53,154 research outputs found

    Visual Entailment: A Novel Task for Fine-Grained Image Understanding

    Get PDF
    Existing visual reasoning datasets such as Visual Question Answering (VQA), often suffer from biases conditioned on the question, image or answer distributions. The recently proposed CLEVR dataset addresses these limitations and requires fine-grained reasoning but the dataset is synthetic and consists of similar objects and sentence structures across the dataset. In this paper, we introduce a new inference task, Visual Entailment (VE) - consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal of a trained VE model is to predict whether the image semantically entails the text. To realize this task, we build a dataset SNLI-VE based on the Stanford Natural Language Inference corpus and Flickr30k dataset. We evaluate various existing VQA baselines and build a model called Explainable Visual Entailment (EVE) system to address the VE task. EVE achieves up to 71% accuracy and outperforms several other state-of-the-art VQA based models. Finally, we demonstrate the explainability of EVE through cross-modal attention visualizations. The SNLI-VE dataset is publicly available at https://github.com/ necla-ml/SNLI-VE

    Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering

    Full text link
    Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.Comment: 9 pages, 3 figures, AAAI 201

    Examining CNN Representations with respect to Dataset Bias

    Full text link
    Given a pre-trained CNN without any testing samples, this paper proposes a simple yet effective method to diagnose feature representations of the CNN. We aim to discover representation flaws caused by potential dataset bias. More specifically, when the CNN is trained to estimate image attributes, we mine latent relationships between representations of different attributes inside the CNN. Then, we compare the mined attribute relationships with ground-truth attribute relationships to discover the CNN's blind spots and failure modes due to dataset bias. In fact, representation flaws caused by dataset bias cannot be examined by conventional evaluation strategies based on testing images, because testing images may also have a similar bias. Experiments have demonstrated the effectiveness of our method.Comment: in AAAI 201

    VCD: Visual Causality Discovery for Cross-Modal Question Reasoning

    Full text link
    Existing visual question reasoning methods usually fail to explicitly discover the inherent causal mechanism and ignore jointly modeling cross-modal event temporality and causality. In this paper, we propose a visual question reasoning framework named Cross-Modal Question Reasoning (CMQR), to discover temporal causal structure and mitigate visual spurious correlation by causal intervention. To explicitly discover visual causal structure, the Visual Causality Discovery (VCD) architecture is proposed to find question-critical scene temporally and disentangle the visual spurious correlations by attention-based front-door causal intervention module named Local-Global Causal Attention Module (LGCAM). To align the fine-grained interactions between linguistic semantics and spatial-temporal representations, we build an Interactive Visual-Linguistic Transformer (IVLT) that builds the multi-modal co-occurrence interactions between visual and linguistic content. Extensive experiments on four datasets demonstrate the superiority of CMQR for discovering visual causal structures and achieving robust question reasoning.Comment: 12 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:2207.1264
    • …
    corecore