299 research outputs found

    Misinformation Containment Using NLP and Machine Learning: Why the Problem Is Still Unsolved

    Get PDF
    Despite the increased attention and substantial research into it claiming outstanding successes, the problem of misinformation containment has only been growing in the recent years with not many signs of respite. Misinformation is rapidly changing its latent characteristics and spreading vigorously in a multi-modal fashion, sometimes in a more damaging manner than viruses and other malicious programs on the internet. This chapter examines the existing research in natural language processing and machine learning to stop the spread of misinformation, analyzes why the research has not been practical enough to be incorporated into social media platforms, and provides future research directions. The state-of-the-art feature engineering, approaches, and algorithms used for the problem are expounded in the process

    Ranking Influential Nodes of Fake News Spreading on Mobile Social Networks

    Get PDF
    Online fake news can generate a negative impact on both users and society. Due to the concerns with spread of fake news and misinformation, assessing the network influence of online users has become an important issue. This study quantifies the influence of nodes by proposing an algorithm based on information entropy theory. Dynamic process of influence of nodes is characterized on mobile social networks (MSNs). Weibo (i.e., the Chinese version of microblogging) users are chosen to build the real network and quantified influence of them is analyzed according to the model proposed in this paper. MATLAB is employed to simulate and validate the model. Results show the comprehensive influence of nodes increases with the rise of two factors: the number of nodes connected to them and the frequency of their interaction. Indirect influence of nodes becomes stronger than direct influence when the network scope rises. This study can help relevant organizations effectively oversee the spread of online fake news on MSNs

    The Web of False Information: Rumors, Fake News, Hoaxes, Clickbait, and Various Other Shenanigans

    Full text link
    A new era of Information Warfare has arrived. Various actors, including state-sponsored ones, are weaponizing information on Online Social Networks to run false information campaigns with targeted manipulation of public opinion on specific topics. These false information campaigns can have dire consequences to the public: mutating their opinions and actions, especially with respect to critical world events like major elections. Evidently, the problem of false information on the Web is a crucial one, and needs increased public awareness, as well as immediate attention from law enforcement agencies, public institutions, and in particular, the research community. In this paper, we make a step in this direction by providing a typology of the Web's false information ecosystem, comprising various types of false information, actors, and their motives. We report a comprehensive overview of existing research on the false information ecosystem by identifying several lines of work: 1) how the public perceives false information; 2) understanding the propagation of false information; 3) detecting and containing false information on the Web; and 4) false information on the political stage. In this work, we pay particular attention to political false information as: 1) it can have dire consequences to the community (e.g., when election results are mutated) and 2) previous work show that this type of false information propagates faster and further when compared to other types of false information. Finally, for each of these lines of work, we report several future research directions that can help us better understand and mitigate the emerging problem of false information dissemination on the Web

    AI approaches to understand human deceptions, perceptions, and perspectives in social media

    Get PDF
    Social media platforms have created virtual space for sharing user generated information, connecting, and interacting among users. However, there are research and societal challenges: 1) The users are generating and sharing the disinformation 2) It is difficult to understand citizens\u27 perceptions or opinions expressed on wide variety of topics; and 3) There are overloaded information and echo chamber problems without overall understanding of the different perspectives taken by different people or groups. This dissertation addresses these three research challenges with advanced AI and Machine Learning approaches. To address the fake news, as deceptions on the facts, this dissertation presents Machine Learning approaches for fake news detection models, and a hybrid method for topic identification, whether they are fake or real. To understand the user\u27s perceptions or attitude toward some topics, this study analyzes the sentiments expressed in social media text. The sentiment analysis of posts can be used as an indicator to measure how topics are perceived by the users and how their perceptions as a whole can affect decision makers in government and industry, especially during the COVID-19 pandemic. It is difficult to measure the public perception of government policies issued during the pandemic. The citizen responses to the government policies are diverse, ranging from security or goodwill to confusion, fear, or anger. This dissertation provides a near real-time approach to track and monitor public reactions toward government policies by continuously collecting and analyzing Twitter posts about the COVID-19 pandemic. To address the social media\u27s overwhelming number of posts, content echo-chamber, and information isolation issue, this dissertation provides a multiple view-based summarization framework where the same contents can be summarized according to different perspectives. This framework includes components of choosing the perspectives, and advanced text summarization approaches. The proposed approaches in this dissertation are demonstrated with a prototype system to continuously collect Twitter data about COVID-19 government health policies and provide analysis of citizen concerns toward the policies, and the data is analyzed for fake news detection and for generating multiple-view summaries

    When Infodemic Meets Epidemic: a Systematic Literature Review

    Full text link
    Epidemics and outbreaks present arduous challenges requiring both individual and communal efforts. Social media offer significant amounts of data that can be leveraged for bio-surveillance. They also provide a platform to quickly and efficiently reach a sizeable percentage of the population, hence their potential impact on various aspects of epidemic mitigation. The general objective of this systematic literature review is to provide a methodical overview of the integration of social media in different epidemic-related contexts. Three research questions were conceptualized for this review, resulting in over 10000 publications collected in the first PRISMA stage, 129 of which were selected for inclusion. A thematic method-oriented synthesis was undertaken and identified 5 main themes related to social media enabled epidemic surveillance, misinformation management, and mental health. Findings uncover a need for more robust applications of the lessons learned from epidemic post-mortem documentation. A vast gap exists between retrospective analysis of epidemic management and result integration in prospective studies. Harnessing the full potential of social media in epidemic related tasks requires streamlining the results of epidemic forecasting, public opinion understanding and misinformation propagation, all while keeping abreast of potential mental health implications. Pro-active prevention has thus become vital for epidemic curtailment and containment
    corecore