is given in Section B.5 of Appendix B.

The concave envelope of hλ can be obtained from Lemma 3.15 as hcλ = f c − λD(L).
The solution to problem (3.16) can be obtained based on solving problem (3.17) as shown
in the following proposition.

Proposition 3.16. For fixed λ > 0 and y > 0, x∗λ(y) defined below solves both problems
(3.16) and (3.17) in each of the following cases, where ẑ > L is the unique root of the
function p1 defined in (3.20).
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(a) If D is an increasing concave function satisfying the Inada condition, i.e., lim
x→0

D′(x) =

∞, then
x∗λ(y) =

{
(U ′)−1(y) + L, 0 < y 6 k,

0, y > k,
(3.22)

where k = f ′(ẑ).

(b) Assume that D is an increasing strictly convex function satisfying lim
x→0

D′(x) = 0.

(b1) For U ′(ẑ − L) > λD′(L), x∗λ(y) is given as in equation (3.22) where k = f ′(ẑ).

(b2) For U ′(ẑ − L) < λD′(L),

x∗λ(y) =


(U ′)−1(y) + L, 0 < y 6 k,

L− (D′)−1( y
λ
), k < y < λD′(L),

0, y > λD′(L),

(3.23)

where k = f ′(z̃1) = f ′(z̃2) = U ′(z̃2 − L) = λD′(L − z̃1) and the pair (z̃1, z̃2) is
the unique solution to (3.21) satisfying 0 6 z̃1 < L < z̃2.

Proof. The proof follows in the similar way as outlined in Proposition 2.5 of Chapter 2.
The concave envelope of hλ is given by hcλ(x) = f c(x) − λD(L), where f c is defined in
Lemma 3.15. To find a maximizer of hcλ(x) − yx, for a given y > 0 and λ > 0, we simply
need to find the points x∗λ(y) for which 0 is in the superdifferential of hcλ(x) − yx, which
can be determined by a straightforward but tedious calculation. Further, observing that
x∗λ(y) ∈ {x > 0 : hλ(x) = hcλ(x)} yields the result.

3.3.3 Solutions to The Linearized Optimal Payoff Problem (3.13)

The derivation of solutions to problem (3.13) relies on the function x∗λ given in Proposition
3.16. To proceed, for each fixed λ > 0, we define Z∗λ,β := x∗λ(βξT ) for β > 0. Then, part
(a) of Lemma 3.11 together with Proposition 3.16 implies that Z∗λ,β solves problem (3.15).
Consequently, by part (b) of Lemma 3.11, if there exists a positive constant β∗ satisfying
E[ξTx

∗
λ(β

∗ξT )] = x0 or equivalently E[ξTZ
∗
λ,β] = x0, then Z∗λ := Z∗λ,β∗ solves the auxiliary

problem (3.13).

Proposition 3.17. For each λ > 0, there exists a unique constant β∗ > 0 such that Z∗λ :=
Z∗λ,β∗ ≡ x∗λ(β

∗ξT ) satisfies E[ξTZ
∗
λ,β∗ ] = x0, where the function x∗λ is given in Proposition

3.16.

Proof. Define Hλ(β) := E[ξTZ
∗
λ,β] ≡ E[ξTx

∗
λ(βξT )]. First, we observe that ξTx

∗
λ(βξT ) is

nonnegative, decreasing in β and tends to 0 and ∞ respectively with probability one as
β goes to ∞ and 0. Furthermore, for a fixed β′, we note that Hλ(β

′) = E [ξTx
∗
λ(β

′ξT )] 6
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E [ξT (U ′)−1(β′ξT )] + E [ξTL] = E [ξT (U ′)−1(β′ξT )] + Le−rT < ∞, where the last inequal-
ity follows from Lemma B.2 in Section B.1 of Appendix B under assumption H4. The
Monotone Convergence Theorem then implies that lim

β→∞
Hλ(β) = 0 and lim

β→0+
Hλ(β) =∞.

Next we show the continuity of Hλ(β) with respect to β on (0,∞). Fix β ∈ (0,∞) and
take a sequence βn ∈ (0,∞) with βn → β as n → ∞. Given ε > 0, there exists N such
that 0 6 ξTx

∗
λ(βnξT ) 6 ξT [(U ′)−1((β − ε)ξT ) + L] for all n > N , and the upper bound is

integrable. Thus, it follows from the Dominated Convergence Theorem that

lim
βn→β

Hλ(βn) = lim
βn→β

E [ξTx
∗
λ(βnξT )] = E

[
lim
βn→β

ξTx
∗
λ(βnξT )

]
= E [ξTx

∗
λ(βξT )] = Hλ(β),

where the third equality follows from the continuity of x∗λ(y) with respect to y almost
everywhere. Thus Hλ is continuous on (0,∞), and the existence of β∗ is proved.

To prove the uniqueness of β∗, it is sufficient to show the strict monotonicity of Hλ.
For β1 > β2 > 0, we define sets Ei = {ω ∈ Ω | ξT (ω)x∗λ(βiξT (ω)) > 0} for i = 1, 2.
Then, P(Ei) > P({ω |βiξT (ω) 6 k}) > 0, i = 1, 2. The strict monotonicity of x∗λ implies
ξTx

∗
λ(β1ξT ) < ξTx

∗
λ(β2ξT ) for ω ∈ E1 and also that E1 ⊆ E2. As a consequence, we obtain

Hλ(β1) = E[ξTx
∗
λ(β1ξT )] =

∫
E1

ξT (ω)x∗λ(β1ξT (ω))dP(ω) <

∫
E1

ξT (ω)x∗λ(β2ξT (ω))dP(ω)

6
∫
E2

ξT (ω)x∗λ(β2ξT (ω))dP(ω) = E[ξTx
∗
λ(β2ξT )] = Hλ(β2),

which means that Hλ(β) is strictly decreasing in β.

Remark 3.18. The proof of Proposition 3.17 also implies that Hλ(β) = E[ξTZ
∗
λ,β] is strictly

decreasing as a function of β over the interval (0,∞), for each fixed λ > 0. In numerical
implementations, in which we solve for β∗ numerically, the monotonicity of Hλ(β) is a
useful property.

Let β∗ be the unique constant that satisfies E[ξTx
∗
λ(β

∗ξT )] = x0. We characterize
the optimal value v(λ;x0) of problem (3.13) in the following proposition, where we use
notation that makes explicit the dependence of k, β∗, ẑ, z̃1, and z̃2 on λ (this dependence
has been heretofore suppressed for ease of notation). From the above analysis, v(λ;x0) =

f1(λ)−λf2(λ) where f1(λ) := E
{
U
[(
Z∗λ,β∗ − L

)
+

]}
and f2(λ) := E

{
D
[(
L− Z∗λ,β∗

)
+

]}
.

Proposition 3.19. For any λ > 0, let ẑ(λ) > L be the unique root of the function p1

defined in (3.20).

(a) If D is an increasing concave function satisfying the Inada condition, i.e., lim
x→0

D′(x) =

∞, then {
f1(λ) = E

{
U
[
(U ′)−1(β∗(λ)ξT )

]
1{β∗(λ)ξT6k(λ)}

}
,

f2(λ) = D(L)P [β∗(λ)ξT > k(λ)] ,
(3.24)

where k(λ) = f ′(ẑ(λ)) = U ′ [(ẑ(λ)− L)+].

54



(b) Assume that D is an increasing strictly convex function satisfying lim
x→0

D′(x) = 0.

(b1) If f ′(ẑ(λ)) > λD′(L), then f1(λ) and f2(λ) are given as in (3.24) with k(λ) =
f ′(ẑ(λ)).

(b2) If f ′(ẑ(λ)) < λD′(L), then
f1(λ) =E

{
U
[
(U ′)−1(β∗(λ)ξT )

]
1{β∗(λ)ξT6k(λ)}

}
,

f2(λ) =E
{
D

[
(D′)−1(

β∗(λ)ξT
λ

)

]
1{k(λ)<β∗(λ)ξT<λD′(L)}

}
+D(L)P [β∗(λ)ξT > λD′(L)] ,

(3.25)

where k(λ) = f ′(z̃1(λ)) = f ′(z̃2(λ)) = U ′ [(z̃2(λ)− L)+] = λD′ [(L− z̃1(λ))+]
and the pair (z̃1(λ), z̃2(λ)) is the unique solution to (3.21).

Proof. The claims follow immediately from Proposition 3.16.

3.3.4 The Solution to The Optimal Payoff Problem (3.8)

Based on the previous analysis, we can summarize the solution to problem (3.8) as follows.
Let Z∗λ := x∗λ(β

∗ξT ) with a unique β∗ satisfying E[ξTZ
∗
λ] = x0 where the function x∗λ is

given in Proposition 3.16, and the existence of a β∗ for each λ is insured by Proposition
3.17. Further, by Proposition 3.10, there exists a constant λ∗ > 0 satisfying (3.14), and
therefore, it follows from Proposition 3.5 that Z∗ := x∗λ∗(β

∗ξT ) is a solution to problem
(3.8).

As such, we derive a solution Z∗ to problem (3.8) by the following algorithm:

Algorithm 1 (Portfolio Optimization with Performance Ratios).

Step 1. Derive the optimal function x∗λ for the pointwise optimization problem (3.16)
using equations (3.22) and (3.23) from Proposition 3.16;

Step 2. For each λ > 0, search for the unique solution to equation E[ξTx
∗
λ(β

∗(λ)ξT )] =
x0 and set Z∗λ = x∗λ(β

∗(λ)ξT );

Step 3. Invoke Proposition 3.5 to get Z∗ := Z∗λ∗ by solving for λ∗ from equation
(3.14) or equivalently v(λ∗;x0) ≡ f1(λ∗)− λ∗f2(λ∗) = 0.

3.4 Optimal Trading Strategies under Power Func-

tions

In the preceding section, we have studied how to derive the optimal solution Z∗ for the
optimal payoff problem (3.8). Given this solution Z∗, in principle we can invoke Proposition
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3.1 to obtain the optimal trading strategies. The implementation involves the computation
of relevant quantities from (3.10)-(3.12). In this section, we study the optimal trading
strategy by assuming both U and D are power functions, and obtain a more explicit
solution. As we already showed in Proposition 3.3, the portfolio selection problem (3.6) is
ill-posed for a convex reward function U . So, throughout this section, we assume U(x) =
xγ1 for 0 < γ1 < 1 which is strictly concave, and study the optimal trading strategies with
D(x) = xγ2 for 0 < γ2 ≤ 1 and γ2 > 1 in two separate subsections. It is easy to verify
that assumptions H1-H4 are all satisfied in this setting. We follow the steps outlined in
Algorithm 1 for the determination of optimal solutions.

3.4.1 Optimal Trading Strategies when D is A Concave Power
Function

In this section, we consider U(x) = xγ1 for 0 < γ1 < 1 and D(x) = xγ2 for 0 < γ2 6 1.
In this case, part (a) of Proposition 3.16 is applicable and for each λ > 0, the solution to
problem (3.16) is given by

x∗λ(y) =


(
y
γ1

) 1
γ1−1

+ L, 0 < y 6 k(λ),

0, y > k(λ),
(3.26)

where k(λ) = γ1(z̃1(λ)− L)γ1−1 and z̃1(λ) is the unique solution to

[(1− γ1)z̃1(λ)− L](z̃1(λ)− L)γ1−1 + λLγ2 = 0. (3.27)

Therefore, we set

Z∗λ := Z∗λ,β∗(λ) ≡ x∗λ(β
∗(λ)ξT ) =

[(
β∗(λ)ξT
γ1

) 1
γ1−1

+ L

]
1{β∗(λ)ξT6k(λ)}, (3.28)

where β∗(λ) is determined by the equation E[ξTZ
∗
λ,β∗(λ)] = x0 for each λ > 0.

To proceed, we use Φ and φ to denote the standard normal distribution function and
its density function, and define

d1,t(β) :=
ln β − ln ξt + (r − 1

2
ζ2)(T − t)

ζ
√
T − t

,

d2,t(β; γ) := d1,t(β) +
ζ
√
T − t

1− γ
,

K(β; γ) := φ[d1,t(β)]

(
1 +

ζ
√
T − t

1− γ
Φ[d2,t(β; γ)]

φ[d2,t(β; γ)]

)
.

(3.29)
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Noticing
(
β∗(λ)ξT
γ1

) 1
γ1−1

+ L > L, we use equation (3.24) from Proposition 3.19 to obtain

f1(λ) := E
{
U
[
(Z∗λ − L)+

]}
= E

{[(
β∗(λ)ξT
γ1

) γ1
γ1−1

]
1{β∗(λ)ξT6k(λ)}

}

= e−rT · β∗(λ) · γ
γ1

1−γ1
1

φ[d1,0(1/β∗(λ))]

φ[d2,0(1/β∗(λ); γ1)]
Φ[d2,0(k(λ)/β∗(λ); γ1)],

f2(λ) := E
{
D
[
(L− Z∗λ)+

]}
= E

[
(L)γ2 1{β∗(λ)ξT>k(λ)}

]
= Lγ2

{
1− Φ[d1,0(k(λ)/β∗(λ)) + ζ

√
T ]
}
.

(3.30)

With the above expressions for f1 and f2, we determine a λ∗ > 0 to satisfy f1(λ∗) −
λ∗f2(λ∗) = 0. The existence of such a λ∗ is guaranteed by Proposition 3.10.

Given λ∗ > 0, we can derive the optimal solution and portfolio value for the portfolio
optimization problem (3.6) as shown in the proposition below.

Proposition 3.20. Let λ∗ > 0 be a constant satisfying equation (3.14) or equivalently
v(λ∗;x0) = f1(λ∗) − λ∗f2(λ∗) = 0. Let k(λ∗) = γ1(z̃1(λ∗) − L)γ1−1 and z̃1(λ∗) be the
solution to equation (3.27) with λ = λ∗, the optimal portfolio value, the optimal trading
strategy and the corresponding terminal portfolio value are given as follows.

(1) The optimal portfolio value at time t, 0 6 t < T , is given by
X∗t = e−r(T−t)(A1 + A2),

A1 =

(
k(λ∗)

γ1

) 1
γ1−1 φ[d1,t(k(λ∗)/β∗(λ∗))]

φ[d2,t(k(λ∗)/β∗(λ∗); γ1)]
Φ[d2,t(k(λ∗)/β∗(λ∗); γ1)],

A2 = LΦ[d1,t(k(λ∗)/β∗(λ∗)].

(3.31)

(2) For 0 6 t < T , an optimal amount to invest in the risky asset at time t is given by
π∗t as follows 

π∗t =
e−r(T−t)

σ
√
T − t

(a1 + a2),

a1 =

(
k(λ∗)

γ1

) 1
γ1−1

K(k(λ∗)/β∗(λ∗); γ1),

a2 = Lφ[d1,t(k(λ∗)/β∗(λ∗))].

(3.32)

(3) The optimal terminal portfolio value is

X∗T =

[(
β∗(λ∗)ξT

γ1

) 1
γ1−1

+ L

]
1{β∗(λ∗)ξT6k(λ∗)}. (3.33)
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Proof. With the optimal λ∗ > 0, the proposition depends on the propositions and lemmas
in Sections 3.2 and 3.3. By Proposition 3.1 and 3.2, π∗ = {π∗t , 0 6 t 6 T}, valued in R,
solves problem (3.6) with an optimal portfolio value at time t given by Xπ∗

t = Y ∗t , t ∈ [0, T ],
where π∗t = σ−1ξ−1

t θ∗t + σ−1ζY ∗t , θ∗t valued in R comes from the Martingale Representation
Theorem, Y ∗t := ξ−1

t E[ξTZ
∗|Ft] and Z∗ := Z∗λ∗ = Z∗λ∗,β∗(λ∗). Notice we denote X∗t :=

Xπ∗
t , t ∈ [0, T ], by dropping π from the superscript. The calculation of the solution is

straightforward, but tedious, and follows from a similar procedure to that in the proof of
Proposition 2.8 in Chapter 2 (also in Lin et al. (2017)).

Example 3.1. We consider the parameter values given in Table 3.1. The behavior of

x0 T r L µ σ
100 5 0.03 150 0.07 0.3

Table 3.1: Parameter for Numerical Illustration

v(λ;x0) = f1(λ) − λf2(λ), is shown in Figure 3.2. As shown earlier, v(λ;x0) is convex
and decreasing. Meanwhile, f1(λ) and f2(λ) are decreasing as well and v(λ;x0) crosses
zero for λ around 1.3. We can pick two different λ’s that lead to a positive value and
a negative value for v(λ;x0) and then use the bisection method to approach λ∗ such that
v(λ∗;x0) = 0, where we select the tolerance for root finding to be 1.0 × 10−10. Using the
bisection method, we obtain λ∗ = 1.3664 with v(λ∗;x0) = −8.6066×10−11, f1(λ∗) = 4.2426

and f2(λ∗) = 3.1048. The ratio, i.e. f1(λ∗)
f2(λ∗)

, agrees with λ∗. The optimal λ∗ is the optimal

objective value of the original problem (3.6) for the given parameter set.

Figure 3.2: Optimal objective value v(λ;x0) to the linearized optimal payoff problem (3.13),
f1(λ) and f2(λ) versus λ when γ1 = 0.5 and γ2 = 0.5.
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With the obtained λ∗, we are able to find the optimal portfolio value on [0, T ], and the
optimal amount of investment in the risky asset by using Proposition 3.20. Figure 3.3
shows the relationship between π∗t and X∗t for t = 4, one year before maturity (in the left
panel), and how X∗T varies with ξT (in the right panel).

The figure in the left panel exhibits a “peak-and-valley” pattern with two turning points.
When the optimal portfolio value X∗t is close to zero, the optimal amount of investment in
the risky asset approaches zero as well. When X∗t is large enough, π∗t increases with X∗t .
On the other hand, the figure in the right panel reveals that the optimal terminal portfolio
value X∗T decreases with ξT and drops to zero when ξT is around 1. Recall from (3.33)

that when ξ > k(λ∗)
β∗(λ∗)

, X∗T = 0. The numerical results tell us that k(λ∗)
β∗(λ∗)

= 1.0034 and also

that z̃1(λ) = 166.0221 which is the vertical distance of the drop of X∗T at ξT = k(λ∗)
β∗(λ∗)

, as
shown in the figure. The mathematical intuition is that we start from the origin and draw
a tangent line to touch the original objective function where the tangent point is z̃1(λ∗)
and thus we obtain that the optimal terminal portfolio value X∗T ∈ {0} ∪ [z̃1(λ∗),∞). It is
intuitive that if we incorporate the transaction cost in our model, the vertical distance of
the drop will become small and the discontinuity shown in the figure will disappear if we
take a large transaction cost into consideration.

(a) Optimal amount of investment π∗t versus
optimal portfolio value X∗t at t = 4.

(b) Optimal terminal portfolio value X∗T
versus ξT at T = 5.

Figure 3.3: Optimal amount of investment in the risky asset π∗t , optimal portfolio value X∗t
at t = 4, and optimal terminal portfolio value X∗T at T = 5 when γ1 = 0.5 and γ2 = 0.5.
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3.4.2 Optimal Trading Strategies when D is A Convex Power
Function

In this section, we consider U(x) = xγ1 , 0 < γ1 < 1 and D(x) = xγ2 , γ2 > 1. In this case,
part (b) of Proposition 3.16 is applicable and for each λ > 0, the solution to problem (3.16)
is given as follows.

(1) If γ1 (ẑ − L)γ1−1 > λγ2 · (L)γ2−1 with ẑ > L being the unique solution to (3.27), then
x∗λ(y) is given by (3.26) where k = γ1(z̃ − L)γ1−1 and z̃1 = ẑ.

(2) If γ1 (ẑ − L)γ1−1 < λγ2 · (L)γ2−1 with ẑ > L being the unique solution to (3.27), then
x∗λ(y) is given by:

x∗λ(y) =


(
y
γ1

) 1
γ1−1

+ L, 0 < y 6 k,

L−
(

y
λγ2

) 1
γ2−1

, k < y 6 λγ2 · (L)γ2−1,

0, y > k,

(3.34)

where k = γ1(z̃2−L)γ1−1 = λγ2(L− z̃1)γ2−1 and the pair (z̃1, z̃2) is the unique solution
to {

γ1(z̃2 − L)γ1−1 − λγ2(L− z̃1)γ2−1 = 0,

(z̃2 − L)γ1 + λ(L− z̃1)γ2 − γ1(z̃2 − L)γ1−1 · (z̃2 − z̃1) = 0.
(3.35)

The optimal solution Z∗λ for the linearized problem 3.13 can be obtained for each of the
above two cases separately. For the first case, it can be obtained via (3.28) and both f1(λ)
and f2(λ) are specified in (3.30). The optimal solution to the portfolio selection problem
(3.6) is as given in Proposition 3.20.

In the second case, we are able to write down the optimal solution to problem (3.13),
with the notation z̃1(λ), z̃2(λ), k(λ) and β∗(λ) to be consistent with the previous section,
as follows:

Z∗λ := Z∗λ,β∗(λ) ≡ x∗(β∗(λ)ξT ) =

[(
β∗(λ)ξT
γ1

) 1
γ1−1

+ L

]
1{β∗(λ)ξT6k(λ)}

+

[
L−

(
β∗(λ)ξT
λγ2

) 1
γ2−1

]
1{k(λ)<β∗(λ)ξT6λγ2·(L)γ2−1}.

(3.36)

where β∗(λ) is determined by the equation E[ξTZ
∗
λ,β∗(λ)] = x0.

From the expression (3.36), it is easy to verify that
(
β∗(λ)ξT
γ1

) 1
γ1−1

+ L > L, a.s. and
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also that L−
(
β∗(λ)ξT
λγ2

) 1
γ2−1

6 L, a.s. Therefore, from Proposition 3.19 we obtain:

f1(λ) := E
{
U
[
(Z∗λ − L)+

]}
= E

{[(
β∗(λ)ξT
γ1

) γ1
γ1−1

]
1{β∗(λ)ξT6k(λ)}

}

= e−rT · β∗(λ) · γ
γ1

1−γ1
1

φ[d1,0(1/β∗(λ))]

φ[d2,0(1/β∗(λ); γ1)]
Φ[d2,0(k(λ)/β∗(λ); γ1)],

and

f2(λ) := E
{
D
[
(L− Z∗λ)+

]}
= E

{[(
β∗(λ)ξT
λγ2

) γ2
γ2−1

]
1{k(λ)<β∗(λ)ξT6λγ2·(L)γ2−1} + (L)γ2 1{β∗(λ)ξT>λγ2·(L)γ2−1}

}

= e−rT · β∗(λ) · (λγ2)
γ2

1−γ2
φ[d1,0(1/β∗(λ))]

φ[d2,0(1/β∗(λ); γ2)]

×
{

Φ[d2,0(λγ2 · (L)γ2−1/β∗(λ); γ2)]− Φ[d2,0(k(λ)/β∗(λ); γ2)]
}

+Lγ2
{

1− Φ[d1,0(λγ2 · (L)γ2−1/β∗(λ)) + ζ
√
T ]
}
.

Similarly, with the above expressions for f1 and f2, we determine a λ∗ > 0 to satisfy
f1(λ∗)− λ∗f2(λ∗) = 0. The existence of such a λ∗ is guaranteed by Proposition 3.10.

Given λ∗ > 0, we can derive the optimal solution and portfolio value for the optimization
problem (3.6) as shown in the proposition below.

Proposition 3.21. Given λ∗ > 0 such that (3.14) holds, the optimal portfolio value, the
optimal trading strategy and the corresponding terminal portfolio value are given as follows:

(1) If γ1 (ẑ − L)γ1−1 > λ∗γ2 · (L)γ2−1 where ẑ > L is the unique solution to (3.27), then
the optimal portfolio value at time t, 0 6 t < T , is given by (3.31), the optimal
amount to invest in the risky asset at time t, 0 6 t < T , is given by (3.32) and the
optimal terminal portfolio value is given by (3.33) with k(λ∗) = γ1(z̃(λ∗) − L)γ1−1

and z̃1(λ∗) = ẑ.
(2) If γ1 (ẑ − L)γ1−1 < λ∗γ2 · (L)γ2−1 where ẑ > L is the unique solution to (3.27), then

k(λ∗) = γ1(z̃2(λ∗)− L)γ1−1 = λ∗γ2(L− z̃1(λ∗))γ2−1 and the pair (z̃1(λ∗), z̃2(λ∗) is the
unique solution to (3.35). Furthermore,
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(2.1) The optimal portfolio value at time t, 0 6 t < T , is given by

X∗t = e−r(T−t)(B1 +B2 −B3),

B1 =

(
k(λ∗)

γ1

) 1
γ1−1 φ[d1,t(k(λ∗)/β∗(λ∗))]

φ[d2,t(k(λ∗)/β∗(λ∗); γ1)]
Φ[d2,t(k(λ∗)/β∗(λ∗); γ1)],

B2 = LΦ[d1,t(λ
∗γ2 · (L)γ2−1/β∗(λ∗))],

B3 = (λ∗γ2)
1

1−γ2
φ[d1,t(1/β

∗(λ))]

φ[d2,t(1/β∗(λ); γ2)]

×
{

Φ[d2,t(λγ2 · (L)γ2−1/β∗(λ); γ2)]− Φ[d2,t(k(λ)/β∗(λ); γ2)]
}
.
(3.37)

(2.2) For 0 6 t < T , an optimal amount to invest in the risky asset at time t is given
by π∗t as follows

π∗t =
e−r(T−t)

σ
√
T − t

(b1 + b2 + b3),

b1 =

(
k(λ∗)

γ1

) 1
γ1−1

K(k(λ∗)/β∗(λ∗); γ1),

b2 = Lφ[d1,t(λ
∗γ2 · (L)γ2−1/β∗(λ∗))],

b3 = L×K(λ∗γ2 · (L)γ2−1/β∗(λ∗); γ2)−
(
k(λ∗)

λ∗γ2

) 1
γ2−1

K(k(λ∗)/β∗(λ∗); γ2).

(3.38)
(2.3) The optimal terminal portfolio value when t = T is

X∗T =

[(
β∗(λ∗)ξT

γ1

) 1
γ1−1

+ L

]
1{β∗(λ∗)ξT6k(λ∗)}

+

[
L−

(
β∗(λ∗)ξT
λ∗γ2

) 1
γ2−1

]
1{k(λ∗)<β∗(λ∗)ξT6λ∗γ2·(L)γ2−1}.

(3.39)

Proof. The results are derived in a way similar to those in Proposition 3.20.

Example 3.2. We also numerically implement the results for illustration based on the set
of parameters specified in Table 3.1. The behavior of v(λ;x0) is shown in Figure 3.4. The
range of λ is chosen to be [0, 0.1], within which v(λ;x0) is decreasing in λ, and crosses
zero when λ ∈ (0.02, 0.04). Compared with Figure 3.2 where λ is taken in the range [0, 5],
we can see that a larger γ2 leads to a smaller λ∗. The reason is due to the fact that the
negative part f2(λ) dominates the positive part f1(λ) when γ2 is large. Using the bisection
method, we are able to obtain λ∗ = 0.0251 and v(λ∗;x0) = −4.5648×10−11, which is within
the selected tolerance 1.0×10−10. Also f1(λ∗) = 4.0125 and f2(λ∗) = 159.7092. Their ratio
f1(λ∗)
f2(λ∗)

coincides with λ∗ as well.

With the obtained λ∗, we are also able to obtain the optimal portfolio value in [0, T ]
and the optimal amount of investment in the risky asset. Figure 3.5 demonstrates the
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Figure 3.4: Optimal objective value v(λ;x0) to the linearized optimal payoff problem (3.13),
f1(λ) and f2(λ) versus λ when γ1 = 0.5 and γ2 = 1.3.

relationship between π∗t and X∗t for t = 4, one year before maturity (in the left panel), and
how X∗T varies with ξT (in the right panel).

The “peak-and-valley” pattern revealed in the left panel is similar to the previous case
demonstrated in Figure 3.3a. In the right panel of Figure 3.5, X∗T is a decreasing function
of ξT , with a drop at a certain point and decreasing until it hits zero. With λ∗ = 0.0251
and γ2 = 1.3, we can verify from the numerical results that X∗t , π∗t and X∗T are as given
in (3.37), (3.38) and (3.39). We obtain the drop in value of X∗T occurs at the level of

ξT = k(λ∗)
β∗(λ∗)

= 0.9575 and the drop value is equal to z̃2(λ∗) − z̃1(λ∗) with z̃1(λ∗) = 74.2832

and z̃2(λ∗) = 167.4731. The mathematical intuition is similar to that for example 3.1.
The concave envelope is constructed through a tangent line where the two tangent points
are z̃1(λ∗) and z̃2(λ∗), and thus the optimal terminal portfolio value X∗T ∈ [0, z̃1(λ∗)] ∪
[z̃2(λ∗),∞). Similar to example 3.1, it is intuitive that if we incorporate the transaction
cost in our model, the vertical distance of the drop will become small and the discontinuity
shown in the figure will disappear if we take a large transaction cost into consideration.

3.5 Sensitivity Analysis

In the previous section, with U and D specified as power functions, we obtained closed-
form solutions to the performance ratio maximization problem. In this section, we conduct
a sensitivity analysis with respect to the model parameters, obtaining further insights into
the behavior of both v(λ;x0) and λ∗ such that v(λ∗;x0) = 0.
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(a) Optimal amount of investment π∗t ver-
sus optimal portfolio value X∗t at t = 4.

(b) Optimal terminal portfolio value X∗T
versus ξT at T = 5.

Figure 3.5: Optimal amount of investment in the risky asset π∗t , optimal portfolio value X∗t
at t = 4, and optimal terminal portfolio value X∗T at T = 5 when γ1 = 0.5 and γ2 = 1.3.

3.5.1 Sensitivity with respect to γ1

In Proposition 3.3, we have ruled out the case in which problem (3.6) is unbounded when U
is a convex function. Thus, in the previous section, the parameter γ1 of the power function
U is constrained to be strictly between 0 and 1. It is interesting to investigate the behavior
of both v(λ;x0) and λ∗ with respect to γ1, especially when γ1 is approaching 1. We use
the same parameters as specified in Table 3.1, unless stated otherwise.

We fix γ2 to be 0.5 and 1.3 for analysis in two distinct cases. For each γ2 we vary the
choice of γ1 ∈ {0.1, 0.25, 0.5, 0.75} to illustrate the behavior of v(λ;x0) with respect to λ,
as shown in Figure 3.6. Firstly, v(λ;x0) is always decreasing in λ, as expected. Secondly,
fixing a λ, v(λ;x0) is increasing in γ1, as revealed by both the left and right panels in
the figure. Thirdly, while the shapes of the graphs in both panels are similar, the scale
of λ is different. With γ2 = 0.5, the range of λ presented is [0, 5], while in the case with
γ2 = 1.3, the range is reduced to [0, 0.1]. The change in slope is due to the choice of γ2;
a convex penalty function penalizes losses more and makes the optimal λ∗ much smaller
than a concave penalty function.

Since people hold different attitudes toward reward and risk, their utility and penalty
functions on reward and risk are different. It is of interest to see how the optimal objective
value λ∗ behaves. Figure 3.7 shows the relationship between λ∗ and γ1 for γ2 equal to
0.5 and 1.3, corresponding to concave and convex penalties. First of all, as expected, the
slope of v is very different in the two cases, which explains the different scales in the two
panels of the figure. Secondly, the optimal λ∗ is increasing with respect to γ1. In the
figure we set the range to be [0.01, 0.95] with step-size 0.01 since γ1 = 1 corresponds to a
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(a) γ2 = 0.5. (b) γ2 = 1.3.

Figure 3.6: Optimal value v(λ;x0) of the linearized optimal payoff problem (3.13) versus
λ with distinct γ1 and γ2.

linear utility function U , for which problem (3.6) is unbounded. As γ1 approaches 1, λ∗

keeps increasing and shows a trend to increase to infinity, which is also the reason for the
numerical difficulty that arises if we choose γ1 to be greater than 0.95. Figure 3.7 also
shows the behavior of f1(λ) and f2(λ) as functions of λ.

3.5.2 Sensitivity with respect to γ2

We now consider the behavior of v(λ;x0) and λ∗ for a fixed γ1 but varying γ2. We set γ1 to
be 0.5 and use the values in Table 3.1 for the other parameters. Figure 3.8a presents the
relationship between v(λ;x0) and λ for γ2 set to be less than or equal to 1, corresponding
to a concave penalty function, while in Figure 3.8b we select convex penalty functions for
illustration. With a fixed λ, v(λ;x0) is decreasing in γ2.

We also plot the optimal λ∗ with respect to γ2 in Figure 3.9. The range of γ2 is set to
be (0, 1.5] where we start from 0.01 with step-size 0.01. The optimal λ∗ decreases with γ2,
which means that if the penalty for underperformance is increased, the optimal objective
becomes smaller. As shown in the figure, the penalty f2(λ∗) increases along with γ2 while
the positive part f1(λ∗) stays at the level of roughly 4.24, and eventually decreases as γ2

becomes greater than the turning point in Figure 3.9b. This turning point occurs at the
transition between the two cases in Proposition 3.21.
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(a) γ2 = 0.5. (b) γ2 = 1.3.

Figure 3.7: Optimal λ∗ for the original problem (3.6), f1(λ∗) and f2(λ∗) versus γ1 with
distinct γ2.

(a) γ1 = 0.5. (b) γ1 = 0.5.

Figure 3.8: Optimal objective value v(λ;x0) to the linearized optimal payoff problem (3.13)
versus λ with distinct γ2 and fixed γ1.
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(a) γ1 = 0.5. (b) γ1 = 0.5.

Figure 3.9: Optimal λ∗ for the original problem (3.6), f1(λ∗) and f2(λ∗) versus γ2 with
fixed γ1 = 0.5.

3.5.3 On The Choice of L

In the previous section we selected the initial wealth x0 to be 100 and the threshold L to
be 150. The present value of the threshold is Le−rT = 129.1062, which is 29.1062% larger
than the initial wealth. If x0 > Le−rT , the strategy of simply investing in the risk-free
asset will make the objective function undefined. We wish to study the behavior of the
optimal λ∗ if we select Le−rT close to x0, so we set L = 120, with Le−rT = 103.285, which
is only 3.285% larger than the initial wealth. We start by varying γ1 and keeping γ2 to be
0.5 or 1.3. The results are reported in Figure 3.10. Compared to the patten displayed in
Figure 3.7, which is for a benchmark L = 150, it is interesting to see in Figure 3.10 that
when γ1 is small, roughly in the range (0, 0.22), the optimal λ∗ decreases with respect to
γ1.

We now fix γ1 = 0.5 and vary γ2 to investigate the behavior of λ∗ in response to the
change of γ2. The results are displayed in Figure 3.11. As expected, λ∗ decreases with
γ2. Meanwhile, when γ2 is less than 1.03, f1(λ∗) remains constant due to the form of
the solution, as noted above. When γ2 exceeds 1.03, then f1(λ) starts to decrease. The
turning point corresponds to the threshold where the transition occurs from one case to
the other as described in Proposition 3.21. However, in the entire interval (0, 1.5], f2(λ)
keeps increasing in γ2, resulting in a decrease in the optimal value λ∗. This pattern is the
same as observed in Figure 3.9.

In addition, we also carry out the sensitivity analysis with respect to L. The results
are shown in Fig 3.12. As we can see, the optimal performance ratio, i.e. λ∗, decreases
with L. In fact, the monotonicity of λ∗ with respect to L can be proved by noting that
U [(x−L)+]
D[(L−x)+]

is decreasing with respect to L since both U and D satisfy the assumptions
H1 – H3. Intuitively speaking, when the benchmark L is larger, it is more difficult to
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(a) γ2 = 0.5. (b) γ2 = 1.3.

Figure 3.10: Optimal λ∗ for the original problem (3.6) versus γ1 with distinct γ2 and
L = 120.

Figure 3.11: Optimal λ∗ for the original problem (3.6) versus γ2 with fixed γ1 = 0.5 and
L = 120.
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construct a portfolio to outperform the benchmark, making the performance ratio smaller.
Furthermore, it is obvious that both f1(λ∗) and f2(λ∗) are at a similar magnitude in
Fig 3.12a, while the negative part f2(λ∗) is much larger than f1(λ∗) in Fig 3.12b. This
observation agrees with our intuition that the convex penalty function D penalizes more
on the underperformance of the portfolio.

(a) γ1 = 0.5 and γ2 = 0.5. (b) γ1 = 0.5 and γ2 = 1.3.

Figure 3.12: Optimal λ∗ for the original problem (3.6), f1(λ∗) and f2(λ∗)versus L.

3.6 Conclusion

In this chapter, we consider a portfolio selection problem for a performance ratio maximiz-
ing agent. Employing a strategy from fractional programming, we relate the problem to a
family of solvable ones. Relying on the martingale approach and the pointwise optimiza-
tion technique, we obtain a closed-form solution. In the pointwise optimization procedure
we adopt a concavification technique. In the end, we recover the optimal solution to the
original portfolio selection problem. With the optimal solution in hand, we present numer-
ical examples for power functions and a sensitivity analysis with respect to several model
parameters.
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Chapter 4

Mean-Expectile Portfolio Selection
Model

4.1 Introduction

In practice, risk management is central focus for financial institutions such as banks and
insurance companies. The topic is also very popular in academia. Since the classical mean-
variance model introduced in Markowitz (1952), a large literature on mean-risk analysis
has developed.

A large amount of research closely related to the mean-variance model focuses on in-
corporating risk measures other than variance. Among others, Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR), i.e. Expected Shortfall (ES), are two alternatives that
enjoy great popularity in both academia and practice. For example, Alexander and Bap-
tista (2002) consider a mean-VaR model for portfolio selection assuming normality of the
return and relate the model to the classical mean-variance analysis. Campbell et al. (2001)
consider the portfolio selection problem with a VaR constraint by maximizing expected
return. Although VaR is popular, it has been widely criticized for its undesired mathe-
matical properties such as the lack of both subadditivity and convexity, see Artzner et al.
(1999). Recognizing the shortcomings of VaR, CVaR has attracted increasing attention in
the past decade. The mean-CVaR portfolio model has also been developed with Rockafel-
lar and Uryasev (2000) being a key reference. Meanwhile, rather than considering VaR or
CVaR, other literature focuses on a general class of risk measures, such as distortion risk
measures, or spectral risk measures; see Carlo and Prospero (2002), Adam et al. (2008).

The expectile was introduced by Newey and Powell (1987) as the minimizer of piece-
wise quadratic loss function. In recent years, there has been increasing interest in using
expectiles as alternative risk measures because expectiles are indeed the only law-invariant
and coherent elicitable risk measures; see Ziegel (2016). Elicitability is a concept intro-
duced by Osband (1985). In practice, elicitability corresponds to the existence of a natural
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backtesting methodology and it makes it possible to compare between different statistical
methods when estimating risk from historical data. Further details on elicitability and
other properties of expectiles, as well as the comparison between several widely accepted
risk measures including expectile, can be found in Emmer et al. (2015).

Most of the above-mentioned literature concerning mean-risk analysis with different
risk measures is in a discrete time framework, typically on a finite sample space. There
have been extensions of the classical mean-variance model from the discrete time setting to
a dynamic continuous time framework; see Zhou and Li (2000). Applications of other risk
measures in the mean-risk portfolio selection problem under a dynamic continuous time
setting have been developed, such as Jin et al. (2005) and He et al. (2015).

This chapter contributes to the literature by considering a Mean-Expectile portfolio
choice problem in a dynamic continuous time framework. Expectiles are defined as mini-
mizers of a piecewise quadratic loss function. Without the knowledge of the distribution of
the random variable (for our problem, the distribution of the terminal wealth is unknown
since the control is involved), our problem lacks a specific form of the objective function.
However, due to its close relationship with the Omega measure (see Bellini et al. (2016)),
we present an optimization problem with the Omega measure as an objective and show the
equivalence between the two optimization problems. Our further analysis shows that the
solution to the Mean-Expectile problem is not attainable but the value function is finite.
Following a technique in the literature, such as Bernard et al. (2017) and Chiu et al. (2012),
we impose an upper bound constraint on the terminal wealth. As stated in Chiu et al.
(2012), this upper bound in our modified problem should be chosen to be sufficiently large
in order to capture the nature of the original problem. With the imposed upper bound,
we also consider the global expectile minimizing portfolio and obtain an efficient frontier
curve, of which the shape is similar to the one obtained in the classical mean-variance
model.

The remainder of this chapter is structured as follows. Section 4.2 presents the for-
mulation of a portfolio selection problem with expectile as an objective, introduces an
optimization problem with the Omega measure, discusses the equivalence between the two
problems and shows the solution for the Mean-Expectile problem is not attainable but
the value function is finite. In Section 4.3, we modify the problem with an upper bound
constraint imposed on the terminal wealth and solve the problem using Lagrangian dual-
ity and the pointwise optimization technique. Section 4.4 considers the global expectile
minimizing portfolio. Efficient frontier analysis is considered in Section 4.5 and numerical
examples are also presented in this section. The final section summarizes this chapter and
presents some concluding remarks.
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4.2 Model Formulation and Preliminary Analysis

4.2.1 Financial Market Model

We assume that an agent, with initial wealth x0 > 0, invests capital in a risk-free bond B
and p risky assets with price processes as follows:

dBt = rBtdt,

dS
(i)
t = S

(i)
t

[
µ(i)dt+

p∑
j=1

σijdW
(j)
t

]
, i = 1, · · · , p,

(4.1)

where r > 0 is the risk-free rate, µ(i) > r is the expected return rate of the risky asset
i, for i = 1, · · · , p, and we let µ = (µ(1), · · · , µ(p))> be the vector of expected returns for
the risky assets. σ = {σij}1≤i,j6p is the corresponding volatility matrix, which is invertible

with inverse σ−1. W ≡ {Wt, t > 0} := {(W (1)
t , · · · ,W (p)

t )>, t > 0} is a standard Brownian
motion valued on Rp under the physical measure P defined over a probability space (Ω,F).
We use F := {Ft, t > 0} to denote the P-augmentation of the natural filtration generated
by the Brownian motion W .

We consider a finite investment time horizon [0, T ] with T > 0. Let πt := (π
(1)
t , · · · , π(p)

t )>,

where π
(i)
t denotes the dollar amount of capital invested in the ith risky asset at time t, for

t > 0 and i = 1, . . . , p. With the trading strategy π := {πt, 0 6 t 6 T}, the portfolio value
process, denoted by Xπ

t , evolves according to the following stochastic differential equation
(SDE):

dXπ
t = [rXπ

t + π>t (µ− r1)]dt+ π>t σdWt, t > 0, (4.2)

where 1 denotes the p-dimensional column vector with each element equal to 1. It is
natural to assume that the trading strategy π is F-progressively measurable and satisfies∫ T

0
‖πt‖2dt <∞ a.s. so that a unique strong solution exists for the SDE (4.2), where ‖ · ‖

denotes the usual L2-norm and thus ‖πt‖2 =
∑p

i=1 (πit)
2
.

Definition 4.1. A trading strategy π := {πt, 0 6 t 6 T} is called admissible with initial
wealth x0 > 0 if it belongs to the following set:

A(x0) := {π ∈ S : πt ∈ Rp, Xπ
0 = x0 and Xπ

t > 0, a.s., ∀ 0 6 t 6 T},

where S denotes the set of F-progressively measurable processes π such that
∫ T

0
‖πt‖2dt <∞

a.s.

We consider the market price of risk, defined as

ζ ≡ (ζ1, . . . , ζp)
> := σ−1(µ− r1),
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and the state-price density process, given by

ξt := exp

{
−
(
r +
‖ζ‖2

2

)
t− ζ>Wt

}
. (4.3)

We further employ the notation:

ξt,s = ξ−1
t ξs = exp

[
−
(
r +
‖ζ‖2

2

)
(s− t)− ζ>(Ws −Wt)

]
, 0 6 t 6 s. (4.4)

Note that ξt = ξ0,t, and ξt,s is independent of Ft under P. Consequently, we can introduce
an equivalent risk-neutral measure Q defined by

dQ
dP

∣∣∣
Ft

= ertξt.

Thus, WQ
t := Wt + ζt is a Brownian motion under probability measure Q, and

ξt := exp

{
−
(
r − ‖ζ‖

2

2

)
t− ζ>WQ

t

}
. (4.5)

4.2.2 Expectiles

An expectile at a given confidence level for a loss random variable is the unique minimizer
of a weighted mean square error. Specifically, the expectile EY (α) of a loss random variable
Y with E[Y 2] < ∞ at a confidence level α ∈ (0, 1) is defined as the unique minimizer of
the following asymmetric quadratic loss:

EY (α) = arg min
m∈R

{
αE
[
(Y −m)2

+

]
+ (1− α)E

[
(m− Y )2

+

]}
, (4.6)

where (x)+ := max(x, 0). It has been shown by Bellini et al. (2014) that EY (α) solves the
above optimization problem (4.6) if and only if

αE
[
(Y − EY (α))+

]
= (1− α)E

[
(EY (α)− Y )+

]
. (4.7)

It can be easily verified that there exists a unique solution EY (α) to equation (4.7) (e.g.,
Newey and Powell (1987), and Cai and Weng (2016)). Further, a simple rearrangement of
equation (4.7) using the equality of (x)+ − (−x)+ = x yields the following expression:

EY (α) = E[Y ] + β E
[
(Y − EY (α))+

]
with β =

2α− 1

1− α
and 0 < α < 1. (4.8)

In particular, for α = 1/2, β = 0 and thus EY (1/2) = E[Y ]. For a random variable Y
with E[|Y |] < ∞, we adopt equations (4.7) or equivalently (4.8) as the definition of the
expectile.
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The concept of expectiles was first proposed by Newey and Powell (1987) as the min-
imizers of an asymmetric quadratic loss function. In recent studies, it is suggested using
the expectile as an alternative risk measure, mainly due to its elicitability property. Elic-
itability is a concept introduced by Osband (1985). From the mathematical point of view,
the concept is closely related to the scoring function; see details in Emmer et al. (2015).
In practice, the elicitability property allows the feasibility of backtesting in the real finan-
cial practice and makes it possible to compare between different statistical methods when
estimating risk from historical data. Moreover, Bellini et al. (2014) show that when the
confidence level α > 1/2, the expectile is a coherent risk measure. Additionally, Ziegel
(2016) show that expectiles are indeed the only law-invariant and coherent elicitable risk
measures. In the sequel, we only consider the confidence level to be greater than 1/2
because of this coherence property.

The following lemma summarizes some properties of expectiles which are useful in the
sequel.

Lemma 4.1. For a loss random variable Y with E[Y ] < ∞ and α ∈ (0, 1), we have the
following:

(a) EY+h(α) = EY (α) + h, for each h ∈ R,

(b) E−Y (α) = −EY (1− α),

(c) EY (α) is strictly increasing and continuous with respect to α for a given Y ,

(d) lim
α→0+

EY (α) = ess inf(Y ) and lim
α→1−

EY (α) = ess sup(Y ).

Proof. For the proof of (b), we refer to Proposition 7 in Bellini et al. (2014). The proof for
the remaining parts is from Proposition 5 in Bellini et al. (2014).

4.2.3 Relationship between Expectile and Omega Measure

The Omega measure was introduced by Keating and Shadwick (2002) and has become an
important portfolio performance measure. For a random return R and a benchmark return
level l, it is defined as follows:

ΩR(l) =

∫ b
l

[1− FR(x)] dx∫ l
a
FR(x)dx

=
E
[
(R− l)+

]
E
[
(l −R)+

] . (4.9)

where FR denotes the cumulative distribution function of R, and a and b are respectively
the essential lower and upper bounds of the return under the physical measure P.
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A simple connection between the Omega measure and expectiles can be observed by
comparing (4.7) and (4.9) as follows:

ΩY (EY (α)) =
E
[
(Y − EY (α))+

]
E
[
(EY (α)− Y )+

] =
1− α
α

, (4.10)

which, as observed by Bellini et al. (2016), yields the following one-to-one relation:

ΩY (l) =
1− E−1

Y (l)

E−1
Y (l)

, l ∈ R, (4.11)

with E−1
Y (·) denoting the inverse function of EY (·) which exists due to part (c) of Lemma

4.1.

From (4.10), one can intuitively regard the expectile to be a point that makes the
ratio of the positive part to the negative part with respect to itself equal to 1−α

α
. The

analogous result can be also found in VaR, whose definition only considers the probability
level both above and below itself. In other words, it is intuitive to say that the expectile
takes more information into consideration. This fact is one of motivations for us to consider
the expectile when formulating the portfolio selection problem in the sequel.

We summarize some useful properties of the Omega measure in the following Lemma
(also see Theorem 2 in Bellini et al. (2016)).

Lemma 4.2. Denote m := ess inf(R) and M := ess sup(R) for a random variable R. The
function ΩR : (m,M)→ (0,∞) is strictly positive, continuous and strictly decreasing with
lim
l→m+

ΩR(l) =∞, lim
l→M−

ΩR(l) = 0 and ΩR (E[R]) = 1.

Proof. We refer to section 3 of Keating and Shadwick (2002) for the proof.

4.2.4 Mean-Expectile Problem

We consider a Mean-Expectile portfolio choice problem. At inception, an agent has initial
wealth x0 and constructs trading strategies dynamically so as to minimize the risk of
the portfolio measured by the expectile of the loss random variable at time T , given a
prespecified expected wealth target at time T . The loss random variable at time T is
defined as L := x0e

rT − Xπ
T where Xπ

T is the wealth accumulated at time T and x0e
rT is

the terminal wealth of allocating all the capital to the risk free asset. The optimization
problem is formulated as follows:

inf
π∈A(x0)

EL(α),

subject to E[Xπ
T ] = d,

E[ξTX
π
T ] 6 x0.

(4.12)
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By the martingale approach (see Karatzas and Shreve (1998) and Lin et al. (2017) as well
as parts (a) and (b) of Lemma 4.1), it is equivalent to study the following optimal terminal
payoff problem: 

sup
Z∈M+

EZ(1− α),

subject to E[Z] = d,

E[ξTZ] 6 x0.

(4.13)

where M+ denotes the set of non-negative FT -measurable random variables. We denote
the feasible set of the above problem by C1(d, x0), i.e.,

C1(d, x0) := {Z ∈M+ | E[Z] = d and E [ξTZ] ≤ x0} . (4.14)

Remark 4.3. From the practical point of view, it is financially meaningful to consider:
inf

π∈A(x0)
EL(α),

subject to E[Z] ≥ d,

E[ξTZ] 6 x0,

(4.15)

where an inequality constraint is considered on the expected terminal wealth E[Z], instead
of an equality as in (4.13). Considering the equality constraint as in (4.13) allows us to
simplify the problem. In fact, assuming the existence of the solution to both problems (4.12)
and (4.15), the strategy obtained from problem (4.12) (resp. problem (4.15)) corresponds
to a strategy in the expectile minimizing frontier (resp. efficient frontier). Later on we will
show how to obtain the solution with an inequality constraint on the mean from the one
with an equality constraint in the case where we impose an additional bound constraint on
the terminal wealth; see Section 4.5.

We impose the following assumptions for analysis.

H1. The constant d satisfies d > x0e
rT ;

H2. The confidence level α satisfies 1
2
< α < 1.

Remark 4.4. Assumption H1 is valid financially for otherwise investing in only risk-free
asset can enable us to obtain enough terminal wealth without any risk and thus makes
the problem formulation meaningless. In addition, Assumption H1 is also a standard
assumption in the mean-risk analysis literature. Assumption H2 implies that the expectile
risk measure for a loss random variable L is a coherent risk measure. In addition, it implies
that 0 < EZ(1−α) < E[Z] = d for any Z ∈ C1(d, x0) invoking equation (4.8) together with
H1.
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4.2.5 Mean-Omega Problem

Due to the lack of an explicit form for the expectiles, it is difficult to obtain a solution for
the optimization problem (4.13) directly. However, given the close relationship between
the Omega measure and expectile, i.e., equations (4.10) and (4.11), we propose a family
of Mean-Omega optimization problems indexed by K ∈ (0, d) to connect to the problem
(4.13) as follows:

g(K;x0) := sup
Z∈C1(d,x0)

ΩZ(K), (4.16)

where C1(d, x0) is defined in (4.14). We confine the parameter K within (0, d) due to the
assumption H2; see more details in Proposition 4.7 in the sequel.

Before showing how to recover the solution for problem (4.13), we perform certain
preliminary analysis on problem (4.16) since it will shed some lights on problem (4.13). In
addition, since E

[
(Z −K)+

]
= E [Z −K] + E

[
(K − Z)+

]
= d − K + E

[
(K − Z)+

]
for

Z ∈ C1(d, x0), problem (4.16) is equivalent to the following problem:

g̃(K;x0) := inf
Z∈C1(d,x0)

E
[
(K − Z)+

]
. (4.17)

The following proposition presents the continuity property of g̃(·;x0) given in (4.17).

Proposition 4.5. Assume H1 and 0 < K < d. Then g̃(·;x0) is continuous with a
Lipschitz constant 1, i.e. we have |g̃(K1;x0)− g̃(K2;x0)| ≤ |K1−K2|, for 0 < K1 < d and
0 < K2 < d.

Proof. Let ε > 0 and Zi be such that E
[
(Ki − Zi)+

]
≤ g̃(Ki;x0)+ε, i = 1, 2. By definition

and the inequality
∣∣E [(K1 − Z)+

]
− E

[
(K2 − Z)+

]∣∣ ≤ |K1 −K2|, one gets

g̃(K1;x0) ≤ E
[
(K1 − Z2)+

]
≤ E

[
(K2 − Z2)+

]
+ |K1 −K2| ≤ g̃(K2;x0) + ε+ |K1 −K2|,

whereby, letting ε → 0 yields g̃(K1;x0) − g̃(K2;x0) ≤ |K1 −K2|. By symmetry, one also
gets g̃(K2;x0)− g̃(K1;x0) ≤ |K1 −K2|, and thus the proof is complete.

The following proposition demonstrates some properties of both problems (4.16) and
(4.17).

Proposition 4.6. Assume H1 and 0 < K < d,

(a) If 0 < K < x0e
rT < d, g̃(K;x0) = 0 and g(K;x0) = ∞, i.e. problem (4.16) is

unbounded.

(b) If 0 < x0e
rT = K < d, there exists a sequence of Zn ∈ C1(d, x0) such that lim

n→∞
E
[
(K − Zn)+

]
=

0 and lim
n→∞

ΩZn(K) =∞.
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(c) If 0 < x0e
rT < K < d, g̃(K;x0) > 0 and g(K;x0) <∞, the optima for both problems

(4.16) and (4.17) are not attained.

Proof. We only present the proof of part (a) and relegate that of part (b) and part (c) to
Appendix C.1. We construct Z as follows:

Z = K +
(
x0 −Ke−rT

) ξβ−1
T 1{ξT≤δ}

E
[
ξβT1{ξT≤δ}

] , (4.18)

for some β > 1 where δ satisfies that E[Z] = d. It is easy to see that E[ξTZ] = x0.

Since Z ≥ K a.s., E
[
(K − Z)+

]
= 0, thus g̃(K;x0) = 0. With E

[
(Z −K)+

]
> 0, we

have g(K;x0) =∞, so that problem (4.16) is unbounded.

It remains to justify the existence of both β and δ to satisfy E[Z] = d. Recalling that
(4.3) and (4.5), we know that

ξβ−1
T = exp

{
−
(
r +
||ζ||2

2

)
(β − 1)T − (β − 1)ζ>WT

}
=: mβ,1(T )Λβ,1(T ),

= exp

{
−
(
r − ||ζ||

2

2

)
(β − 1)T − (β − 1)ζ>WQ

T

}
=: mβ,2(T )Λβ,2(T ),

where 

mβ,1(T ) := exp

{
−r(β − 1)T +

||ζ||2

2
(β − 1)(β − 2)T

}
,

Λβ,1(T ) := exp

{
−||ζ||

2

2
(β − 1)2 · T − (β − 1)ζ>WT

}
,

mβ,2(T ) := exp

{
−r(β − 1)T +

||ζ||2

2
(β − 1)βT

}
,

Λβ,2(T ) := exp

{
−||ζ||

2

2
(β − 1)2 · T − (β − 1)ζ>WQ

T

}
.

Then we introduce two equivalent measures defined by

dP̃
dP

= Λβ,1(T ) and
dQ̃
dQ

= Λβ,2(T ).

So if we define W P̃
T and W Q̃

T as follows:

dW P̃
t = dWt + (β − 1)ζdt and dW Q̃

t = dWQ
t + (β − 1)ζdt.

{W P̃
T , t ≥ 0} and {W Q̃

T t ≥ 0} are two standard Brownian motions under P̃ and Q̃,
respectively. As a result, we obtain

E
[
ξβ−1
T 1{ξT≤δ}

]
E
[
ξβT1{ξT≤δ}

] =
erTE

[
ξβ−1
T 1{ξT≤δ}

]
EQ
[
ξβ−1
T 1{ξT≤δ}

] =
erTmβ,1(T ) · P̃ (ξT ≤ δ)

mβ,2(T ) · Q̃ (ξT ≤ δ)
=
e[r−||ζ||

2(β−1)]T · Φ(a)

Φ(a− ||ζ||
√
T )

,

78



where

a =
ln δ +

[
r − (β − 3

2
)||ζ||2

]
T

||ζ||
√
T

.

We can verify that

E
[
ξβ−1
T 1{ξT≤δ}

]
E
[
ξβT1{ξT≤δ}

] →∞ as δ → 0,

E
[
ξβ−1
T 1{ξT≤δ}

]
E
[
ξβT1{ξT≤δ}

] → e[r−||ζ||
2(β−1)]T < erT as δ →∞.

Consequently, given a β > 1 we can find a δ such that
E[ξβ−1

T 1{ξT≤δ}]
E[ξβT 1{ξT≤δ}]

= d−K
x0−Ke−rT > erT , i.e.

E[Z] = d.

4.2.6 Equivalence between The Mean-Expectile Problem (4.13)
and The Mean-Omega Problem (4.16)

Denote problems (4.13) and (4.16) by P1(α) and P2(K) respectively, and define
ΠP1 : =

⋃
α∈( 1

2
,1)

{Z∗ | Z∗ is optimal to P1(α)},

ΠP2 : =
⋃

K∈(x0erT ,d)

{Z∗ | Z∗ is optimal to P2(K)}.
(4.19)

Proposition 4.7. ΠP1 = ΠP2 = ∅ .

Proof. By Proposition 4.6, ΠP2 = ∅. Therefore, it suffices to prove that ΠP1 ⊆ ΠP2 , which
involves two distinct cases.

• If ΠP1 = ∅, the claim follows immediately.

• If ΠP1 6= ∅, given a Z∗ ∈ ΠP1 for a fixed α ∈ (1
2
, 1), we have EZ∗(1− α) ≥ EZ(1− α)

for any Z ∈ C1(d, x0). Let K = EZ∗(1− α), we can obtain that

ΩZ∗(K) = ΩZ∗ (EZ∗(1− α)) =
α

1− α
= ΩZ (EZ(1− α)) ≥ ΩZ (EZ∗(1− α)) = ΩZ(K),

(4.20)
where the second and the third equality follow from equation (4.10), and the first
inequality follows from strictly decreasing property of ΩZ(·) from Lemma 4.2.
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It remains to prove that K ∈ (x0e
rT , d). Firstly, K < d due to assumption H2 along

with equation (4.8). Secondly, if K ≤ x0e
rT , by Proposition 4.6, we can construct a

feasible strategy (for K < x0e
rT ) or a sequence of strategies (for K = x0e

rT ) leading
to ΩZ∗(K) = ∞, contradicting ΩZ∗(K) = α

1−α . Therefore, K > x0e
rT . To conclude,

we obtain ΠP1 ⊆ ΠP2 .

Proposition 4.7 motivates us to modify the problem (4.12), which will be discussed in
the next section.

4.3 Optimal Solutions with A Terminal Wealth Bound

Constraint

We modify the portfolio choice problem by imposing a bound constraint on the terminal
wealth. This modification technique has been used in the literature; see Bernard et al.
(2017) and Chiu et al. (2012). The modified problem is as follows:


inf

π∈A(x0)
EL(α),

subject to E[Xπ
T ] = d,

E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.

(4.21)

Noticing the fact that EL(α) = x0e
−rT −EXπ

T
(1−α), we will apply the martingale approach

and thus consider the following problem:
sup
Z∈M+

EZ(1− α),

subject to E[Z] = d,

E[ξTZ] 6 x0,

0 ≤ Z ≤M, a.s.

(4.22)

M should be as large as d in order to have a non-empty feasible set for the above problem,
we should have M > d, which we assume throughout the rest of the chapter.

We denote the feasible set of the above problem (4.22) by:

C2(d, x0,M) = {Z ∈M+ | E[Z] = d, E [ξTZ] ≤ x0 and 0 ≤ Z ≤M a.s.} . (4.23)

Due to the lack of an explicit form for the expectile and by the relationship (4.10)
between the expectile and the Omega measure, we consider the Mean-Omega problem
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with bounded constraint on terminal wealth specified as follows:

G(K;x0) := sup
Z∈C2(d,x0,M)

ΩZ(K). (4.24)

The connection of the above Mean-Omega optimization problem (4.24) to the Mean-
Expectile optimization problem is described in Proposition 4.15 in the sequel.

Since E
[
(Z −K)+

]
= E[Z − K] + E

[
(K − Z)+

]
= d − K + E

[
(K − Z)+

]
for any

Z ∈ C2(d, x0,M). Thus, problem (4.24) is equivalent to the following problem:

G̃(K;x0) := inf
Z∈C2(d,x0,M)

E
[
(K − Z)+

]
. (4.25)

Remark 4.8. Recalling assumption H2, i.e. 1
2
< α < 1, we have EZ(1 − α) ∈ (0, d) for

every Z feasible to problem (4.22) and thus we only need to consider K to be in (0, d) for
both problems (4.24) and (4.25). However, if 0 < K < x0e

rT < d, we know from part (a)
of Proposition 4.6, we can construct Z specified in (4.18), and for such a construction we

have 0 ≤ Z ≤
[
K + (x0erT−K)δβ−1

E[ξβT 1{ξT≤δ}]

]
=: b a.s. where δ and β > 1 are such that E[Z] = d and

E [ξTZ] = x0. Thus, for M > b, problem (4.24) has unbounded supreme value. Therefore,
we focus on x0e

rT ≤ K < d for our analysis in the sequel.

We begin by noting some basic properties of G and G̃ for problems (4.24) and (4.25),
respectively.

Proposition 4.9. Suppose x0e
rT ≤ K < d.

(a) G̃(K;x0) is Lipschitz continuous and strictly increasing with respect to K;

(b) If G̃(x0e
rT ;x0) > 0, then G(K;x0) is Lipschitz continuous and strictly decreasing

with respect to K.

Proof. The Lipschitz continuity of G̃ can be proved in the same way as in Proposition 4.5.
The proof of strictly increasing property is similar to the proof of the analogous result in
Dinkelbach (1967). (b) is a straightforward consequence of (a).

4.3.1 Choice of M

In this subsection, we impose a condition on the magnitude of the upper bound M for
legitimate consequent analysis of problems (4.21) and (4.22). To proceed, we denote Φ as
the standard normal distribution cumulative distribution function and Φ−1 as its inverse
function. The following lemma presents a condition for M , which we need to proceed.
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Lemma 4.10. Assume H1 holds. There exists a constant Mmin > 0 such that for all
M > Mmin we have

Φ−1

(
d

M

)
− Φ−1

(
x0e

rT

M

)
< ||ζ||

√
T . (4.26)

Proof. We know that the upper bound M satisfies M > d > x0e
rT . Denote f(M) :=

Φ−1
(
d
M

)
−Φ−1

(
x0erT

M

)
. It is obvious that f(M) > 0 for all M > 0. Taking the first order

derivative for f with respect to M yields

f ′(M) = − d

M2φ
[
Φ−1

(
d
M

)] +
x0e

rT

M2φ
[
Φ−1

(
x0erT

M

)]
= − 1

M

Φ
[
Φ−1

(
d
M

)]
φ
[
Φ−1

(
d
M

)] − Φ
[
Φ−1

(
x0erT

M

)]
φ
[
Φ−1

(
x0erT

M

)]
 < 0,

where the last inequality follows from the fact that Φ(x)
φ(x)

is increasing with respect to x.

Thus, f is a continuous and strictly decreasing function on (0, inf).

Denote y := x0erT

M
and k = d

x0erT
> 1. Then, for large enough M such that 0 < y <

ky < 1
2
, we obtain

0 < Φ−1(ky)− Φ−1(y) = Φ−1

(
d

M

)
− Φ−1

(
x0e

rT

M

)
≤
(
Φ−1(y)

)′ · (k − 1)y = (k − 1)
Φ [Φ−1 (y)]

φ [Φ−1 (y)]
,

where the second inequality follows from the concavity of Φ−1(x) for 0 < x < 1
2
. As

M → ∞, y → 0 and Φ−1(y) → −∞, it is easy to verify that lim
y→0

Φ[Φ−1(y)]
φ[Φ−1(y)]

= 0. Therefore

by the Squeeze Theorem, we conclude that lim
M→∞

f(M) = 0, which along with the continuity

of f concludes the proof.

Although Chiu et al. (2012) claim that upper bound M should be sufficiently large for
the problem they consider, they do not mention how large M should be. For our problem,
we impose the following assumption on M in order to obtain the solution to both problems
(4.24) and (4.25):

H3. The upper bound M satisfies equation (4.26).
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4.3.2 Lagrangian Duality and Pointwise Optimization

The analysis in the last section motivates us to focus on the problem (4.25), which we
solve by a Lagrangian duality method and a pointwise optimization procedure. This entails
introducing the following optimization problems with multipliers β1 and β2:

inf
Z∈M+

0≤Z≤M a.s.

E
{

(K − Z)+ + (β2ξT − β1)Z
}
, β2 > 0. (4.27)

Note that we focus on x0e
rT ≤ K < d. We solve the above problem by resorting to

a pointwise optimization procedure and consider the following problem for y1 > 0 and
y2 > 0:

inf
0≤x≤M

{(K − x)+ + (y2 − y1)x} . (4.28)

Given sufficiently large M , it is easy to verify that the solution to the pointwise opti-
mization problem (4.28) is as follows:

x∗(y1, y2) = K1{y1<y2≤y1+1} +M1{y2≤y1}. (4.29)

Lemma 4.11.

(a) Z∗β1,β2 := x∗(β1, β2ξT ) solves problem (4.27) where x∗ given in (4.29).

(b) If there exist two constants β∗1 > 0 and β∗2 > 0 such that Z∗ := x∗(β∗1 , β
∗
2ξT ) ∈ FT

satisfies E [Z∗] = d and E[ξTZ
∗] = x0. Then Z∗ solves both problems (4.24) and

(4.25).

Proof. The proof is in parallel with those of Lemmas 2.2 and 2.3 in Chapter 2 (see Lin
et al. (2017) as well), and thus omitted.

4.3.3 Solutions to Problems (4.24) and (4.25)

In this section, we investigate the solutions to problems (4.24) and (4.25). The following
lemma will be employed later for recovering the solutions.

Lemma 4.12. Suppose x0e
rT ≤ K < d and H3 holds. There exists a unique solution pair

(q̃1, q̃2) satisfying 1 > q̃2 > q̃1 > 0 to the following system:
p1(q̃1, q̃2) := q̃2 +

(
M

K
− 1

)
q̃1 −

d

K
= 0,

p2(q̃1, q̃2) := Φ
(

Φ−1(q̃2)− ||ζ||
√
T
)

+

(
M

K
− 1

)
Φ
(

Φ−1(q̃1)− ||ζ||
√
T
)
− x0e

rT

K
= 0.

(4.30)
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Proof. For each q1, equation p1(q1, q2) = 0 is equivalent to q2 = d
K
−
(
M
K
− 1
)
q1. Along

with 1 > q2 > q1 > 0, we obtain that for d−K
M−K < q1 <

d
M

. Write q2(q1) := d
K
−
(
M
K
− 1
)
q1

to get dq2
dq1

= −
(
M
K
− 1
)
< 0 and

dp2(q1, q2(q1))

dq1

=
φ
(

Φ−1(q2)− ||ζ||
√
T
)

φ (Φ−1(q2))

dq2

dq1

+

(
M

K
− 1

) φ
(

Φ−1(q1)− ||ζ||
√
T
)

φ (Φ−1(q1))

= e−
1
2
||ζ||2T

(
e||ζ||

√
TΦ−1(q2) − e||ζ||

√
TΦ−1(q1)

) dq2

dq1

< 0,

which implies that p3(q1) := p2(q1, q2(q1)) is decreasing in q1.

Furthermore, as q1 ↗ d
M

we have

p3(q1)→ M

K
Φ

(
Φ−1(

d

M
)− ||ζ||

√
T

)
− x0e

rT

K
< 0,

where the inequality follows from the assumption H3 on M specified in (4.26).

As q1 ↘ d−K
M−K , we obtain

p3(q1)→1 +

(
M

K
− 1

)
Φ

(
Φ−1

(
d−K
M −K

)
− ||ζ||

√
T

)
− x0e

rT

K

≥ 1 +

(
M

K
− 1

)
Φ

(
Φ−1

(
d−K
M −K

))
− x0e

rT

K
=
d− x0e

rT

K
> 0

where the inequality follows from x0e
rT < d. Therefore, we conclude that there exists a

unique pair (q̃1, q̃2) to the system (4.30).

Proposition 4.13. Suppose x0e
rT ≤ K < d and H3 holds. There exist two unique

constants β∗1 > 0 and β∗2 > 0 such that Z∗ := x∗(β∗1 , β
∗
2ξT ) satisfies E [Z∗] = d and

E[ξTZ
∗] = x0, where x∗ is given in (4.29).

Proof. From (4.29), we know that

Z∗β1,β2 := x∗(β1, β2ξT ) = K1{β1<β2ξT≤β1+1} +M1{β2ξT≤β1}.

Thus, 

E
[
Z∗β1,β2

]
= KP (β1 < β2ξT ≤ β1 + 1) +MP (β2ξT ≤ β1)

= KP (β2ξT ≤ β1 + 1) + (M −K)P (β2ξT ≤ β1) ,

E[ξTZ
∗
β1,β2

] = Ke−rTQ (β1 < β2ξT ≤ β1 + 1) +Me−rTQ (β2ξT ≤ β1)

= Ke−rTQ (β2ξT ≤ β1 + 1) + (M −K)e−rTQ (β2ξT ≤ β1)

= Ke−rTΦ
(

Φ−1 [P (β2ξT ≤ β1 + 1)]− ||ζ||
√
T
)

+ (M −K)e−rTΦ
(

Φ−1 [P (β2ξT ≤ β1)]− ||ζ||
√
T
)
,
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where the last equality follows from the fact that Q(ξT ≤ a) = Φ
(

Φ−1[P (ξT ≤ a)]− ||ζ||
√
T
)

for a positive constant a. Denote q̃1 := P (β2ξT ≤ β1) and q̃2 := P (β2ξT ≤ β1 + 1) to get
that 1 > q̃2 > q̃1 > 0. Then by Lemma 4.12, the claim follows immediately.

Let β∗1 and β∗2 be the two unique constants that satisfy both constraints E [x∗(β∗1 , β
∗
2ξT )] =

d and E[ξTx
∗(β∗1 , β

∗
2ξT )] = x0. We characterize the optimal value G(K;x0) of problem

(4.24) and the optimal value G̃(K;x0) of problem (4.25) in the following proposition.

Proposition 4.14. Suppose x0e
rT ≤ K < d and H3 holds. Then, x∗(β∗1 , β

∗
2ξT ) solves

problems (4.24) and (4.25), where x∗ is given in (4.29). The optimal values G(K;x0) and
G̃(K;x0) of the two problems are respectively given as follows:G(K;x0) =

(
M

K
− 1

)
P (β∗2ξT ≤ β∗1)

1− P (β∗2ξT ≤ β∗1 + 1)
=

d
K
− P (β∗2ξT ≤ β∗1 + 1)

1− P (β∗2ξT ≤ β∗1 + 1)
,

G̃(K;x0) = K [1− P (β∗2ξT ≤ β∗1 + 1)] .

(4.31)

Proof. The claims follow immediately from Lemma 4.11 and Proposition 4.13.

4.3.4 Optimal Solution to Problem (4.22)

In the previous analysis, the dependence of β∗1 , β
∗
2 , x

∗ and the optimal solution Z∗ on K is
suppressed for ease of notation where we assume x0e

rT ≤ K < d. In this section, we make
explicit the dependence on K by rewriting them as β∗1(K), β∗2(K), x∗K and Z∗K . Now we
can proceed to investigate the optimal solution for problem (4.22).

Proposition 4.15. Assume that there exists a constant K∗ ∈ (x0e
rT , d) such that G(K∗;x0) =

α
1−α . Then Z∗K∗ = x∗K∗(β

∗
1(K∗), β∗2(K∗)ξT ) is an optimal solution to problem (4.22) and K∗

is the optimal objective value.

Proof. The proof is similar to the proof of the analogous result in Proposition 4.7 and thus
omitted.

Remark 4.16. Given an upper bound M , Proposition 4.15 specifies how to recover the
optimal solution to problem (4.22). Since we confine the parameter K to be such that
x0e

rT ≤ K < d, from Proposition 4.14 we can know that G̃(x0e
rT ;x0) > 0 due to the facts

that β∗1(x0e
rT ) > 0 and β∗2(x0e

rT ) > 0, as revealed by Proposition 4.13. Thus G(K;x0)
is Lipschitz continuous and strictly decreasing with respect to K by Proposition 4.9. So,
it is obvious that G(K;x0) ∈ (1, G(x0e

rT ;x0)]. Recall H2, α
1−α > 1. However, if α

1−α >

G(x0e
rT ;x0), then obviously the recovering technique in Proposition 4.15 fails since α

1−α is
outside of the range for G(K;x0). In the rest of the section, we will resolve this situation
by increasing the value of the upper bound M , which agrees with our starting point that M
should be sufficiently large.
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So far, the previous analysis is for a fixed M . However, as we stated earlier, following
Chiu et al. (2012), the upper bound should be sufficiently large enough. Besides the
assumption H3 imposed on the the upper bound M , we need to increase the value of
M to be as large as possible. The following proposition implies that increasing M will
increase the value of G(x0e

rT ;x0), where G is defined in (4.24), and we make explicit the
dependence of G on M by denoting GM(x0e

rT ;x0) := G(x0e
rT ;x0).

Proposition 4.17. Let GM := G for making the dependence on M explicit, where G is
defined in (4.24). For x0e

rT ≤ K < d, if M2 > M1 and both M2 and M1 satisfies (4.26),
i.e. H3 holds, then GM2(K;x0) > GM1(K;x0).

Proof. It is obvious that GM2(K;x0) ≥ GM1(K;x0). It remains to rule out the case where
GM2(K;x0) = GM1(K;x0). Suppose GM2(K;x0) = GM1(K;x0). By Proposition 4.14, we
obtain

q̃2(M2) := P (β∗2(K,M2)ξT ≤ β∗1(K,M2) + 1) = P (β∗2(K,M1)ξT ≤ β∗1(K,M1) + 1) =: q̃2(M1),

where we specify the dependence on M for both β∗1 and β∗2 . Similarly, we make the
dependence on M explicit by denoting q̃1(Mi) := P (β∗2(K,Mi)ξT ≤ β∗1(K,Mi)), i = 1, 2.
By Lemma 4.12 and Proposition 4.13, we obtain that there should exist a unique solution
(q̃1(M1), q̃1(M2)) to the following equations:

(
M1

K
− 1

)
q̃1(M1) =

(
M2

K
− 1

)
q̃1(M2),(

M1

K
− 1

)
Φ
(

Φ−1(q̃1(M1))− ||ζ||
√
T
)

=

(
M2

K
− 1

)
Φ
(

Φ−1(q̃1(M2))− ||ζ||
√
T
)
.

(4.32)

Suppose
(
M1

K
− 1
)
q̃1(M1) =

(
M2

K
− 1
)
q̃1(M2). Then q̃1(M1) = M2−K

M1−K q̃1(M2) > q̃1(M2),
thus we need to have

f(q̃1(M2)) :=

(
M1

K
− 1

)
Φ

(
Φ−1

(
M2 −K
M1 −K

q̃1(M2)

)
− ||ζ||

√
T

)
−
(
M2

K
− 1

)
Φ
(

Φ−1(q̃1(M2))− ||ζ||
√
T
)
.

Taking the first order derivative yields

f ′(q̃1(M2)) =

(
M2

K
− 1

)φ
(

Φ−1
(
M2−K
M1−K q̃1(M2)

)
− ||ζ||

√
T
)

φ
(

Φ−1
(
M2−K
M1−K q̃1(M2)

)) −
φ
(

Φ−1 (q̃1(M2))− ||ζ||
√
T
)

φ (Φ−1 (q̃1(M2)))


=

(
M2

K
− 1

)
e−

1
2
||ζ||2T

(
e
||ζ||
√
TΦ−1

(
M2−K
M1−K

q̃1(M2)
)
− e||ζ||

√
TΦ−1(q̃1(M2))

)
> 0.

Furthermore, as q̃1(M2) ↗ 1, f(q̃1(M2)) →
(
M1

K
− 1
)
−
(
M2

K
− 1
)

= M1−M2

K
< 0. Thus

there is no solution q̃1(M2) such that f(q̃1(M2)) = 0, contradicting the existence and
uniqueness of solutions to (4.32). Thus GM2(K;x0) 6= GM1(K;x0).
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Proposition 4.18. Let G̃M := G̃ to making the dependence on M explicit, where G̃ is
defined in (4.25). For x0e

rT ≤ K < d, lim
M→∞

G̃M(K;x0) = g̃(K;x0), where g̃ is defined in

(4.17).

Proof. See Appendix C.2.

By virtue of both Propositions 4.6 and 4.18, we know that lim
M→∞

G̃M(x0e
rT ;x0) =

g̃(x0e
rT ;x0) = 0. This means that lim

M→∞
GM(x0e

rT ;x0) = g(x0e
rT ;x0) = ∞. Thus if

M tends to infinity, the value of our modified problem will approach the value function of
our original problem without the bound constraint on the terminal wealth.

As such, we derive a solution Z∗ to problem (4.13) by the following algorithm:

Algorithm 2 (Mean-Expectile Portfolio Selection).

Step 1. Derive the optimal function x∗ for the pointwise optimization problem (4.28)
using equation (4.29);

Step 2. For each x0e
rT ≤ K < d, search for the unique solution pair to both

equations E[x∗K(β∗1(K), β∗2(K)ξT )] = d and E[ξTx
∗
K(β∗1(K), β∗2(K)ξT )] = x0. Then set

Z∗K = x∗K(β∗1(K), β∗2(K)ξT );

Step 3. Invoke Proposition 4.15 to get Z∗ := Z∗K∗ by solving for K∗ from G(K∗;x0) =
α

1−α . If K∗ exists, then stop. If there is no K∗ such that G(K∗;x0) = α
1−α or equiva-

lently, α
1−α > G(x0e

rT ;x0), increase the upper bound M , and go back to Step 1.

Remark 4.19. Along with Proposition 4.17, we know that increasing M will increase
GM(x0e

rT ;x0) and eventually reach and cross α
1−α . In other words, if α

1−α > GM(x0e
rT ;x0)

for our initial choice of M , increasing the upper bound M will eventually lead us to α
1−α ≤

GM(x0e
rT ;x0). This is also the reason for having Step 3 in the above algorithm and also

why the following algorithm will eventually terminate, ending with an optimal solution for
a specific large enough upper bound M .

4.4 Global Expectile Minimizing Strategies with A

Terminal Wealth Bound Constraint

Before we derive the Mean-Expectile efficient frontier, in this section we consider the fol-
lowing global expectile minimizing portfolio:

inf
π∈A(x0)

EL(α),

subject to E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.,

(4.33)
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which differs from problem (4.22) by the exclusion of the mean constraint E[Xπ
T ] = d. Via

the analysis of the above problem, we will develop some insights on the Mean-Expectile
efficient frontier which will be studied in Section 4.5.

By the martingale method, to solve problem (4.22), it is sufficient to consider the
following problem: 

sup
Z∈FT

EZ(1− α),

subject to E[ξTZ] 6 x0,

0 ≤ Z ≤M, a.s.

(4.34)

We denote the feasible set of the above problem by C3(x0,M):

C3(x0,M) = {Z ∈M+ | E [ξTZ] ≤ x0 and 0 ≤ Z ≤M a.s.} . (4.35)

Similarly, due to the lack of an explicit form for the expectile, we use its relationship
with the Omega ratio shown in (4.10) and consider the following problem instead.

sup
Z∈C3(x0,M)

ΩZ(K). (4.36)

In fact, the above problem (4.36) has been considered in Bernard et al. (2017). We can
quote the result from Bernard et al. (2017). However, since this problem is a fractional
programming problem, we provide an alternative method using the linearization technique
given in the sequel; this approach can be also seen in Chapter 2. The linearization technique
transforms the original formulated problem to a family of optimization problems, where
there is one problem corresponds to the original formulation. This approach provides some
insights in solving the optimization problem due to the linearity of the objective function.

Due to the relationship between expectile and the Omega measure, we have proved the
equivalence between problem (4.13) and problem (4.16) in Proposition 4.7, which allows
us to draw the connection between the Mean-Omega problem and the Mean-Expectile
problem. The analogous results can be also found in Proposition 4.15. Following the same
proof idea as in Proposition 4.7 and Proposition 4.15, we can solve (4.34) by a solution to
problem (4.36). To this end, we need to find a K∗ such that ΩZ∗

K∗
(K∗) = α

1−α where Z∗K
denotes the solution for problem (4.36) at K.

This nonlinear optimization problem (4.36) can be reduced to the following linearized
optimization problem:

H(K;x0) = sup
Z∈C3(x0,M)

E
[
(Z −K)+

]
− α

1− α
E
[
(K − Z)+

]
. (4.37)

The following proposition states how one can obtain the solution to problem (4.34)
from the solution to problem (4.37).
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Proposition 4.20. Suppose there exists a constant K∗ ∈ (x0e
rT , d) such that H(K∗;x0) =

0, then Z∗K∗ is an optimal solution to problem (4.34) and K∗ is the optimal objective value
for problem (4.34), provided that E

[
(K∗ − Z∗K∗)+

]
> 0.

Proof. Since H(K∗;x0) = 0 and E
[
(K∗ − Z∗K∗)+

]
> 0, we obtain that ΩZ∗

K∗
(K∗) = α

1−α .
The rest of proof is similar to the proof of analogous results in Propositions 4.7 and 4.15,
and thus omitted.

The following proposition shows several properties of H(·; ·).

Proposition 4.21. H(K;x0) is Lipschitz continuous with respect to K and strictly de-
creasing with respect to K. Furthermore H(x0e

rT ;x0) ≥ 0 and H(M ;x0) < 0

Proof. The Lipschitz continuity can be proved in the same way as in Proposition 4.5. As
for strictly decreasing property, the proof is similar to the proof of the analogous result in
Dinkelbach (1967), and thus omitted.

Furthermore, at K = x0e
rT , we know that the risk-free asset investment, i.e. Z = x0e

rT

or equivalently πt = 0 for all 0 ≤ t ≤ T , will achieve a zero objective value, and thus
H(x0e

rT ;x0) ≥ 0. At K = M , for all feasible solution Z ∈ C3(x0,M) to problem (4.37), the
objective function will be valued at − α

1−αE
[
(M − Z)+

]
< 0. Therefore, H(M ;x0) < 0.

We can derive the solution to (4.37) as follows using the pointwise optimization tech-
nique and Lagrangian duality method.

Proposition 4.22. The unique optimal solution to (4.37) is given by

Z∗K = M1{β∗ξT≤1} +K1{1<β∗ξT≤ α
1−α}, (4.38)

where β∗ is such that E [ξTZ
∗
K ] = x0. The value function H(K;x0) is

H(K;x0) = (M −K)P (β∗ξT ≤ 1)− α

1− α
KP

(
β∗ξT ≥

α

1− α

)
. (4.39)

Proof. The existence of the given solution (4.38) can be proved in the same way as we did
for problems (4.24) and (4.25) in Section 4.3. The uniqueness of the optimal solution follows
the fact that optimal solution Z∗ will only take values on the boundary (see Proposition
1 in Bernard et al. (2017)) and that the optimal β∗ is unique for the budget constraint to
be binding at the solution.

By the above two Propositions, we know that we could find a unique K∗ such that
H(K∗;x0) = 0 due to the fact that H(K;x0) is strictly decreasing with respect to K.
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Thus we can obtain the unique global expectile minimizing portfolio. In addition, the
corresponding mean, denoted as dgem, uniquely determined by K∗, is as follows

dgem := E [Z∗K∗ ] = (M −K∗)P (β∗ξT ≤ 1) +K∗P
(
β∗ξT ≤

α

1− α

)
(4.40)

and the global minimizing expectile is EL∗(α) = x0e
rT − EZ∗

K∗
(1− α) = x0e

rT −K∗.

4.5 Efficient Frontier with A Terminal Wealth Bound

Constraint

In this section, we will construct the efficient portfolios and derive the efficient frontier of
our Mean-Expectile portfolio selection problem with a terminal wealth bound constraint
based on the previous sections. First, we give the following definitions; see the similar
concept of efficient portfolio and efficient frontier for the mean-variance portfolio choice
problem in Markowitz et al. (2000) and Bielecki et al. (2005).

Definition 4.2. The Mean-Expectile portfolio selection problem with a terminal wealth
bound constraint is formulated as the following multi-objective optimization problem:

inf
π∈A(x0)

(J1(π), J2(π)) := (EL(α),−E[Xπ
T ]),

subject to E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.,

(4.41)

where L := x0e
rT − Xπ

T . A feasible portfolio π∗ is called an “efficient portfolio” if there
exists no feasible portfolio such that

J1(π) ≤ J1(π∗), J2(π) ≤ J2(π∗),

with at least one of the inequalities holding strictly. In this case, we call (J1(π∗),−J2(π∗)) ∈
R2 an efficient point. The set of all efficient points is called the efficient frontier.

In other words, an efficient portfolio is one for which there does not exist another
portfolio that has larger mean and no larger expectile, and/or has lower expectile and no
lower mean at terminal time T . The efficient frontier is a two-dimensional curve. Therefore,
the technical difficulty arises since the optimization involves a multi-objective function.
In the mean-variance literature, to solve the multi-objective optimization problem, one
considers a single-objective function introducing a weighting factor associated with both
mean and variance. The second approach is to maximize the expected terminal wealth
controlling the variance to be below a certain level. The third approach is to minimize
the variance by keeping the expected terminal wealth to be above a certain level. In the
following definition, we adopt the third approach.
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Alternatively, “efficient portfolio” and “efficient frontier” for the Mean-Expectile port-
folio selection problem from with a terminal wealth bound constraint is can be obtained
by considering the following single-objective optimization problem, with a fixed d ≥ 0:

inf
π∈A(x0)

J1(π) := EL(α),

subject to J2(π) := −E[Xπ
T ] ≤ −d,

E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.

(4.42)

where L := x0e
rT − Xπ

T . A feasible portfolio π∗ is called an “efficient portfolio” if there
exists no feasible portfolio such that

J(π) < J(π∗),

In this case, we call (J1(π∗),−J2(π∗)) ∈ R2 an efficient point. Considering problem (4.42)
over all d ≥ 0 yields the set of all efficient points, which is called the efficient frontier.

We rewrite Z∗ as Z∗d in the following proposition to make the dependence on d explicit
for our analysis, meaning that Z∗d is the optimal solution for problem (4.22) given a fixed
mean level d.

Proposition 4.23. For d2 > d1 ≥ dgem, where dgem is given in (4.40), EZ∗d1 (1 − α) >

EZ∗d2 (1− α). For dgem ≥ d3 > d4 > x0e
rT , EZ∗d3 (1− α) > EZ∗d4 (1− α).

Proof. For d2 > d1 ≥ dgem, let a := d1−dgem
d2−dgem ∈ [0, 1). It is easy to verify that d1 =

ad2 + (1 − a)dgem. Consider the strategy Z := aZ∗d2 + (1 − a)Z∗dgem . It is obvious that
E[Z] = d1, E [ξTZ] ≤ x0 and 0 ≤ Z ≤M a.s., i.e. Z ∈ C2(d1, x0,M), which implies that Z
is feasible solution to problem (4.22) with d = d1. Therefore,

EZ∗d1 (1− α) ≥ EZ(1− α) ≥ aEZ∗d2 (1− α) + (1− a)EZ∗dgem (1− α) > EZ∗d2 (1− α)

where the last inequality follows from the uniqueness of the global expectile minimizing
portfolio. A similar proof for the case dgem ≥ d3 > d4 > x0e

rT yields EZ∗d3 (1 − α) >

EZ∗d4 (1− α).

Since EL∗(α) = x0e
rT − EZ∗d (1− α), we are now ready to summarize the final result on

the efficient frontier.

Proposition 4.24. The efficient portfolio for the Mean-Expectile portfolio selection prob-
lem with a terminal wealth bound constraint, i.e. the optimal portfolio for problem (4.42),
is determined by those solutions to problem (4.21) with d ≥ dgem, where dgem is given in
(4.40). The resulting coordinates (EL∗(α), d) ∈ R2 for all d ≥ dgem form the corresponding
efficient frontier.
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x0 T r α µ σ
100 5 0.03 0.75 0.07 0.3

Table 4.1: Parameter for Numerical Illustration

Proof. The proof follows from the definition of the efficient frontier and Proposition 4.23.

Example 4.1. We consider the parameter values given in Table 4.1.

We vary the choice of d by considering d ∈ (x0e
rT , x0e

rT + 20) for our numerical
illustration. M = 500 is sufficient for our analysis. The frontier is shown in Figure
4.1. For the global expectile minimizing portfolio, we try two different approaches and
the result from both approaches agrees within accepted tolerance. The first approach is to
use the method in Section 4.4, which is essentially the more accurate one for the global
expectile minimizing portfolio due to the analytical formula. The coordinates for the global
expectile minimizing portfolio in Figure 4.1 are (EL∗(α), dgem) = (−1.5607, 125.7551). The
second approach is to solve the problem (4.22) and find the minimum point. We need
to solve problem (4.24) and find the one K∗ such that G(K∗;x0) = α

1−α to recover the
solution. In this approach, we pick two different K’s that lead to two objective values that
are above and below α

1−α respectively, then use the bisection method to approach K∗ such
that G(K∗;x0) = α

1−α , where we select the tolerance for root finding to be 1.0×10−10. Repeat
the procedure for each d we can obtain the curve. We try step size 0.001 and 0.0001 for d
and find the coordinates for the global expectile minimizing portfolio are (EL∗(α), dgem) =
(−1.5607, 125.7554) and (EL∗(α), dgem) = (−1.5607, 125.7551) respectively. The value differ
after four decimal places. If we choose a smaller step size, the expectile for global expectile
minimizing portfolio will approach the one obtained from the first method.

It is worth mentioning that the numerical results agree with our analytical findings.
When d ∈ (x0e

rT , dgem), EL∗(α) decreases with d whereas when d ∈ (dgem, x0e
rT + 20),

EL∗(α) increases with d and the curve in this case is the efficient frontier. This observation
is consistent with the findings in Proposition 4.23. The entire curve in Figure 4.1 is the
expectile minimizing frontier.

In addition, we carry out sensitivity analysis with respect to the upper bound M . The
result is shown in Fig 4.2. Here, we only consider three cases for illustration purpose,
e.g. M = 500, 600, 700 respectively. When M gets large, the entire curve of the expectile
minimizing frontier shifts to the left upper on the Mean-Expectile plane. This finding is
also revealed in the global expectile minimizing portfolio. In other words, a larger upper
bound M allows the investors to construct more efficient portfolio in that it generates more
return but the same risk or that it leads to a smaller risk but the same return.
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Figure 4.1: Frontier: EL∗(α) versus d

Figure 4.2: Frontier: EL∗(α) versus d

93



4.6 Conclusion

In this chapter, we consider a Mean-Expectile portfolio selection problem. Relying on the
close relationship between expectiles and the Omega measure, we propose an alternative
problem with the Omega measure as an objective and conclude that the orignial Mean-
Expectile portfolio choice problem has no solution, i.e. the solution is not attainable.
Following the literature, we impose an upper bound on terminal wealth and solve the
modified problem by a Lagrangian approach and the pointwise optimization technique.
We formally proved that the optimal value of the problem with an upper bound on the
terminal wealth converges to that of the problem without such upper bound as the imposed
bound increases to infinity. Thus, the optimal solution obtained for the problem with an
upper bound can be taken as an approximate solution to the Mean-Expectile problem
without such upper bound on the terminal wealth. We also consider the global expectile
minimizing portfolio and the Mean-Expectile efficient frontier.
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Chapter 5

BSDE Approach to Utility
Maximization with A Square-root
Factor Process

5.1 Introduction

Utility maximization is one of the most common problems in mathematical finance. There
are several widely used methods to deal with the problem in a continuous-time framework,
including the Hamilton-Jacob-Bellman (HJB) approach, the Martingale approach, and the
Backward Stochastic Differential Equation (BSDE) approach.

Firstly, in terms of HJB method, one pioneer work and well known problem is Mer-
ton’s portfolio selection problem. Merton (1969) considered a lifetime portfolio selection
problem, transforming the dynamic investment problem to an HJB equation. From then,
a large amount of literature investigated the portfolio selection problem adopting the HJB
approach. The advantage of the HJB approach is that it transforms a portfolio selection
problem into one of solving a partial differential equation (PDE), by which it suffices to
obtain stochastic optimal controls.

Secondly, there is the Martingale method. One well known reference is Cox and Huang
(1989), in which the portfolio selection problem is transformed into solving a static opti-
mization problem. On can focus on the static optimization problem to find the optimal
attainable payoff, and then create a trading strategy to replicate the optimal payoff. This
approach relies on Girsanov’s Theorem to change processes into martingales and the Mar-
tingale Representation Theorem to create a replicating strategy for each claim in a complete
market.

Thirdly, in terms of the BSDE approach, one famous work is Pardoux and Peng (1990)
in which the existence and uniqueness of the solution to a certain type of BSDE is con-
sidered. It became very popular and useful due to its connections with stochastic control,
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mathematical finance, and partial differential equations. One advantage of the BSDE ap-
proach is that it can help us solve the optimization problem involving random parameters
in the objective function without knowing the dynamic of the random parameters. Also if
the underlying financial market is not formulated under the classical geometric Brownian
motion framework, the BSDE approach can be adopted to obtain a closed-form solution,
while it is presumably not the case if we adopt the other two approaches.

In this chapter, we consider the utility-based continuous-time portfolio selection prob-
lem and formulate the problem under a framework, where we assume the market price of
risk depends on a stochastic factor that satisfies an affine-form, square-root, Markovian
model. This financial market framework includes the classical geometric Brownian motion
model, the CEV model, and Heston’s model as special cases. The objective is to seek an
optimal investment strategy and derive a closed-form solution, where we adopt the third
of the aforementioned approaches, namely the BSDE approach. The utility functions we
choose include three widely used functions, namely the power utility function, the log util-
ity function, and the exponential utility function. For each case, a closed-form solution can
be obtained under some mild regularity conditions. While we are solving the solution to
the corresponding BSDE within each of the three case, at the end it boils down to solving
a system of ODEs involving Riccati ODEs with constant coefficients. The boundedness of
the solutions to Riccati ODEs is critical and proved in our cases, since generally blow-up
of solutions to Riccati ODEs can exist in finite-time.

In one recently publised paper, Shen and Zeng (2015), a mean-variance investment-
reinsurance problem is considered. We adopt the same financial market framework as
used in Shen and Zeng (2015) due to the generality of the modeling framework. However,
in our work, we consider the utility-based investment problem. Meanwhile, our work is
also different from Richter (2014), where the investment problem is formulated taking
into account the effect of stochastic volatility. Our results can be also reduced to the
case of local volatility. Finally, our work is different from most of the literature concerning
utility maximization investment problem that adopts the BSDE approach in that we obtain
the closed-form solution to the corresponding BSDE, denoted as (Y, Z), where Y is not
a bounded process in our case. However, the other literature considers a more general
underlying framework, meaning that the coefficients in the SDEs have no explicit forms,
and the related BSDEs under investigation are within a space where Y is a uniformly
bounded process.

The remainder of this chapter is structured as follows. Section 5.2 presents the formu-
lation of the financial market and several assumptions. Sections 5.3, 5.4 and 5.5 consider
the utility-based investment problem based on the power utility function, the log utility
function, and the exponential utility function, respectively. The final section presents some
concluding remarks.
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5.2 Model Formulation and Preliminary Analysis

5.2.1 Financial Market Model

We assume that an agent, with initial wealth x0 > 0, invests capital in a risk-free bond B
and a risky asset S with price processes as follows:{

dBt = rtBtdt,

dSt = µtStdt+ σtStdW
(1)
t ,

(5.1)

where rt is the risk-free short rate at time t, µt is the growth rate of the risky asset at time
t and σt represents the instantaneous volatility of the risky asset at time t. We denote
the market price of risk as θt := µt−rt

σt
for 0 ≤ t ≤ T and assume that the market price

of risk process {θt}0≤t≤T is related to a stochastic factor process α := {αt}0≤t≤T with the
relationship given as:

θt = λ
√
αt, ∀t ∈ [0, T ], λ ∈ R \ {0}, (5.2)

where the stochastic factor process {αt}0≤t≤T satisfies the following SDE: dαt = κ (φ− αt) dt+
√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)
,

αt|t=0 = α0 ≥ 0.
(5.3)

W := {(W (1)
t ,W

(2)
t ), t > 0} is a standard Brownian motion valued on R2 under the

physical measure P defined over a probability space (Ω,F). We use F := {Ft, t > 0} to
denote the P-augmentation of the natural filtration generated by the Brownian motion W .

To proceed, we impose the following two assumptions for our analysis:

H1. κφ ≥ 0;

H2. rt = 0 for 0 ≤ t ≤ T .

Remark 5.1. Firstly, H1 is imposed to make sure αt ≥ 0 for all t ∈ [0, T ]. Notice that
we do not impose the Feller condition for strictly positivity of α, i.e. 2κφ ≥ ρ2

1 + ρ2
2 in

our case; see further details in Chapter 6 of Jeanblanc et al. (2008). Secondly, H2 follows
most of the literature concerning utility maximization using the BSDE approach; see Hu
et al. (2005) and Chapter 6 in Pham (2009). If H2 is not imposed, the following utility
maximization problem can be carried out with respect to the discounted wealth instead of
the terminal wealth. To be in line with most of the literature, we assume H2.

The aforementioned modeling framework has been used in Shen and Zeng (2015) and it
incorporates some well-know models that are widely used in both academics and practice.
Examples include, but are not limited to, geometric Brownian motion model, the CEV
model and Heston’s model, as well as other non-Markovian models.
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Example 5.1. (CEV Model). If µt = µ, σt = σSβt , rt = r where µ > r > 0, σ > 0 and
β ∈ R, then the risky asset price is given by the CEV model:

dSt = St

[
µdt+ σSβt dW

(1)
t

]
,

where β is called the elasticity parameter of the risky asset. If we set αt = S−2β
t , κ = 2βµ,

φ = (β + 1
2
)σ

2

µ
, ρ1 = −2βσ, ρ2 = 0 and λ = µ−r

σ
, then

dαt = dS−2β
t = 2βµ

[(
β +

1

2

)
σ2

µ
− S−2β

t

]
dt− 2βσS−βt dW

(1)
t

= κ (φ− αt) dt+
√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)
.

It is obvious that the CEV model is a special case of aforementioned framework. If we set
β = 0, then the CEV model reduces to the classical geometric Brownian motion framework.

Example 5.2. (Heston’s Model). If rt = r, µt = r + λνt, σt =
√
νt, ρ1 = σ0ρ and

ρ2 = σ0

√
1− ρ2 where r > 0, λ ∈ R \ {0}, σ0 > 0 and ρ ∈ (−1, 1), then the risky asset

price is given by Heston’s model:

dSt = St

[
(r + λνt) dt+

√
νtdW

(1)
t

]
,

where νt = αt for 0 ≤ t ≤ T satisfies

dνt = κ (φ− νt) dt+ σ0

√
νt

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
.

Example 5.3. If we set µt = rt + λ
√
αt · σ̂(αt) and σt = σ̂(αt) for some functional

σ̂ : C(0, t;R) → R+, where αt := {αs}s∈[0,t] is the restriction of α(·) ∈ C(0, T ;R) to
C(0, t;R), i.e. the space of real-valued, continuous functions defined on [0, t]. Then the
risky asset price is given by a path-dependent model:

dSt = St

[
(rt + λ

√
αt · σ̂(αt)) dt+ σ̂(αt)dW

(1)
t

]
,

and αt satisfies (5.3). This is a special case of the non-Markovian risky asset price; see
more general non-Markovian risky asset price models in Siu (2012).

The following lemma will be used in the study of the portfolio selection problems.

Lemma 5.2. If both m1(t) and m2(t) are bounded on [0, T ], then the stochastic exponential
process defined by

exp

{
−1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

0

m2(s)
√
αsdW

(2)
s

}
(5.4)

is an Ft-adapted martingale.

Proof. See Appendix D.1.
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5.3 Power Utility Maximization

5.3.1 Problem Formulation

We consider a finite investment time horizon [0, T ] with T > 0. Let wt denote the pro-
portion of total wealth invested in the risky asset at time t, assuming the total wealth
keeps at a strictly positive level within the investment horizon. With the trading strategy
w := {wt, 0 6 t 6 T}, the portfolio value process, denoted by Xw

t , evolves according to
the following stochastic differential equation (SDE):

dXw
t = Xw

t

[
wtµtdt+ σtwtdW

(1)
t

]
, t > 0, (5.5)

It is natural to assume that the trading strategy π is F-progressively measurable and

satisfies E
[∫ T

0
σ2
tw

2
t dt
]
<∞, so that a unique strong solution exists for the SDE (5.5).

Definition 5.1. A trading strategy w := {wt, 0 6 t 6 T} is called admissible with initial
wealth x0 > 0 if it belongs to the following set:

A1(x0) := {w ∈ S : Xw
0 = x0 and Xw

t > 0, a.s., ∀ 0 6 t 6 T},

where S denotes the set of F-progressively measurable processes w such that E
[∫ T

0
σ2
tw

2
t dt
]
<

∞.

For w ∈ A1(x0), we apply Itô’s formula to obtain the following equation:

Xw
t = x0 exp

{∫ t

0

[wsµs −
1

2
σ2
sw

2
s ]ds+

∫ t

0

wsσsdW
(1)
s

}
, 0 ≤ t ≤ T. (5.6)

In this section, we consider the power utility function:

U(x) = xγ, 0 < γ < 1. (5.7)

and formulate the portfolio selection problem as follows: sup
w∈A1(x0)

{E [U (Xw
T )] = E [(Xw

T )γ]} ,

subject to (Xw
t , wt) satisfying (5.5) for t ≥ 0.

(5.8)

5.3.2 The Backward Stochastic Differential Equation and Its So-
lution

Now we introduce the following backward stochastic differential equation (BSDE):
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dYt =

[
γ

2(γ − 1)
θ2
t +

γ

γ − 1
θtZ

(1)
t +

1

2(γ − 1)

(
Z

(1)
t

)2

− 1

2

(
Z

(2)
t

)2
]
dt

+ Z
(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

YT = 0.

(5.9)

where θt = λ
√
αt is the market price of risk at time t and αt satisfies (5.3). For ease of

notation, we write Y := {Yt, 0 ≤ t ≤ T} and Z := {(Z(1)
t , Z

(2)
t ), 0 ≤ t ≤ T}.

Proposition 5.3. A solution pair (Y, Z) to BSDE (5.9) is given by
Yt = g(t)αt + c(t),

Z
(1)
t = ρ1

√
αtg(t),

Z
(2)
t = ρ2

√
αtg(t),

(5.10)

where g(t) and c(t) satisfy
dg(t)

dt
+

[
1

2(1− γ)
ρ2

1 +
1

2
ρ2

2

]
g2(t)−

(
κ+

λρ1γ

γ − 1

)
g(t) =

1

2

λ2γ

γ − 1
, g(T ) = 0,

dc(t)

dt
+ κφg(t) = 0, c(T ) = 0.

(5.11)

Proof. Applying Itô’s formula to Yt = g(t)αt + c(t), we have

dYt = g(t)dαt + αt
dg(t)

dt
dt+

dc(t)

dt
dt

= g(t)
[
κ (φ− αt) dt+

√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)]
+ αt

{
−
[

1

2(1− γ)
ρ2

1 +
1

2
ρ2

2

]
g2(t) +

(
κ+

λρ1γ

γ − 1

)
g(t) +

1

2

λ2γ

γ − 1

}
dt− κφg(t)dt

=

[
γ

2(γ − 1)
θ2
t +

γ

γ − 1
θtZ

(1)
t +

1

2(γ − 1)

(
Z

(1)
t

)2

− 1

2

(
Z

(2)
t

)2
]
dt+ Z

(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

where the last equality follows from substituting the expressions of Z
(1)
t and Z

(2)
t given in

(5.10) and θt = λ
√
αt. The claim follows immediately.

H3. κ+ λρ1γ
γ−1

> 0 and κρ1
λ
≤ −1.

Proposition 5.4. A solution to the system of ODEs (5.11) is given by

g(t) = g

(
t;

1

2

λ2γ

γ − 1
, κ+

λρ1γ

γ − 1
,

1

2(1− γ)
ρ2

1 +
1

2
ρ2

2

)
,

c(t) = c

(
t;

1

2

λ2γ

γ − 1
, κ+

λρ1γ

γ − 1
,

1

2(1− γ)
ρ2

1 +
1

2
ρ2

2, κφ

)
,

(5.12)
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where g(t; ·, ·, ·) and c(t; ·, ·, ·, ·) are given in Lemmas D.1 and D.2, respectively in Appendix
D. Furthermore, g(t) is bounded for t ∈ [0, T ].

Proof. Applying Lemmas D.1 and D.2, we obtain the solution. The boundedness of the
solution g(t) can be proved by using the assumption H3.1

5.3.3 Characterization of Solutions to (5.8)

Proposition 5.5. Given a solution (Y, Z) to (5.9), a solution to problem (5.8) is given by

w∗t =
1

1− γ

[
θt
σt

+
Z

(1)
t

σt

]
, (5.13)

and the optimal value function is given by

v(x0) = xγ0e
Y0 . (5.14)

Proof. Define Jwt := (Xw
t )γ eYt to get Jw0 = v(x0), where v(x0) is defined in (5.14). Note

that Jw0 is a constant independent of w, and thus we write J0 := Jw0 . For all w ∈ A1(x0),
we write Jwt = Awt M

w
t , where

Awt =xγ0 exp

{∫ t

0

(
γwsµs −

1

2
γw2

sσ
2
s − f(s, Z(1)

s , Z(2)
s ) +

1

2
(γwsσs + Z(1)

s )2 +
1

2
(Z(2)

s )2

)
ds

}
,

Mw
t = exp

{∫ t

0

(γwsσs + Z(1)
s )dW (1)

s −
1

2

∫ t

0

(γwsσs + Z(1)
s )2ds

}
× exp

{∫ t

0

Z
(2)
t dW (1)

s −
1

2

∫ t

0

(Z(2)
s )2ds

}
,

and f is the negation of the drift coefficient term of the BSDE of Y in (5.9), defined as

f(t, z1, z2) =
γ

2(1− γ)
θ2
t +

γ

1− γ
θtz1 +

1

2(1− γ)
z2

1 +
1

2
z2

2 .

It is obvious that {Mw
t }t∈[0,T ] is a local martingale. Thus, there exists a sequence of

stopping times satisfying lim
n→∞

τn = T a.s. such that {Mw
t∧τn}t∈[0,T ] is a positive martingale

for each n.

1The assumption is one of sufficient conditions to guarantee the boundedness of g(t). The analogous
boundedness result is obtained in Lemma 3.4 in Shen and Zeng (2015) by imposing some other assumptions.
However, to our knowledge, equation (3.40) for the proof of Lemma 3.4 in Shen and Zeng (2015) should
be further investigated.
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Moreover, for all w ∈ A1(x0) and w∗t defined in (5.13), we have for each t ∈ [0, T ],

0 = γw∗tµt −
1

2
γ(w∗t )

2σ2
t − f(t, Z

(1)
t , Z

(2)
t ) +

1

2
(γw∗tσt + Z

(1)
t )2 +

1

2
(Z

(2)
t )2

≥ γwtµt −
1

2
γw2

tσ
2
t − f(t, Z

(1)
t , Z

(2)
t ) +

1

2
(γwtσt + Z

(1)
t )2 +

1

2
(Z

(2)
t )2.

Therefore, {Awt }t∈[0,T ] is a non-increasing process. Hence for t ≥ s,

E[Jwt∧τn|Fs] = E[Awt∧τnM
w
t∧τn|Fs] ≤ Aws∧τnE[Mw

t∧τn|Fs] = Aws∧τnM
w
s∧τn = Jws∧τn .

Note that {Jwt }t∈[0,T ] is bounded below by 0. Passing to the limit and applying the Fatou’s
Lemma yields that {Jwt }t∈[0,T ] is a supermartingale.

It remains to show that {Jw∗t }t∈[0,T ] is a martingale with w∗ defined in (5.13). Note
that Aw

∗
t = xγ0 and

Mw∗

t = exp

{
−1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

0

m2(s)
√
αsdW

(2)
s

}
,

where m1(t) = γλ
(1−γ)

+ ρ1
(1−γ)

g(t) and m2(t) = ρ2g(t). By Lemma 5.2, {Mw∗
t }t∈[0,T ] is a

positive martingale, and so is {Jw∗t }t∈[0,T ]. Then,

E[JwT ] ≤ J0 = v(x0) = E[Jw
∗

T ], ∀w ∈ A1(x0)

Hence, v(x0) is the optimal value function, and w∗ is a solution to problem (5.8).

5.4 Log Utility Maximization

5.4.1 Problem Formulation

In this section, we consider the portfolio selection problem with a log utility function:

U(x) = ln(x), x > 0. (5.15)

Thus, we formulate the problem as follows: sup
w∈A1(x0)

{E [U (Xw
T )] = E [ln(Xw

T )]} ,

subject to (Xw
t , wt) satisfying (5.5) for t ≥ 0.

(5.16)
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5.4.2 The Backward Stochastic Differential Equation and Its So-
lution

Now we introduce the following BSDE: dYt = −1

2
θ2
t dt+ Z

(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

YT = 0.
(5.17)

where θt = λ
√
αt is the market price of risk at time t and αt satisfies (5.3). For ease of

notation, we write Y := {Yt, 0 ≤ t ≤ T} and Z := {(Z(1)
t , Z

(2)
t ), 0 ≤ t ≤ T}.

Proposition 5.6. A solution pair (Y, Z) to BSDE (5.17) is given by
Yt = g(t)αt + c(t),

Z
(1)
t = ρ1

√
αtg(t),

Z
(2)
t = ρ2

√
αtg(t),

(5.18)

where g(t) and c(t) satisfy
dg(t)

dt
− κg(t) = −1

2
λ2, g(T ) = 0,

dc(t)

dt
+ κφg(t) = 0, c(T ) = 0.

(5.19)

Proof. Applying Itô’s formula to Yt = g(t)αt + c(t), we have

dYt = g(t)dαt + αt
dg(t)

dt
dt+

dc(t)

dt
dt

= g(t)
[
κ (φ− αt) dt+

√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)]
+ αt

[
κg(t)− 1

2
λ2

]
dt− κφg(t)dt

= −1

2
θ2
t dt+ Z

(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

where the last equality follows from substituting the expressions of Z
(1)
t and Z

(2)
t given in

(5.18) and θt = λ
√
αt. The claim follows immediately.

Proposition 5.7. A solution to the system of ODEs (5.28) is given by

g(t) = g

(
t;−1

2
λ2, κ, 0

)
,

c(t) = c

(
t;−1

2
λ2, κ, 0, κφ

)
,

(5.20)

where g(t; ·, ·, ·) and c(t; ·, ·, ·, ·) are given in Lemmas D.1 and D.2 respectively. Further-
more, g(t) is bounded for t ∈ [0, T ].
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Proof. Applying Lemmas D.1 and D.2, we have the solution. The boundedness of the
solution g(t) can be proved by applying Lemma D.3.

5.4.3 Characterization of Solutions to (5.16)

Proposition 5.8. Given a solution (Y, Z) to (5.17), the solution to problem (5.16) is given
by

w∗t =
θt
σt
, (5.21)

and the optimal value function is given by

v(x0) = ln(x0) + Y0. (5.22)

Proof. Define Jwt := ln(Xw
t ) + Yt. It is obvious that Jw0 = v(x0) where v(x0) is a constant

given in (5.22), and is a constant independent of w. Thus we denote J0 := Jw0 . For all
w ∈ A1(x0),

Jwt = J0 +

∫ t

0

(
wsµs −

1

2
w2
sσ

2
s −

1

2
θ2
s

)
ds+

∫ t

0

(
wsσs + Z(1)

s

)
dW (1)

s +

∫ t

0

Z(2)
s dW (2)

s .

Furthermore, for any w ∈ A1(x0), we have

E
[∫ T

0

(σtwt + Z
(1)
t )2dt+

∫ T

0

(Z
(2)
t )2dt

]
≤ 2E

[∫ T

0

σ2
tw

2
t dt+

∫ T

0

(
(Z

(1)
t )2 +

1

2
(Z

(2)
t )2

)
dt

]
≤ 2E

[∫ T

0

σ2
tw

2
t dt+

∫ T

0

cαtdt

]
= 2E

[∫ T

0

σ2
tw

2
t dt

]
+ 2c

∫ T

0

[
α0e

−κt + φ(1− eκt)
]
dt <∞

where c = (ρ2
1 +

ρ22
2

) supt∈[0,T ] g
2(t). In the above, the first equality follows from the Fu-

bini’s Theorem and the last inequality follows from the definition of A1(x0). Therefore,

the stochastic integral defined as
{∫ t

0

(
wsσs + Z

(1)
s

)
dW

(1)
s +

∫ t
0
Z

(2)
s dW

(2)
s

}
t∈[0,T ]

is a mar-

tingale.

Moreover, for all w ∈ A1(x0) and w∗t defined in (5.21), we have for each t ∈ [0, T ],

0 = w∗tµt −
1

2
(w∗t )

2σ2
t −

1

2
θ2
t ≥ wtµt −

1

2
w2
tσ

2
t −

1

2
θ2
t .

Therefore, {Jwt }t∈[0,T ] is a supermartingale and {Jw∗t }t∈[0,T ] is a martingale. Thus,

E[JwT ] ≤ J0 = v(x0) = E[Jw
∗

T ].

Hence, v(x0) is the value function and w∗ is a solution to problem (5.16).
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5.5 Exponential Utility Maximization

5.5.1 Problem Formulation

We consider a finite investment time horizon [0, T ] with T > 0. The problem is formulated
by maximizing the expected utility of the terminal wealth. More specifically, the utility
function assumes the following exponential form:

U(x) = −e−ηx, η > 0. (5.23)

Let πt denote the dollar amount of capital invested in the risky asset at time t. With
the trading strategy π := {πt, 0 6 t 6 T}, the portfolio value process, denoted by Xπ

t ,
evolves according to the following stochastic differential equation (SDE):

dXπ
t = πtµtdt+ σtπtdW

(1)
t , t > 0, (5.24)

It is natural to assume that the trading strategy π is F-progressively measurable and

satisfies E
[∫ T

0
σ2
t π

2
t dt
]
<∞, so that a unique strong solution exists for the SDE (5.24).

Definition 5.2. A trading strategy π := {πt, 0 6 t 6 T} is called admissible with initial
wealth x0 > 0 if it belongs to the following set:

A2(x0) := {π ∈ S : Xπ
0 = x0 and Xπ

t > 0, a.s., ∀ 0 6 t 6 T},

where S denotes the set of F-progressively measurable processes π such that the following
two conditions hold:

1. E
[∫ T

0
σ2
t π

2
t dt
]
<∞.

2. There exists a constant M0 > 0 such that for any M ≥M0, the collection

{e−ηXπ
τ +Mατ : τ is a stopping time with values in [0, T ]}

is a uniformly integrable family.

Remark 5.9. Hu et al. (2005) consider the similar problem in an incomplete market
setting. When formulating the problem using exponential utility, they imposed additional
regularity condition that

{e−ηXπ
τ : τ is a stopping time with values in [0, T ]}

is a uniformly integrable family. This additional assumption constraining on the admissible
set enables them to prove the optimality of the obtained strategy. In our case, due to
the difference between their formulation and our general framework that includes many
widely used financial models, we consider the admissible set such that π satisfies a stronger
condition.

105



With the definition of the admissible set, we formulate our portfolio selection problem
as follows:  sup

π∈A2(x0)

{
E [U (Xπ

T )] = E
[
−e−ηXπ

T
]}
,

subject to (Xπ
t , πt) satisfying (5.24) for t ≥ 0.

(5.25)

5.5.2 The Backward Stochastic Differential Equation and Its So-
lution

Now we introduce the following BSDE:

 dYt =

[
1

2

θ2
t

η
+ θtZ

(1)
t −

1

2
η
(
Z

(2)
t

)2
]
dt+ Z

(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

YT = 0.

(5.26)

where θt = λ
√
αt is the market price of risk at time t and αt satisfies (5.3). We write

Y := {Yt, 0 ≤ t ≤ T} and Z := {(Z(1)
t , Z

(2)
t ), 0 ≤ t ≤ T}.

Proposition 5.10. A solution pair (Y, Z) to the BSDE (5.26) is given by
Yt = g(t)αt + c(t),

Z
(1)
t = ρ1

√
αtg(t),

Z
(2)
t = ρ2

√
αtg(t),

(5.27)

where g(t) and c(t) satisfy
dg(t)

dt
+

1

2
ηρ2

2g
2(t)− (κ+ λρ1) g(t) =

1

2

λ2

η
, g(T ) = 0,

dc(t)

dt
+ κφg(t) = 0, c(T ) = 0.

(5.28)

Proof. Applying Itô’s formula to Yt = g(t)αt + c(t), we have

dYt = g(t)dαt + αt
dg(t)

dt
dt+

dc(t)

dt
dt

= g(t)
[
κ (φ− αt) dt+

√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)]
+ αt

[
−1

2
ηρ2

2g
2(t) + (κ+ λρ1) g(t) +

1

2

λ2

η

]
dt− κφg(t)dt

=

[
1

2

θ2
t

η
+ θtZ

(1)
t −

1

2
η
(
Z

(2)
t

)2
]
dt+ Z

(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

where the last equality follows from substituting the expressions of Z
(1)
t and Z

(2)
t , given in

(5.27) and θt = λ
√
αt. The claim follows immediately.
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Proposition 5.11. A solution to the system of ODEs (5.28) is given by

g(t) = g

(
t;

1

2

λ2

η
, κ+ λρ1,

1

2
ηρ2

2

)
,

c(t) = c

(
t;

1

2

λ2

η
, κ+ λρ1,

1

2
ηρ2

2, κφ

)
,

(5.29)

where g(t; ·, ·, ·) and c(t; ·, ·, ·, ·) are given in Lemmas D.1 and D.2 respectively. Further-
more, g(t) is bounded for t ∈ [0, T ].

Proof. Applying Lemmas D.1 and D.2, we have the solution. The boundedness of the
solution g(t) can be proved by applying Lemma D.3.

5.5.3 Characterization of Solutions to (5.25)

Proposition 5.12. Given a solution (Y, Z) to (5.26), a solution to (5.25) is given by

π∗t =
1

σt

[
θt
η

+ Z
(1)
t

]
, (5.30)

and optimal value function is given by

v(x0) = −e−η(x0−Y0). (5.31)

Proof. Define Jπt := −e−η(Xπ
t −Yt). It is obvious that Jπ0 = v(x0) where v(x0) defined in

(5.31) is a constant independent of π. Thus we denote J0 := Jπ0 . For all π ∈ A2(x0), we
write Jπt = AπtM

π
t , where

Aπt =− exp

{
−η
∫ t

0

(
πsµs + f(s, Z(1)

s , Z(2)
s )− η

2
(σsπs − Z(1)

s )2 − η

2
(Z(2)

s )2
)
ds

}
,

Mπ
t = exp

{
−η
∫ t

0

(σsπs − Z(1)
s )dW (1)

s −
η2

2

∫ t

0

(σsπs − Z(1)
s )2ds

}
× exp

{∫ t

0

ηZ
(2)
t dW (1)

s −
η2

2

∫ t

0

(Z(2)
s )2ds

}
,

and f is the negation of the drift coefficient term of the BSDE of Y (5.9), defined as

f(t, z1, z2) = −1

2

θ2
t

η
− θtz1 +

1

2
ηz2

2 .

It is obvious that {Mπ
t }t∈[0,T ] is a local martingale. Thus, there exists a sequence of

stopping times satisfying lim
n→∞

τn = T a.s. such that {Mπ
t∧τn}t∈[0,T ] is a positive martingale

for each n.
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Moreover, for all π ∈ A2(x0) and π∗t defined in (5.30), we have for each t ∈ [0, T ],

0 = π∗tµt + f(t, Z
(1)
t , Z

(2)
t )− η

2
(σtπ

∗
t − Z

(1)
t )2 − η

2
(Z

(2)
t )2

≥ πtµt + f(t, Z
(1)
t , Z

(2)
t )− η

2
(σtπt − Z(1)

t )2 − η

2
(Z

(2)
t )2.

Therefore, {Aπt }t∈[0,T ] is a non-increasing process. Hence for t ≥ s,

E[Jπt∧τn|Fs] = E[Aπt∧τnM
π
t∧τn|Fs] ≤ Aπs∧τnE[Mπ

t∧τn|Fs] = Aπs∧τnM
π
s∧τn = Jπs∧τn .

That is, for any A ∈ Fs, we have E[Jπt∧τn1A] ≤ E[Jπs∧τn1A]. Both {Jπt∧τn}n and {Jπs∧τn}n
are uniformly integrable due to the definition of the admissible set. In other words, we
substitute the expression of Yt given by (5.27) into the definition of Jπt . Then, for two
constants c and M , we get |Jπt∧τn| ≤ |J

π
τn | ≤ ce−ηX

π
τn

+Mατn , where the latter is uniformly
integrable by the definition of the admissible set. Thus, |Jπt∧τn| is uniformly integrable. The
argument holds for t = s as well. Therefore, passing to the limit yields that {Jπt }t∈[0,T ] is
a supermartingale.

It remains to show that {Jπ∗t }t∈[0,T ] is a martingale with the defined π∗ in (5.13). Note
that Aπ

∗
t = −1 and

Mπ∗

t = exp

{
−1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

0

m2(s)
√
αsdW

(2)
s

}
,

where m1(t) = −λ and m2(t) = ηρ2g(t). By Lemma 5.2, {Mπ∗
t }t∈[0,T ] is a positive martin-

gale, and so is {Jπ∗t }t∈[0,T ]. Then,

E[JπT ] ≤ J0 = v(x0) = E[Jπ
∗

T ].

Hence, v(x0) is the value function.

5.6 Conclusion

In this chapter, we consider a portfolio selection problem for a utility maximizing investor.
The utility functions we choose include three widely used utility functions, namely the
power utility function, the log utility function, and the exponential utility function. Re-
lying on the BSDE approach, we are able to transform the problem to solve a backward
stochastic differential equation and at the end, it boils down to the solution to a system of
ODEs involving a Riccati ODEs. The solution to the system of ODEs is obtained and the
boundedness of the solution is also discussed.
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Chapter 6

Conclusion and Future Work

This thesis is devoted to constructing optimal portfolios using different criteria. As outlined
in each chapter, closed-form optimal investment strategies are obtained for most of the
problems, while for some other problems, we resort to numerical methods to approximate
the optimal solutions.

In Chapter 2, we consider a portfolio selection problem of an insurer that offers partic-
ipating contracts and has an S-shaped utility function. Participating contracts are popular
insurance policies, in which the payoff to a policyholder is linked to the performance of
a portfolio managed by the insurer. Applying the martingale approach, closed-form solu-
tions are obtained. The resulting optimal strategies are compared with portfolio insurance
hedging strategies (CPPI and OBPI). In the end, we also consider the portfolio selection
problem with bounded control constraints and perform an analysis after solving the HJB
equation numerically.

In Chapter 3, we consider a portfolio selection problem of optimizing a performance
measure in a complete market setting. The definition of the performance ratio stems
from the Omega measure and we embed a utility function and a penalty function into the
definition. Transforming the original problem and using the martingale method, closed-
form solutions are obtained when two power functions determine the reward and risk.
We have also performed a sensitivity analysis with respect to several parameters in our
numerical experiments.

In Chapter 4, we consider the Mean-Expectile portfolio selection problem for the risk
measure expectile. The expectiles have experienced popularity in recent years in the risk
management area. With the close relationship between the expectile risk measure and
the Omega measure, we are able to transform the problem into the one with the Omega
measure as the objective function. Due to the unknown distribution of the terminal wealth,
the original formulation lacks an explicit form for the objective function. Furthermore, we
imposed an upper bound constraint on the terminal wealth and solved the problem after
showing the optimization with the bound constraint is not attainable but the value function
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is finite. We also obtained the efficient frontier, the shape of which resembles that derived
in the classical mean-variance model.

In Chapter 5, we consider the utility maximization problem with a square-root factor
process and obtain the solution via the BSDE approach. A large amount of research
regarding the BSDE approach to utility maximization problem only concerns the existence
and uniqueness of the solution to the associated BSDE instead of obtaining the specific
closed-form of the solution. Our research contributes to the literature by considering a
general framework that includes geometric Brownian motion, the CEV model, and some
stochastic volatility models as special cases, and solving the utility maximization problem
with closed-form solutions adopting the BSDE approach.

The work in this thesis can be extended in several directions, and belows are some
potential future work we propose to pursue.

Firstly, in chapter 2, the insurance component is not taken into consideration in our
analysis. Participating contracts are sold by insurance companies and can be combined
with insurance in practice. It is interesting to investigate the optimal trading strategies
if the policy is combined with insurance. One possible extension can be carried out by
introducing a jump diffusion process into the dynamics of the controlled wealth process.
However, in this case, the underlying financial market is incomplete so that one might
need to resort to numerical method to obtain the investor’s strategies. In addition, several
other features such as options are incorporated in practice as well, which motivates us to
incorporate these practical features in future work.

Secondly, in chapter 3, we consider a performance ratio maximization problem in which
we generalize the definition of the Omega measure. Several other performance measures
can be considered in the optimization problem as well, such as the Kappa measure defined
in a similar way as the Sharpe ratio except that the denominator the Kappa measure is
replaced by a lower partial moment. Since different performance measures can capture
certain features of the portfolio performance, thus including other performance measures
in portfolio selection problems is not only beneficial for particular investors, but also an
interesting and challenging problem in a continuous time framework.

Thirdly, in Chapter 4, the expectile risk measure is adopted into consideration. Fol-
lowing the modification technique shown in Chiu et al. (2012) and Bertrand and Prigent
(2011), we modify the Mean-Expectile problem with a terminal bound constraint after
showing that the solution to the original formulation is not attainable but the value func-
tion is finite. It will be interesting to investigate those constraints other than the terminal
wealth bound constraint. Since the wealth bound constraint has constrained the domain
of the possible values for the wealth and the distribution of terminal wealth matters in
obtaining the solution, it is of interest if we incorporate a distributional constraint, mean-
ing that the distribution of the terminal wealth is dominated by a known distribution. In
fact, the upper bound that we have imposed in Chapter 4 can be regarded as a degenerate
distribution that is almost surely constant. As a result, by considering the distributional
constraint, we are able to generalize our current research.
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Fourthly, in Chapter 5, we assume that the market price of risk depends on a stochastic
factor that satisfies an affine-form, square-root, Markovian model. The structure of the
stochastic factor being affine-form and square root enables us to obtain the closed-form
solution. Therefore, the question arises whether the linear-form, or quadratic form of
the stochastic factor will also work out in the sense that we are able to get closed-form
solutions. In addition, is it possible to consider other functions than a square-root one?
These questions are both interesting and motivating. Furthermore, if the closed-form
solution is not possible, one may adopt certain numerical method for BSDE solution,
which is beyond the scope of this thesis.

Lastly, our current research focuses on the behavior of only one investor. But the
financial market consists of multiple investors. One investor’s behavior will affect that of
the others. In this case, equilibrium analysis of the financial market is also an interesting
topic. It is motivating to investigate whether and how the market clears in these cases.
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Appendix A

Appendix for Chapter 2

A.1 Lemmas Used for Proving Proposition 2.5

Since the functions we deal with are eventually concave, their concave envelopes can be
found by calculating a single tangent line. This is formalized in the following lemma.

Lemma A.1. Suppose f : [0,∞)→ [0,∞) is continuous and satisfies:

1. f(0) = 0.

2. f is concave on [z̃,∞), with z̃ > 0.

3. f(x) 6 kx on [0, z̃], with k = f(z̃)
z̃
> 0.

4. k > f ′+(z̃).

Then the concave envelope of f is:

f c(x) =

{
kx, x ∈ [0, z̃),

f(x), x ∈ [z̃,∞).
(A.1)

Proof. By definition f c > f . Let g be concave with g > f . Then g > f c on {0} ∪ [z̃,∞),
since f c = f there. Suppose x ∈ (0, z̃), i.e. x = λz̃ for λ ∈ (0, 1). By the concavity of g:

g(x) = g(λz̃ + (1− λ) · 0) > λg(z̃) + (1− λ)g(0) > λkz̃ = kx = f c(x).

It remains to show that f c is concave. Let x0, x1 ∈ [0,∞) with x0 < x1 and xλ =
λx0 + (1 − λ)x1 with λ ∈ (0, 1). The inequality f c(xλ) > λf c(x0) + (1 − λ)f c(x1) is
immediate if either x1 6 z̃ or x0 > z̃, so assume x0 < z̃ < x1. Note that by concavity
f c(x1) = f(x1) 6 f ′+(z̃)(x1 − z̃) + f(z̃) 6 k(x1 − z̃) + kz̃ = kx1. If xλ ∈ (x0, z̃), then:

f c(xλ) = kxλ = kλx0 + k(1− λ)x1 > λf c(x0) + (1− λ)f c(x1).
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If xλ ∈ (z̃, x1), then note that we have
f c(x0) = kx0,

f c(x1) 6 kx1,

f c(z̃) = kz̃,

x0 < z̃ < x1,

=⇒ f c(x1)− f c(x0)

x1 − x0

>
f c(x1)− f c(z̃)

x1 − z̃
.

But this states that the slope of the line through (z̃, f c(z̃)) and (x1, f
c(x1)) is less than the

slope of the line through (x0, f
c(x0)) and (x1, f

c(x1)). Since f c(xλ) lies above the former
line (by concavity), it must also lie above the latter line.

Recall that:

Ψ(x) =


0, x < LgT ,

x− LgT , LgT 6 x 6 LgT
α
,

(1− δα)x− (1− δ)LgT , x >
LgT
α
.

(A.2)

Note that Ψ(x) is concave and nonnegative on [LgT ,∞), and therefore U(Ψ(x)) is concave
on [LgT ,∞) since U is concave and increasing on [0,∞).

Lemma A.2. Let f(x) = U(Ψ(x)). Then the concave envelope of f is given by (A.1) with:

z̃ =


LgT
1−γ , 1− α > γ,

(1−δ)LgT
(1−δα)(1−γ)

, (1− δα) > 1− α,
LgT
α
, γ > (1− α) > (1− δα)γ.

(A.3)

k =


γ(z̃ − LgT )γ−1, 1− α > γ,

γ(1− δα)((1− δα)z̃ − (1− δ)LgT )γ−1, (1− δα)γ > 1− α,
(1− α)γ(z̃)γ−1, γ > 1− α > (1− δα)γ.

(A.4)

Proof. The first two cases are handled similarly. One solves z̃f ′(z̃) = f(z̃) for z̃ to obtain

the given formulas, and verifies that one has z̃ ∈ (LgT ,
LgT
α

) in the first case, and z̃ ∈ (
LgT
α
,∞)

in the second case (thus f is differentiable at z̃). Setting k = f(z̃)
z̃

> 0 gives the above
values, and immediately yields that conditions 1, 2, and 4 of Lemma A.1 are satisfied.
f(x) 6 kx is automatic on [0, LgT ], and holds by concavity on [LgT , z̃] since there f(x) 6
f ′(z̃)(x− z̃) + f(z̃) = kx. The third case is only slightly more complicated. For the stated
values of z̃ and k, one again immediately has conditions 1,2, and 4, of Lemma A.1, and
that k = f(z̃)

z̃
. The fact that γ > 1 − α then also implies that k 6 f ′−(z̃), and thus k is a

supergradient of the concave function f on [LgT ,∞). The remainder of the result follows
as in the previous cases.

The fully protected case is slightly more difficult. However, Lemma A.1 can still be
applied after noting that the concave envelope of f + a is f c + a for any constant a.
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Lemma A.3. Let f(x) = U(Ψ̂(x)) + λ(LgT )γ. Then the concave envelope of f is given by
f c where f c is as in (A.1) with:

i) k = γ(z̃ − LgT )γ−1 = f ′(z̃), where z̃ is the unique solution to (2.29) when λ >
γ+α−1

α
·
(

1−α
α

)γ−1
.

ii) k = γ(1 − δα)((1 − δα)z̃ − (1 − δ)LgT )γ−1 = f ′(z̃), where z̃ is the unique solution to

(2.30) when λ < γ(1−δα)+α−1
α

(
1−α
α

)γ−1
.

iii) z̃ =
LgT
α

, and k = α
[(

1−α
α

)γ
+ λ
]

(LgT )γ−1 when (1−δα)γ+α−1
α

(
1−α
α

)γ−1
6 λ 6 γ+α−1

α

(
1−α
α

)γ−1

Proof. i) Elementary calculus shows that there is an unique solution to (2.29) in (LgT ,
LgT
α

)
under the stated conditions on the parameters. For this z̃, z̃f ′(z̃) = f(z̃) (this is how

(2.29) was defined), and k = f ′(z̃) = f(z̃)
z̃

= γ(z̃ − LgT )γ−1 > 0. By definition f is
concave on [z̃,∞). f(x) 6 kx on [LgT , z̃] by concavity, and then (since f(0) = 0,
and kLgT > f(LgT )) we also have f(x) 6 kx on (0, LgT ] by the convexity of f on this
interval.

ii) The proof is similar to i).

iii) With z̃ and k defined as in the statement, one can verify that k = f(z̃)
z̃

, and the
conditions on the parameters imply that 0 < k ∈ [f ′+(z̃), f ′−(z̃)], so that k is in
the superdifferential of the concave function f restricted to [LgT ,∞). Thus f(x) 6
k(x − z̃) + f(z̃) = kx on [LgT , z̃]. Convexity of f on [0, LgT ] then implies f(x) 6 kx
and lemma A.1 applies.

A.2 Closed-form Expressions of Conditional Expec-

tations

Proposition A.4. For the process ξt,T defined in (2.9) and the price density process ξt
defined in (2.8), we have the following formulas:

E
[
ξt,T1{ξtξt,T≤β∗}

∣∣Ft] = e−r(T−t)Φ[d1,t(β
∗)], (A.5)

E

[
ξt,T

(
ξt,T ξt
β∗

) 1
γ−1

1{ξtξt,T≤β∗}

∣∣∣Ft] = e−r(T−t)
φ[d1,t(β

∗)]

φ[d2,t(β∗)]
Φ[d2,t(β

∗)], (A.6)

E

[
ξt,T

(
ξt,T ξt
β∗

) 1
γ−1

1{ξtξt,T≤cβ∗}

∣∣∣Ft] = e−r(T−t)
φ[d1,t(β

∗)]

φ[d2,t(β∗)]
Φ[d2,t(cβ

∗)],

= c
1

γ−1 e−r(T−t)
φ[d1,t(cβ

∗)]

φ[d2,t(cβ∗)]
Φ[d2,t(cβ

∗)]. (A.7)
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Proof. We rewrite ξt,T as follows:

ξt,T = exp

[
−(r +

ζ2

2
)(T − t) + ζ

√
T − t · y

]
, where y = −WT −Wt√

T − t
∼ N(0, 1).

Then, for equation (A.5), we note that ξtξt,T ≤ β∗ if and only if

y ≤
ln β∗ − ln ξt + (r + 1

2
ζ2)(T − t)

ζ
√
T − t

= d1,t(β
∗) + ζ

√
T − t.

Therefore,

E
[
ξt,T1{ξtξt,T≤β∗}

∣∣Ft] =

∫ d1,t(β∗)+ζ
√
T−t

−∞

1√
2π

exp

[
−(r +

ζ2

2
)(T − t) + ζ

√
T − t · y

]
exp

[
−1

2
y2

]
dy

= e−r(T−t)
∫ d1,t(β∗)+ζ

√
T−t

−∞

1√
2π

exp

[
−1

2
(y − ζ

√
T − t)2

]
dy

= e−r(T−t)Φ[d1,t(β
∗)].

For equation (A.6), we note that ξtξt,T ≤ β∗ if and only if y ≤ d1,t(β
∗) + ζ

√
T − t, and

thus,

E

[
ξt,T

(
ξt,T ξt
β∗

) 1
γ−1

1{ξtξt,T≤β∗}

∣∣∣Ft]

=

(
ξt
β∗

) 1
γ−1
∫ d1,t(β∗)+ζ

√
T−t

−∞

1√
2π

exp

[
−(r +

ζ2

2
)(T − t) γ

γ − 1
+ ζ

γ

γ − 1

√
T − t · y

]
exp

[
−1

2
y2

]
dy

=e−r(T−t)
∫ d1,t(β∗)+ζ

√
T−t

−∞

1√
2π

exp

[
−1

2
(y − ζ γ

γ − 1

√
T − t)2

]
dy

×
(
ξt
β∗

) 1
γ−1

exp

{
r(T − t) 1

1− γ
+
ζ2(T − t)

2

[
γ

1− γ
+

(
γ

1− γ

)2
]}

=e−r(T−t)
φ[d1,t(β

∗)]

φ[d2,t(β∗)]
Φ[d2,t(β

∗)].

Finally, for equation (A.7), we immediately obtain from equation (A.6) that

E

[
ξt,T

(
ξt,T ξt
β∗

) 1
γ−1

1{ξtξt,T≤cβ∗}

∣∣∣Ft] = e−r(T−t)
φ[d1,t(β

∗)]

φ[d2,t(β∗)]
Φ[d2,t(cβ

∗)].

In addition, we have

E

[
ξt,T

(
ξt,T ξt
β∗

) 1
γ−1

1{ξtξt,T≤cβ∗}

∣∣∣Ft] = c
1

γ−1E

[
ξt,T

(
ξt,T ξt
cβ∗

) 1
γ−1

1{ξtξt,T≤cβ∗}

]

= c
1

γ−1 e−r(T−t)
φ[d1,t(cβ

∗)]

φ[d2,t(cβ∗)]
Φ[d2,t(cβ

∗)],

where the last step is due to equation (A.6) again.
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A.3 Implementation of The Three-step Procedure in

The Proof of Proposition 2.8 for case A1

From (2.26), the optimal terminal portfolio is given by

X∗T (β∗) = x∗(β∗ξT ) =

[(
β∗ξT
γ

) 1
γ−1

+ LgT

]
1{m/β∗<ξT≤k/β∗} +

LgT
α

1{(1−δα)m/β∗≤ξT≤m/β∗}

+

[
(1− δα)

γ
1−γ

(
β∗ξT
γ

) 1
γ−1

+
(1− δ)LgT

1− δα

]
1{ξT<(1−δα)m/β∗},

which is the expression in (2.35).

In addition, the optimal portfolio value at time t, t ∈ [0, T ), X∗t = ξ−1
t E[ξTx

∗(β∗ξT )|Ft] =
E[ξt,Tx

∗(β∗ξtξt,T )|Ft], and it can be computed as the sum of the following five items:

(1)

E

[
ξt,T

(
β∗ξtξt,T

γ

) 1
γ−1

1{m/β∗<ξtξt,T≤k/β∗}

]

=E

ξt,T (kξtξt,T
γ k
β∗

) 1
γ−1

1{ξtξt,T≤k/β∗}

− E

ξt,T (kξtξt,T
γ k
β∗

) 1
γ−1

1{ξtξt,T≤m/β∗}


=e−r(T−t)

(
k

γ

) 1
γ−1 φ[d1,t(k/β

∗)]

φ[d2,t(k/β∗)]
(Φ[d2,t(k/β

∗)]− Φ [d2,t (m/β∗)]) ,

(2)

E
[
ξt,TL

g
T1{m/β∗<ξtξt,T≤k/β∗}

]
=E

[
ξt,TL

g
T1{ξtξt,T≤k/β∗}

]
− E

[
ξt,TL

g
T1{ξtξt,T≤m/β∗}

]
=e−r(T−t)LgT (Φ[d1,t(k/β

∗)]− Φ [d1,t (m/β∗)]) ,

(3)

E

[
ξt,T

LgT
α

1{(1−δα)m/β∗<ξtξt,T≤m/β∗}

]

=E
[
ξt,T

LgT
α

1{ξtξt,T≤m/β∗}

]
− E

[
ξt,TL

g
T1{ξtξt,T≤(1−δα)m/β∗}

]
=e−r(T−t)

LgT
α

(Φ[d1,t(m/β
∗)]− Φ [d1,t ((1− δα)m/β∗)]) ,
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(4)

E

[
ξt,T (1− δα)

γ
1−γ

(
β∗ξtξt,T

γ

) 1
γ−1

1ξtξt,T≤(1−δα)m/β∗}

]

=E

ξt,T (1− δα)
γ

1−γ

(
kξtξt,T

γ k
β∗

) 1
γ−1

1{ξtξt,T≤(1−δα)m/β∗}


=e−r(T−t)(1− δα)

γ
1−γ

(
k

γ

) 1
γ−1 φ[d1,t(k/β

∗)]

φ[d2,t(k/β∗)]
(Φ[d2,t((1− δα)m/β∗)]) ,

(5)

E
[
ξt,T

(1− δ)LgT
1− δα

1{ξtξt,T≤(1−δα)m/β∗}

]
=e−r(T−t)

LgT
α

(Φ[d1,t((1− δα)m/β∗)]) .

From the above, we obtain the expression (2.33) for Xπ∗
t .

To obtain π∗t , we rewrite Xπ∗
t = q(t, ξt), where q is a C2 function and simply take the

first-order derivative ∂q(t,ξt)
∂ξt

. In this step, we also use the following fact

d

dx

[
Φ(x)

φ(x)

]
=
φ2(x)− Φ(x)φ(x) · (−x)

φ2(x)
= 1 + x

Φ(x)

φ(x)
.

After tedious, but straightforward calculation and introducing the function K(β) defined
in (2.31), we have (2.34).

A.4 Non-negativity of π∗t (β
∗) and π̂(ν̂)

We know that for both the defaultable and protected policies, the optimal investment
strategies π∗t (β

∗) and π̂(ν̂) share the same expressions but they differ from each other in
terms of the tangent point z̃, the slope of tangent line k, and the entry condition regarding
the parameters for the three distinct cases. As shown in Propositions 2.8 and 2.9. Below
we only show the non-negativity of π∗t (β

∗) because that of π̂(ν̂) follows in the same manner.

Case A1. In this case, k < (1− δα)m < m and π∗t (β
∗) = e−r(T−t)

σ
√
T−t (a1 +a2 +a3 +a4 +a5) as

given in (2.34) with explicit expressions for a1, a2, a3, a4, and a5 defined there. We begin
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with a1, the second term in a2 and the first term in a3 to get(
k

γ

) 1
γ−1

K(k/β∗)−
(
m

γ

) 1
γ−1

K (m/β∗)− φ [d1,t (m/β∗)] +
LgT
α
φ [d1,t (m/β∗)]

=

(
k

γ

) 1
γ−1

K(k/β∗)−
(

1

α
− 1

)
LgT

ζ
√
T − t

1− γ
φ [d1,t (m/β∗)]

φ[d2,t(m/β∗)]
Φ[d2,t(m/β

∗)]

≥ζ
√
T − t

1− γ

{
(z̃ − LgT )

φ [d1,t (k/β∗)]

φ[d2,t(k/β∗)]
Φ[d2,t(k/β

∗)]−
(

1

α
− 1

)
LgT

φ [d1,t (m/β∗)]

φ[d2,t(m/β∗)]
Φ[d2,t(m/β

∗)]

}
=
ζ
√
T − t

1− γ
LgT

(
1

α
− 1

)
φ [d1,t (m/β∗)]

φ[d2,t(m/β∗)]
{Φ[d2,t(k/β

∗)]− Φ[d2,t(m/β
∗)]} ≥ 0,

where the first equality follows from the definition of K(·) as given in (2.31), the first
inequality follows by dropping some positive parts, the third equality follows by changing
k/β∗ to m/β∗ in φ[d1,t(m/β∗)]

φ[d2,t(m/β∗)]
using the formula in Appendix A.2, and the second inequality

follows from the facts that Φ(x) is an increasing function of x and that d2,t(β) is an
increasing function of β.

Then we deal with the second term in a3, a4, and a5 to obtain

− φ [d1,t (m/β∗)] + (1− δα)−1

(
m

γ

) 1
γ−1

K [(1− δα)m/β∗] +
LgT (1− δ)

1− δα
φd1,t ((1− δα)m/β∗)

=
ζ
√
T − t

1− γ
LgT

(
1

α
− 1

)(
1

1− δα

)
φ [d1,t ((1− δα)m/β∗)]

φ[d2,t((1− δα)m/β∗)]
Φ[d2,t((1− δα)m/β∗)] ≥ 0,

where we simply plug in the definition of K(·).

The remaining term is the first term in a2 which is obviously positive. Therefore, π∗t (β
∗)

is non-negative in this case.

Case A2. It is obvious all terms in (2.37) are non-negative.

Case A3. In this case, π∗(β∗) is given in (2.40). We begin with c1, c2 and the second

term in c3 to get
ζ
√
T − t

1− γ
LgT
(

1
α
− 1
) φ [d1,t (m/β∗)]

φ[d2,t(m/β∗)]
{Φ[d2,t(k/β

∗)]− Φ[d2,t(m/β
∗)]} ≥ 0.

The remaining term in c3 is positive. Thus π∗t (β
∗) is non-negative in this case.
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Appendix B

Appendix for Chapter 3

B.1 Results from Jin et al. (2008)

This section summarizes some results from Jin et al. (2008). Interested readers may refer
to the paper for detailed proofs. Consider the following optimization problem: sup

Z∈M+

E [U(Z)] ,

subject to E[ξTZ] 6 x0,
(B.1)

where x0 > 0, ξT is a given scalar-valued random variable, U : R+ 7→ R+ is a twice
differentiable, strictly increasing, strictly concave function with U(0) = 0, lim

x→0
U ′(x) = ∞

and lim
x→∞

U ′(x) = 0.

Lemma B.1. If there exists a constant β∗ > 0 such that E [ξT · (U ′)−1(β∗ξT )] = x0 < ∞
and E [U ((U ′)−1(β∗ξT ))] <∞, then Z∗ = (U ′)−1(β∗ξT ) is optimal for problem (B.1).

Lemma B.2. Suppose lim inf
x→∞

(
−xU ′′(x)

U ′(x)

)
> 0 and E

[
ξ−αT
]
< ∞,∀α > 1, then we have

E [ξT · (U ′)−1(βξT )] < 0 for all β > 0 and problem (B.1) admits a unique optimal solution
Z∗ = (U ′)−1(β∗ξT ) for any x0 > 0.

Lemma (B.2) is actually Corollary 5.1 from Jin et al. (2008). The condition that

lim inf
x→∞

−xU ′′(x)
U ′(x)

> 0 involves the behavior of the Arrow-Pratt index of risk aversion of the

utility function when x is large enough. It ensures the existence of an optimal Lagrange
multiplier such that the budget constraint is binding. Most commonly used utility func-
tions, e.g. the power utility function U(x) = xγ, 0 < γ < 1, satisfy this condition. The
condition E

[
ξ−αT
]
< ∞, ∀α > 1, guarantees that the obtained solution with the optimal

Lagrange multiplier will result in a finite objective value. In the literature, ξT usually has
a log-normal distribution, and the condition holds automatically.
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B.2 Proof of Proposition 3.7

Proof. (a) We begin by explicitly showing that v is finite. By Lemmas B.1 and B.2 in
Section B.1 of Appendix B, the problem sup

Z∈C(x0)

E [U(Z)] has a finite optimal value.

Since E[U((Z − L)+] 6 E[U(Z)], we obtain v(0;x0) < inf. It is easy to find Z for
which P(Z > L) > 0 and E[ξTZ] = x0 (e.g. the payoff generated by putting all the
money in one of the stocks), and therefore v(0;x0) > 0.

(b) The proof is similar to the proof of the analogous result in Dinkelbach (1967).1

(c) As in part (b), the proof is similar to the proof of the analogous result in Dinkelbach
(1967).

(d) Since v(·;x0) is convex, it is locally Lipschitz on the interior of its domain. Global
Lipschitz continuity can be proved directly as follows. For Z ∈ C(x0), denoteGλ(Z) =
E[U((Z−L)+)−λD((L−Z)+)]. Then |Gλ1(Z)−Gλ2(Z)| = |λ1−λ2|E[D((L−Z)+)] 6
D(L)|λ1−λ2|. Let ε > 0 and Zi be such that Gλi(Zi) > v(λi;x0)− ε, i = 1, 2. Then:

v(λ2;x0) > Gλ2(Z1) > Gλ1(Z1)−D(L)|λ1 − λ2| > v(λ1;x0)− ε−D(L)|λ1 − λ2|

Since ε > 0 was arbitrary, v(λ1;x0) − v(λ2;x0) 6 D(L)|λ1 − λ2|. Symmetry yields
v(λ2;x0)−v(λ1;x0) 6 D(L)|λ1−λ2| and thus |v(λ1;x0)−v(λ2;x0)| 6 D(L)|λ1−λ2|.

B.3 Proof of Proposition 3.8

Proof. Note that M = v(0;x0) where v(λ;x0) is defined in (3.13), the fact that M < ∞
has already been shown in the proof of Proposition 3.7. Suppose m = 0. Let {Zn} be a
sequence in Ceq(x0) such that limn→∞ E[D((L−Zn)+)] = 0. Then D((L−Zn)+) converges
to 0 in probability with respect to the measure P, and consequently so does (L − Zn)+.
Thus (L − Zn)+ also converges to 0 in probability with respect to Q.2 So (L − Zn)+ is a
bounded sequence that converges to 0 in probability, and consequently also converges to
zero in L1, contradicting the fact that EQ[(L− Zn)+] > EQ[L− Zn] = L− x0e

rT > 0.

B.4 Proof of Lemma 3.14

Proof. By definition f c > f . Let g be any concave function with g > f . Then g(x) >
f(x) = f c(x) for x ∈ [0, z̃1] ∪ [z̃2,∞). Further, any x ∈ (z̃1, z̃2) can be written as x =

1In Dinkelbach (1967), existence of an optimal solution follows from a compactness assumption, which
we do not make here. Existence of an optimal solution for our problem is proved in the next section (the
properties of the value function asserted here can also be derived using ε-optimal solutions).

2Every subsequence has a further subsequence converging to zero a.s. P, and therefore a.s. Q.
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αz̃1 + (1− α)z̃2 for some α ∈ (0, 1), and the concavity of g implies:

g(x) = g(αz̃1+(1−α)z̃2) > αg(z̃1)+(1−α)g(z̃2) > α(kz̃1+c)+(1−α)(kz̃2+c) = kx+c = f c(x).

To complete the proof, we need to show that f c defined in equation (3.19) is concave
on [0,∞). Recall that h is concave if:

h(xα) > αh(x1) + (1− α)h(x0) (B.2)

for any x0, x1 ∈ [0,∞) with x0 < x1, where xα = (1− α)x0 + αx1, α(0, 1). Define

f1(x) =

{
f c(x) x 6 z̃1

kx+ c x > z̃1

, f2(x) =

{
kx+ c x < z̃2

f c(x) x > z2

Note that the hypotheses of the lemma imply that fi(x) 6 kx + c for all x and i = 1, 2.
Consider f1. If x0 > z̃1, or x1 6 z̃1, then (B.2) is immediate. If xα > z̃1, (B.2) follows from
f1(x0) 6 kx0 + c. Finally, if x0 < xα < z̃1 < x1, we note that

f1(x1)− f1(x0)

x1 − x0

6
f1(z̃1)− f1(x0)

z̃1 − x0

6
f1(xα)− f1(x0)

xα − x0

where the first inequality follows from f1(x0) 6 kx0 + c, and the second follows from the
supposed concavity of f on [0, z̃1]. (B.2) follows immediately from the outer two terms of
the above inequality.

The proof of the concavity of f2 is similar. The concavity of f c = f1 ∧ f2 follows.

B.5 Proof of Lemma 3.15

Proof. The definition of p1 and the Inada condition for the reward function U imply that
limz↘L p1(z) = 0 + λD(L)− limy↘0 U

′(y) = −∞. The strict concavity of U and U(0) = 0
together imply that U(z − L) − zU ′(z − L) > −LU ′(z − L) for z > L, and thus p1(z) >
λD(L)−LU ′(z−L)→ λD(L) > 0 as z →∞ by the Inada condition. So a root ẑ of (3.20)
exists on (L,∞) and indeed, it is unique, since p′1(z) = −U ′′(z − L)z > 0 for z > L.

Note that f is concave on [L,∞) with f(x) = U(x− L) + λD(L) > 0 for x > L. Also,
f(x) = −D(L − x) + λD(L) for x 6 L. Accordingly, f ′(x) = U ′(x − L) for x > L and
f ′+(0) = λD′+(L).

(a) Since ẑ > L, f is concave on [z̃,∞) with z̃ = ẑ. By Lemma 3.13, it remains to

show f(x) 6 kx on [0, z̃] with k = f(z̃)
z̃
> 0 and f ′+(z̃) 6 k. We have z̃f ′(z̃) = f(z̃)

(this is how equation (3.20) is defined) and k = f ′(z̃) = f(z̃)
z̃

> 0. Concavity of
f on [L, z̃] implies that f(x) 6 f(z̃) + (x − z̃)f ′(z̃) = kx for x ∈ [L, z̃], so that
f(L) 6 k · L as well. Further, noticing that D is concave and thus f is convex on

[0, L], we obtain f(x) 6 f ′(x)x and f(x) 6 f(L)−(L−x)f ′(x) 6 f(L)−(L−x)f(x)
x

=
f(L) + (1− L

x
)f(x). Rearranging this inequality yields f(x) 6 x

L
f(L) 6 x

L
L · k = kx

which implies f(x) 6 kx for x ∈ [0, L].
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(b) The proof is similar to part (a) and thus omitted.

(c) For each z1 ∈ [0, L), equation p2(z1, z2) = 0 is equivalent to z2 = L+(U ′)−1 [λD′(L− z1)].
This means that there is a unique solution z2 > L to the equation p2(z1, z2) = 0 for
any z1 ∈ [0, L). Write z2(z1) := L+ (U ′)−1 [λD′(L− z1)] to get dz2

dz1
> 0 and

dp3(z1, z2(z1))

dz1

= U ′(z2 − L)dz2
dz1
− λD′(L− z1)− U ′′(z2 − L)(z2 − z1)dz2

dz1
− U ′(z2 − L)

(
dz2
dz1
− 1
)

= −U ′′(z2 − L)(z2 − z1)dz2
dz1

> 0

which implies that p4(z1) := p3(z1, z2(z1)) is increasing in z1 on [0, L). Furthermore,
by concavity and (3.20):

U(z2 − L) 6 U(ẑ − L) + U ′(ẑ − L)(z2 − ẑ) = U ′(ẑ − L)z2 − λD(L).

So:

p3(z1, z2) 6 z2(U ′(ẑ − L)− U ′(z2 − L)) + λ(D(L− z1)−D(L)) + U ′(z2 − L)z1.

Using U ′(z2(z1)− L) = λD′(L− z1) then gives:

p4(z1) 6 z2(z1)(U ′(ẑ −L)−U ′(z2(z1)−L)) + λ(D(L− z1)−D(L)) + λD′(L− z1)z1.

As z1 ↘ 0, the last two terms in the above expression tend to zero. The first
term is strictly negative for small enough z1 by assumption since z2(z1) > L, and
U ′(z2(z1)− L) = λD′(L− z1)→ D′(L) > f ′(ẑ) = U ′(ẑ − L), as z1 ↘ 0.

Moreover, by the concavity of U , we have U(x) > U(y)− U ′(x)(y − x) for x, y > 0.
Therefore, U(z2 − L) ≥ U(z1)− U ′(z2 − L)[z1 − (z2 − L)] and

p4(z1) > U(z1) + λD(L− z1)− λD′(L− z1) · L→ U(L) > 0, as z1 ↗ L.

Combining the above analysis, we conclude that there exists a unique solution (z̃1, z̃2)
on (L,∞) × [0, L) to the system (3.21). For this solution (z̃1, z̃2), f ′(z̃1) = f ′(z̃2) =
f(z̃2)−f(z̃1)

z̃2−z̃1 (this is how (3.21) is defined), and k = f ′(z̃1) > 0. By definition f is
concave on [0, z̃1] and [z̃2,∞), and moreover, f(x) 6 kx + c for x ∈ (z̃1, z̃2) by the
concavity on (z̃1, L] and on [L, z̃2].
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Appendix C

Appendix for Chapter 4

C.1 Proof of Part (b) and Part (c) of Proposition 4.6

In this appendix, we provide the proof of part (b) and part (c) of Proposition 4.6. The
proof essentially consists of a series of lemmas adapted from Jin et al. (2005) in which a
similar result is shown; see Section 5 in their paper.

Recall the condition for part (b) and part (c) of Proposition 4.6 is 0 < x0e
rT ≤ K < d.

Before we prove part (b) and part (c) of Proposition 4.6, we let Y = Z − d and y0 :=
x0 − de−rT < 0, then problem (4.17) becomes

inf
Y ∈FT

E
[
(K − d− Y )+

]
,

subject to E[Y ] = 0,

E[ξTY ] 6 y0

Y ≥ −d a.s.

(C.1)

where Y ∈ FT means that Y is FT measurable.

Consider the optimization problem that arises by omitting the constraint on E[Y ].
inf
Y ∈FT

E
[
(K − d− Y )+

]
,

subject to E[ξTY ] 6 y0,

Y ≥ −d a.s.

(C.2)

The following is due to Cvitanić and Karatzas (1999).

Lemma C.1. Assuming 0 < x0 ≤ Ke−rT or equivalently y0 ∈ (−de−rT , Ke−rT − de−rT ],
an optimal solution to problem (C.2) is given by

Y ∗ = K1{β∗ξT≤1} − d, (C.3)
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where β∗ = exp
{
||ζ||
√
TΦ−1

(
1− y0erT+d

K

)
+
(
r − 1

2
||ζ||2

)
T
}

and E [ξTY
∗] = y0.

The corresponding value function, denoted by h(y0), is

h(y0) = KΦ

(
Φ−1

(
1− y0e

rT + d

K

)
− ||ζ||

√
T

)
. (C.4)

Note that when x0 = Ke−rT , i.e. y0e
rT + d = K, we can have Y ∗ = K − d, β∗ = 0 and

h(y0) = 0, meaning the optimal solution to problem (C.2) is to invest only in the risk-free
asset, and the optimal value is zero.

It is obvious that h(y0) is strictly decreasing with respect to y0 ∈ (−de−rT , Ke−rT −
de−rT ].

Lemma C.2. For any sufficiently small ε > 0, and y0 ∈ (−de−rT , Ke−rT − de−rT ]. There
exists a feasible solution Y to problem (C.2) such that h(y0) ≤ E

[
(K − d− Y )+

]
= h(y0)+

ε
2

and E [ξTY ] = y0.

Proof. For any feasible solution Y for problem (C.2), we have h(y0) ≤ E
[
(K − d− Y )+

]
due to the optimality of Y ∗. Furthermore, we construct Yε as follows.

Yε =

(
K − d− ε

2bE
[
ξT1{β∗ξT≤1}

])1{β∗ξT≤1}+

(
ε

2bE
[
ξT1{β∗ξT>1}

] − d)1{β∗ξT>1}, (C.5)

where b = 1
E[ξT |β∗ξT≤1]

− 1
E[ξT |β∗ξT>1]

≥ 0 and β∗ is given in Lemma C.1. For small enough

ε > 0, Yε ≥ −d a.s. It can be verified that E[ξTYε] = y0 invoking E [ξTY
∗] = y0 where Y ∗

is given in (C.3). In addition,

E
[
(K − d− Yε)+

]
= E

[(
K − ε

2bE
[
ξT1{β∗ξT>1}

])1{β∗ξT>1}

]
+ E

[
ε

2bE
[
ξT1{β∗ξT≤1}

]1{β∗ξT≤1}

]

= h(y0) +
ε

2b

(
P(β∗ξT ≤ 1)

E
[
ξT1{β∗ξT≤1}

] − P(β∗ξT > 1)

E
[
ξT1{β∗ξT>1}

])
= h(y0) +

ε

2b
b = h(y0) +

ε

2
.

Therefore, Yε constructed in (C.5) meets the requirement.

The following is Lemma 5.2 in Jin et al. (2005).

Lemma C.3. For any α > 0, δ > 0, and 0 < β < αδ, there exists a bounded random
variable Ỹ ≥ 0 such that E[Ỹ ] = α, E[ξT Ỹ ] = β and Ỹ = 0 on the set {ξT ≥ δ}.

Lemma C.4. For any sufficiently small ε > 0 and y0 ∈ (−de−rT , Ke−rT − de−rT ], given
the feasible solution Yε in (C.5) to problem (C.2) such that h(y0) ≤ E

[
(K − d− Yε)+

]
=

h(y0) + ε
2

and E [ξTYε] = y0, we have the following:
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(a) There exists a unique constant δ0(a) for a ∈ (−de−rT , y0] ∈ (0,∞) such that

E
[
a

y0

ξTYε1{ξT≥δ0(a)}

]
= y0,

(b) lim
a↗y0

δ0(a) = 0,

(c) There exists a constant δ1(a) such that 0 < δ1(a) < δ0(a) and

E
[
a
y0
Yε1{ξT≥δ1(a)}

]
E
[
ξT

a
y0
Yε1{ξT≥δ1(a)}

]
− y0

>
1

δ1(a)
,

(d) lim
a↗y0

δ1(a) = 0.

Proof. (a) Since E [ξTYε] = y0, we have E
[
a
y0
ξTYε

]
= a. Moreover, from (C.5), Yε ≤ 0

a.s. for any sufficiently small ε > 0. Define Xβ := a
y0
ξTYε1{ξT≥β} and H(β) :=

E(Xβ) = E
[
a
y0
ξTYε1{ξT≥β}

]
for β > 0. We observe that Xβ increases in β and tends

to 0 and ξT
a
y0
Yε a.s. respectively as β goes to ∞ and 0. Furthermore, for a fixed

β = β′, we note that E [|Xβ′ |] ≤ E
[∣∣∣ξT a

y0
Yε

∣∣∣] < ∞. The Monotone Convergence

Theorem implies that lim
β→∞

H(β) = 0 and lim
β→0

H(β) = a < 0.

Next we show the continuity of H(β) with respect to β on (0,∞). Fix β ∈ (0,∞) and

take a sequence βn ∈ (0,∞) with βn → β as n → ∞. Since |Xβn| ≤
∣∣∣ξT a

y0
Yε

∣∣∣ where

the upper bound is integrable, it follows from the Dominated Convergence Theorem
that

lim
βn→β

H(βn) = lim
βn→β

E(Xβn) = lim
βn→β

E
[
ξT
a

y0

Yε1{ξT≥βn}

]
= E

[
lim
βn→β

ξT
a

y0

Yε1{ξT≥βn}

]
= E

[
ξT
a

y0

Yε1{ξT≥β}

]
= H(β)

Thus H(β) is continuous on (0,∞), and the existence of δ0(a) is proved. It remains
to prove the uniqueness of δ0(a). For the uniqueness, it suffices to show the strict
monotonicity of H. For β1 > β2 > 0, we have

H(β1)−H(β2) = E
[
a

y0

ξTYε1{ξT≥β1}

]
− E

[
a

y0

ξTYε1{ξT≥β2}

]
= E

[
a

y0

ξT (−Yε)1{β2≤ξT<β1}
]
> 0,

Thus H(β) is strictly increasing in β > 0.
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(b) It is clear that δ0(y0) = 0. Continuity of δ0(a) follows from the continuity and strict
monotonicity of H.

(c) From the expression (C.5) Yε ≤ 0 a.s. for small enough ε > 0. Further, we notice that

E
[
a
y0
ξTYε

]
= a. Define G(λ) = E

[
a
y0

(−λYε)1{ξT≥λ}
]
−
(
y0 − E

[
ξT

a
y0
Yε1{ξT≥λ}

])
for

λ ∈ (0, δ0(a)), where Yε is defined in (C.5). The continuity of G(λ) with respect to λ
can be proved in the same way as in part (a) for the function H(β).

Both random variables inside the corresponding expectations in the expression of
G(λ) are integrable due to the fact that∣∣∣∣ ay0

(−λYε)1{ξT≥λ}
∣∣∣∣ ≤ ∣∣∣∣ ay0

(−ξTYε)1{ξT≥λ}
∣∣∣∣ ≤ ∣∣∣∣ ay0

(−ξTYε)
∣∣∣∣ =

∣∣∣∣ ay0

ξTYε

∣∣∣∣
and ∣∣∣∣ξT ay0

Yε1{ξT≥λ}

∣∣∣∣ ≤ ∣∣∣∣ ay0

ξTYε

∣∣∣∣
where both upper bounds are integrable. Therefore, by the Dominated Convergence
Theorem,

lim
λ↗δ0(a)

G(λ) = E
[
a

y0

(−δ0(a)Yε)1{ξT≥δ0(a)}

]
−
(
y0 − E

[
ξT
a

y0

Yε1{ξT≥δ0(a)}

])
= δ0(a)E

[
a

y0

(−Yε)1{ξT≥δ0(a)}

]
> 0

where the second equality follows from part (a).

Thus, the continuity of G implies that there exists a constant δ1(a) ∈ (0, δ0(a))
such that G(δ1(a)) > 0. And notice that for such a δ1(a), we can obtain that

δ1(a)E
[
a
y0

(−Yε)1{ξT≥δ1(a)}

]
> 0 and y0 − E

[
ξT

a
y0
Yε1{ξT≥δ1(a)}

]
> 0, where the latter

inequality follows from the strict monotonicity of H from the proof of part (a). Thus,
rearranging G(δ1(a)) > 0 yields (C.4).

(d) With 0 < δ1(a) < δ0(a) and lim
a↗y0

δ0(a) = 0, the claim follows by the Squeeze Theorem.

In order to prove part (b) and part (c) of Proposition 4.6, we show the following two
lemmas.

Lemma C.5. For any sufficiently small ε > 0 and y0 ∈ (−de−rT , Ke−rT − de−rT ], there
exists a feasible solution Y to problem (C.1) such that E

[
(K − d− Y )+

]
< h(y0) + ε.

Proof. By Lemma C.3, we define

Ya =
a

y0

Yε1{ξT≥δ1(a)} + Ỹa1{ξT<δ1(a)} (C.6)
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where Yε is defined in (C.5) and Ỹa ≥ 0 a.s. is such that Ỹa = 0 on the set {ξT ≥ δ1(a)}
and 

E
[
Ỹa

]
= E

[
Ỹa1{ξT<δ1(a)}

]
= −E

[
a

y0

Yε1{ξT≥δ1(a)}

]
> 0

E
[
ξT Ỹa

]
= E

[
ξT Ỹa1{ξT<δ1(a)}

]
= y0 − E

[
ξT
a

y0

Yε1{ξT≥δ1(a)}

]
> 0

where δ1(a) > 0 and the two inequalities follow from the proof of part (c) in Lemma C.4.
Consequently, E [Ya] = 0 and E [ξTYa] = y0. For this Ya, we have

E
[
(K − d− Ya)+

]
= E

[(
K − d− a

y0

Yε

)
+

1{ξT≥δ1(a)}

]
+ E

[(
K − d− Ỹa

)
+

1{ξT<δ1(a)}

]
= E

[(
K − d− a

y0

Yε

)
+

1{ξT≥δ1(a)}

]
.

where the second equality follows from the fact that Ỹa ≥ 0 a.s. and K < d.

Since

∣∣∣∣(K − d− a
y0
Yε

)
+

1{ξT≥δ1(a)}

∣∣∣∣ ≤ ∣∣∣K − d− a
y0
Yε

∣∣∣ ≤ K + d + a
y0
|Yε| and |Yε| is

integrable from (C.5), by the Dominated Convergence Theorem,

lim
a↗y0

E
[
(K − d− Ya)+

]
= E

[
(K − d− Yε)+

]
= h(y0) +

ε

2

where the second equality is due to the definition of Y (C.5) in Proposition C.2.

Thus, we can take some a < y0 such that E
[
(K − d− Ya)+

]
< h(y0) + ε.

Lemma C.6. Given y0 < 0, for any feasible solution Y to problem (C.1), E
[
(K − d− Y )+

]
>

h(y0), where h(y0) is the optimal value function of problem (C.2) and given in (C.4).

Proof. Note that for any Y feasible for problem (C.1), E [ξTY+] > 0, otherwise we have
Y+ = 0 a.s., which along with E[Y ] = 0 implies Y = 0 a.s. and E [ξTY ] = 0. This
contradicts to the constraint E [ξTY ] ≤ y0 for y0 < 0.

Denote b := E [ξT (−(−Y )+)]. Note that b < y0 and Y ≥ −d a.s. implies that
−(−Y )+ ≥ −d a.s. Therefore, −(−Y )+ is also a feasible solution to problem (C.2), and
thus we have h(b) > h(y0) by the strict monotonicity of h specified in Lemma C.1. Thus,

E
[
(K − d− Y )+

]
≥ E

[
(K − d+ (−Y )+)+

]
≥ h(b) > h(y0).
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C.2 Proof of Proposition 4.18

For x0e
rT ≤ K < d, by Proposition 4.17, G̃M is strictly decreasing with respect to M

due to the fact that GM(K;x0) = d−K
G̃M (K;x0)

+ 1. Along with 0 ≤ G̃M ≤ K, we obtain

that lim
M→∞

G̃M(K;x0) exists and lim
M→∞

G̃M(K;x0) < G̃M(K;x0) for all M that satisfies

assumption H3.

With the definition of the two constraint sets, i.e. both C1(d, x0) and C2(d, x0,M)
in (4.14) and (4.23) respectively. For any Z ∈ C2(d, x0,M), it is obvious that Z ∈
C1(d, x0). Thus, G̃M(K;x0) ≥ g̃(K;x0) for all M satisfying assumption H3. Therefore,
lim
M→∞

G̃M(K;x0) ≥ g̃(K;x0).

It remains to prove that lim
M→∞

G̃M(K;x0) ≤ g̃(K;x0). Given a fixed K such that

x0e
rT ≤ K < d, we know from Appendix C.1 that g̃(K;x0) = h(K; y0) := h(y0) where we

abuse the notation for h(y0) given in Lemma C.1 by making the dependence on K explicit;
see both Lemmas C.5 and C.6.

With a small enough fixed ε, from Lemma C.5, we can obtain that Zε := Ya,ε+d where
Ya,ε := Ya and Ya is given in (C.6) for some a. For such a sequence {Zε}ε>0 indexed by ε
we have that lim

ε→0
E
[
(K − Zε)+

]
= g̃(K;x0). Notice that in (C.6), a is bounded and fixed

for a given ε. Here we make the dependence on ε explicitly for our analysis.

Invoking (C.6), (C.5), and the construction of Ỹa for a given fixed ε in Lemma C.4,
along with Lemma C.3, we can conclude that Zε is bounded.1 Denote the upper bound by
Mε where Mε <∞. Thus

E
[
(K − Zε)+

]
≥ G̃Mε(K;x0) > lim

M→∞
G̃M(K;x0),

where the firstly inequality follows from the optimality of problem (4.24) for a given Mε.
Since ε > 0 is arbitrary, we have lim

ε→0
E
[
(K − Zε)+

]
= g̃(K;x0) ≥ lim

M→∞
G̃M(K;x0).

Notice that in the above equation, we need to check whether Mε satisfies assumption
H3. However, if the initial Mε does not satisfy assumption H3, then invoking Lemma 4.10,
we can always increase Mε to be n ·Mε where n = 1, 2, 3, · · · since 0 ≤ Zε ≤Mε ≤ n ·Mε.
Thus,

E
[
(K − Zε)+

]
≥ G̃n·Mε(K;x0) > lim

M→∞
G̃M(K;x0).

and the argument still holds.

In conclusion, lim
M→∞

G̃M(K;x0) = g̃(K;x0).

1The definition of Ya in (C.6) consists of two terms. Yε is given in (C.5). For sufficiently small ε,
−d ≤ Yε ≤ K − d a.s. In addition, Ỹa in (C.6) is bounded by Lemma C.3. Thus, Zε ≥ 0 a.s. and is
bounded from above as well.
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Appendix D

Appendix for Chapter 5

D.1 Proof to Lemma 5.2

The proof is adapted from Lemma A1 in Shen and Zeng (2015) and Lemma 4.3 in Zeng
and Taksar (2013).

Firstly, from the boundedness of both m1(·) and m2(t), we can find an M such that
0 < M < ∞ and 1

2
(m2

1(t) +m2
2(t)) ≤ M for all t ∈ [0, T ]. Then for any T0 ∈ [0, T ], we

define

f(t) := exp

{
−
[
2M + 2κ− +

1

2
(ρ2

1 + ρ2
2)

]
(t− T0)

}
,

and

F (t) :=
1

2

(
m2

1(t) +m2
2(t)
)

+ f ′(t)− κf(t) +
1

2
(ρ2

1 + ρ2
2)f 2(t)

≤M − f(t)

[
2M + 2κ− +

1

2
(ρ2

1 + ρ2
2)

]
− κf(t) +

1

2
(ρ2

1 + ρ2
2)f 2(t)

= M [1− 2f(t)]− |κ| · f(t)− 1

2
(ρ2

1 + ρ2
2)f(t)[1− f(t)] =: H(t).

It is obvious that H(t) < 0 for t ∈ [T0, T0 + h] where h = ln 2
2M+2κ−+ 1

2
(ρ21+ρ22)

> 0.

Therefore, F (t) < 0 for t ∈ [T0, T0 + h] as well.

Now, for t ∈ [T0, T0 + h], we denote

G(t) := exp

[∫ t

T0

1

2

(
m2

1(s) +m2
2(s)

)
αsds+ f(t)αt

]
≥ 0.

Applying Itô’s formula to G(t) gives

dG(t) = G(t)
[
(κφf(t) + F (t)αt) dt+ ρ1

√
αtf(t)dW

(1)
t + ρ2

√
αtf(t)dW

(2)
t

]
.
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Taking expectations on both sides yields

E [G(t)|FT0 ]

=E
[
eαT0 exp

{
κφ

∫ t

T0

f(s)ds+

∫ t

T0

F (s)αsds

}
× exp

{
−1

2
(ρ2

1 + ρ2
2)

∫ t

T0

f 2(s)αsds+ ρ1

∫ t

T0

√
αsf(s)dW (1)

s + ρ2

∫ t

T0

√
αsf(s)dW (2)

s

} ∣∣∣FT0]
≤eαT0 exp

{
κφ

∫ t

T0

f(s)ds

}
≤ eκφ(t−T0)+αT0 <∞, a.s.

where the last equality follows from the negativeness of F over [T0, T0 + h] and the super-
martingale property of stochastic exponentials (the term in the second line of the above
expression). Therefore,

E
[
e
∫ t
T0

1
2(m2

1(s)+m2
2(s))αsds|FT0

]
≤ E[G(t)|FT0 ] <∞, a.s.

which implies that, for t ∈ [T0, T0 + h], the stochastic exponential process defined by

exp

{
−1

2

∫ t

T0

(
m2

1(s) +m2
2(s)

)
αsds+

∫ t

T0

m1(s)
√
αsdW

(1)
s +

∫ t

T0

m2(s)
√
αsdW

(2)
s

}
is a martingale.

Lastly, for any t ∈ [0, T ], we find a partition of the interval [0, t], i.e. 0 = t0 < t1 <
· · · < tn = t such that n = d t

h
e and tk+1 − tk = t

n
≤ h for k = 0, 1, · · · , n− 1, where dxe is

the smallest integer greater than or equal to x. Then

E
[
exp

{
−1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

0

m2(s)
√
αsdW

(2)
s

}]
=E

[
n−1∏
k=0

exp

{
−1

2

∫ tk+1

tk

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ tk+1

tk

m1(s)
√
αsdW

(1)
s +

∫ tk+1

tk

m2(s)
√
αsdW

(2)
s

}]
=E

{
E

[
n−1∏
k=0

exp

{
−1

2

∫ tk+1

tk

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ tk+1

tk

m1(s)
√
αsdW

(1)
s +

∫ tk+1

tk

m2(s)
√
αsdW

(2)
s

} ∣∣∣Ftn−1

]}
=E

[
n−2∏
k=0

exp

{
−1

2

∫ tk+1

tk

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ tk+1

tk

m1(s)
√
αsdW

(1)
s +

∫ tk+1

tk

m2(s)
√
αsdW

(2)
s

}
× 1

]
= · · · = 1
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The claim follows immediately.

D.2 Solutions to Riccati Ordinary Differential Equa-

tions

Lemma D.1. Consider the following Riccati equation,

dg(t)

dt
+ a2g

2(t)− a1g(t) = a0, g(T ) = 0, (D.1)

where a0, a1 and a2 are three constants. Then a solution to the Ricatti equation has the
form of

g(t) =
R2(τ)

R1(τ)
, (D.2)

where τ := T − t and the vector (R1(τ), R2(τ))> follows the ODE:

d

(
R1(τ)
R2(τ)

)
=

(
0 −a2

−a0 −a1

)(
R1(τ)
R2(τ)

)
dτ, (D.3)

where R1(τ)|t=T = 1 and R2(τ)|t=T = 0. More precisely, let ∆ = a2
1+4a0a2 and δ = 1

2

√
|∆|.

An explicit solution of g(t) =: g(t; a0, a1, a2) is given as follows:

g(t; a0, a1, a2) := g(t) =



−a0
δ

sin(δτ)

cos(δτ) + a1
2δ

sin(δτ)
, if ∆ < 0,

−a0τ

1 + a1
2
τ
, if ∆ = 0,

−a0
δ

sinh(δτ)

cosh(δτ) + a1
2δ

sinh(δτ)
, if ∆ > 0.

(D.4)

Proof. From the ODE (D.3) for the vector (R1(τ), R2(τ))>, we know that

dR1(τ)

dτ
= −a2R2(τ),

dR2(τ)

dτ
= −a0R1(τ)− a1R2(τ).

Furthermore,
d

dτ

(
1

R1(τ)

)
= − 1

R2
1(τ)

dR1(τ)

dτ
=
a2R2(τ)

R2
1(τ)

,

and

dg(t)

dt
= − d

dτ

(
R2(τ)

R1(τ)

)
= − 1

R1(τ)

dR2(τ)

dτ
−R2(τ)

d

dτ

(
1

R1(τ)

)
= a0 + a1

R2(τ)

R1(τ)
− a2

(
R2(τ)

R1(τ)

)2

= a0 + a1g(t)− a2g
2(t),
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which is exactly the Ricatti equation (D.1) with the terminal condition g(T ) = R2(τ)
R1(τ)
|t=T =

0. Clearly, the solution to the ODE (D.3) can be represented by a matrix exponential as(
R1(τ)
R2(τ)

)
= exp

[(
0 −a2

−a0 −a1

)
τ

](
1
0

)
. (D.5)

Applying the matrix exponential formulas (see Corollary 2.4 in Bernstein and So (1993))
yields

R1(τ) =


e−

a1τ
2

[
cos(δτ) + a1

2δ
sin(δτ)

]
, if ∆ < 0,

e−
a1τ
2

[
1 + a1

2
τ
]
, if ∆ = 0,

e−
a1τ
2

[
cosh(δτ) + a1

2δ
sinh(δτ)

]
, if ∆ > 0,

(D.6)

and,

R2(τ) =


e−

a1τ
2

[−a0
δ

sin(δτ)
]
, if ∆ < 0,

e−
a1τ
2 (−a0τ) , if ∆ = 0,

e−
a1τ
2

[−a0
δ

sinh(δτ)
]
, if ∆ > 0.

(D.7)

Since g(t) = R2(τ)
R1(τ)

, we have (D.4).

Lemma D.2. Suppose g(t) follows the Ricatti equation as specified in (D.1) and c(t)
satisfies the following equation related to g(t):

dc(t)

dt
+ a3g(t) = 0, c(T ) = 0, (D.8)

where a3 is a constant. Let ∆ = a2
1 + 4a0a2 and δ = 1

2

√
|∆|. Then a solution to c(t) =:

c(t; a0, a1, a2, a3) is given as follows:

1. If a2 6= 0,

c(t; a0, a1, a2, a3) := c(t) =


−a3
a2

[
−a1τ

2
+ ln

∣∣cos(δτ) + a1
2δ

sin(δτ)
∣∣] , if ∆ < 0,

−a3
a2

[
−a1τ

2
+ ln

∣∣1 + a1
2
τ
∣∣] , if ∆ = 0,

−a3
a2

[
−a1τ

2
+ ln

∣∣cosh(δτ) + a1
2δ

sinh(δτ)
∣∣] , if ∆ > 0.

(D.9)

2. If a2 = 0 and a1 6= 0,

c(t; a0, a1, a2, a3) := c(t) =
a0a3

a1

[
e−

a1τ
2

sinh(δτ)

δ
− τ
]
. (D.10)

3. If a2 = 0 and a1 = 0,

c(t; a0, a1, a2, a3) := c(t) = −a0a3

2
τ 2. (D.11)
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Proof. 1. If a2 6= 0, from the ODE (D.3), we have

R2(τ) =
−1

a2

dR1(τ)

dτ
. (D.12)

Since g(t) = R2(τ)
R1(τ)

and τ = T − t, (D.8) becomes

dc(t)

dt
=

a3

a2R1(τ)

dR1(τ)

dτ
=
a3

a2

d ln |R1(τ)|
dτ

.

With R1(τ)|t=T = 1, we get c(t) = −a3
a2

ln |R1(τ)| for 0 ≤ t ≤ T , and plug the
expression of R1(τ) given in (D.6) to get (D.9).

2. If a2 = 0 and a1 6= 0, then ∆ > 0. From the ODE (D.3), we have

R1(τ) = 1, R2(τ) =
−1

a1

dR2(τ)

dτ
− a0

a1

.

Since g(t) = R2(τ)
R1(τ)

= R2(τ) and τ = T − t, (D.8) becomes

dc(t)

dt
=
a3

a1

dR2(τ)

dτ
+
a0a3

a1

.

With R2(τ)|t=T = 0, we have c(t) = −a3
a1
R2(τ)− a0a3

a1
τ for 0 ≤ t ≤ T , and plug in the

expression of R2(τ) given in (D.7) to get (D.10).

3. If a2 = 0 and a1 = 0, then R1(τ) = 1 and R2(τ) = −a0τ for 0 ≤ t ≤ T . Since

g(t) = R2(τ)
R1(τ)

= R2(τ) = −a0τ and τ = T − t, (D.11) follows.

D.3 Boundedness of Solutions to Riccati Ordinary Dif-

ferential Equations

In this section, we prove the boundedness property of the solution to the Riccati ODE in
(D.1). Note that with the boundedness of g(t), it is obvious to see that the solution to the
ODE for c(t) given in (D.8) is bounded as well. Therefore, we focus on the proof for the
boundedness of g(t).

Lemma D.3. Consider the Riccati equation given in (D.1), then

1. If a2 = 0, then the solution g(t; a0, a1, a2) given in (D.4) is bounded on t ∈ [0, T ].

2. If a0 > 0 and a2 > 0, then the solution g(t; a0, a1, a2) given in (D.4) is bounded on
t ∈ [0, T ].
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Proof. 1. In this case, we simply substitute a2 = 0 and then the solution reduces to

g(t; a0, a1, 0) =

{
a0
a1

(e−a1τ − 1), if a1 6= 0,

−a0τ, if a1 = 0,

where τ = T − t. It is obvious that g(t; a0, a1, a2) is bounded on [0, T ].

2. In this case, we can also obtain that the solution adopts the following form:

g(t; a0, a1, a2) =


a0
a1

(e−a1τ − 1), if a1 6= 0, a0 = 0

−a0τ, if a1 = 0, a0 = 0,
−a0
δ

sinh(δτ)

cosh(δτ) + a1
2δ

sinh(δτ)
if a0 6= 0,

where τ = T − t and δ = 1
2

√
a2

1 + 4a0a2 > 0. It is obvious that for the first two cases
g(t; a0, a1, a2) is bounded on [0, T ]. For the third case, it can be verified that

0 ≤ |g(t; a0, a1, a2)| ≤ a0

2δ
(e2δτ − 1).

Therefore, g(t; a0, a1, a2) is bounded on [0, T ].
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