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ABSTRACT

Despite the increased attention and substantial research into it claiming outstanding successes, the 
problem of misinformation containment has only been growing in the recent years with not many signs 
of respite. Misinformation is rapidly changing its latent characteristics and spreading vigorously in a 
multi-modal fashion, sometimes in a more damaging manner than viruses and other malicious programs 
on the internet. This chapter examines the existing research in natural language processing and machine 
learning to stop the spread of misinformation, analyzes why the research has not been practical enough 
to be incorporated into social media platforms, and provides future research directions. The state-of-the-
art feature engineering, approaches, and algorithms used for the problem are expounded in the process.

INTRODUCTION

Social media has been subject to plenty of controversies owing to its use for spreading misinformation, 
sometimes to the extent of manipulating a country’s presidential elections (Pendyala et al., 2018). The 
objective of this chapter is to explain some of the recent machine learning and natural language process-
ing approaches for misinformation containment and provide reasons why, despite the large quantity of 
research in the area, the problem is still unsolved. Modeling domains using math has time and again 
proven to yield solutions to some of the toughest problems in the past. Machine learning, for the most 
part, has evolved from applied math. There has been an upsurge in the literature on the topic of trust in 
social media using machine learning models in recent times. This chapter starts with a survey of some 
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of the machine learning models, methods, and techniques that have been used to address the problem 
of the trustworthiness of the information on the Internet, which helps in misinformation containment.

The techniques are discussed under various sub-heads such as language models, few-shot learning, bot 
detection, graph theoretic approaches to misinformation containment, and using Generative Adversarial 
Network models for detecting fake multimedia content as well as textual content. As Table 1 shows, 
the corpus of articles on this topic is tremendous. A comprehensive survey of the existing literature is 
beyond the scope of this work. The survey is mainly intended to convey the underlying techniques and 
the resulting success that is reported in the literature and then to show why despite the claimed success, 
the problem is largely unsolved. The selection of the survey sub-topics in this chapter is based on the 
author’s perception of what is indicative of the emerging literature.

As can be seen in the following sections, researchers have reported substantial success in misinfor-
mation containment (MC). However, even the layman can see that the problem is far from resolved. 
Information platforms such as WhatsApp have adopted means that are far from satisfactory to control 
the spread of lies on the Internet. For instance, by limiting the number of times a post can be forwarded, 
WhatsApp is curtailing useful information as well and not just malicious posts. Google search engine still 
returns web pages with a significant amount of misinformation and does not always indicate or quantify 
its belief in the fetched search results. Platforms such as Facebook depend on social media community 
standards to police the usage and are often a cause for grief for users who have genuine interests in 
posting information. Using formal methods such as First-Order-Logic can prove to be effective as well 
(Pendyala, 2018) but for focus and brevity, this chapter discusses only trends in machine learning and 
particularly in deep learning that seem promising. This chapter addresses the challenges in solving the 
misinformation containment problem and suggests some future directions.

BACKGROUND

Fake news continues to be a major problem. It is undoubtedly a complex problem to solve and appro-
priately attracted plenty of attention from the research community. A wide variety of machine learning 
algorithms such as support vector machines and logistic regression (Patel & Meehan, 2021), ensemble 
techniques like random forest (Antony Vijay et al., 2021) and Adaboost, deep learning frameworks such 
as LSTM (Rajalaxmi et al., 2022) and GAN (Xie et al., 2022), language models like BOW / TF-IDF 
(Mondal et al., 2022) and BERT (Palani et al., 2022), and many more have been tried out in the attempts 
to solve the problem. In terms of feature engineering as well, no stone has been left unturned. Manual 
feature extraction, graph embeddings (Karpov & Glazkova, 2020), and other approaches to representa-
tion learning (ElSherief et al., 2021) have all been tried. Not just supervised and unsupervised learning, 
but various other types of learning such as few-shot learning (Lo et al., 2022), meta-learning (Kozik & 
Chora’s, 2022), transfer learning (Ghayoomi & Mousavian, 2022), meta-transfer learning (Shen, 2022), 
self-supervised learning (Huh et al., 2018), semi-supervised learning (Li et al., 2022), reinforcement 
learning (Mosallanezhad et al., 2022) (He et al., 2022), and active learning (Sahan et al., 2021) have been 
explored extensively for the problem. Figure 1 illustrates some of the approaches explored for misinfor-
mation containment. Despite the voluminous research literature purporting to solve the problem using 
machine learning methods, misinformation containment is largely unsolved and is growing by the day. 
The chapter provides some insights into the current state-of-the-art solutions and analyzes why they are 
not helping enough. The chapter will present some future directions that can help.
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A Google search for “fake news” on July 23, 2022, returned 81.5 million results, including a fake 
news item relating to the Ukrainian President. The results also show that the Seattle times runs a sec-
tion titled, “This week in fake news.” To illustrate the problem further, Figure 1 is a screenshot of the 
metadata of a fraudulent upload on YouTube faking as the popular Indian movie, “Kashmir Files.” It 
received tremendous attention from gullible viewers who seem to have believed that it is indeed the real 
movie. This is just one instance of how fake posts are largely uncontained.

Figure 1. Some of the approaches for Misinformation Containment that have been explored in the literature

Table 1. Google Scholar results listing articles purporting to solve the fake information problem

Search String Article Count

“Machine learning” fake 103,000

“Deep learning” fake 48,800

“Language model” fake 6,830

“LSTM” fake 17,300

“graph neural networks” fake 17,800
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On the other hand, Table 1 shows the number of articles indexed by Google scholar that apparently 
use the popular technologies given in the search string to tackle the fake news problem. Depending on 
the underlying Google’s search algorithm, the numbers may or may not be accurate, but the search results 
are quite indicative. The problem has attracted tremendous interest from the research community. Several 
articles that the author surveyed report outstanding successes. A “Fake News Challenge (FNC-1)1” was 
organized in 2017 to seek Machine Learning, Natural Language Processing, and Artificial Intelligence 
solutions to combat fake news and there are plans to organize FNC-2. The problem is still largely unsolved 
in the real world. It is therefore pertinent to research this huge disconnect between what is claimed in 
research and the actual reality.

Misinformation containment has been proven to be NP-hard more than a decade ago (Budak et al., 
2011), which makes it a good candidate for approximate models such as the ones generated by machine 
learning. Given that artificial neural networks serve as universal function approximators, misinforma-
tion containment can be framed as a function of the features of the information that outputs whether the 
information is true or false or a degree of truthfulness. Deep learning that uses deep neural networks 
is rapidly expanding its scope of applications to the extent of prompting a debate in some corners as 
to whether traditional machine learning techniques are even relevant today. Deep learning generalizes 
better and performs better when the classification is nonlinear as in this case. Researchers (Wanda & 
Jie, 2020) used a deep learning architecture called Convolutional Neural Network (CNN) to detect fake 
profiles in online Social Networks. They achieve high accuracy in doing so. Like for any supervised 
machine learning classification problem, the authors extract features, train a model, handle overfitting 
issues by using regularization and apply the model to test data. They compare the results obtained using 

Figure 2. A fake upload not matching the actors or attributes of the real movie gets ~19 million views, 
289,000+ likes, and 15,250 genuine comments in 2 months (screenshot taken on July 23, 2022)
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the CNN architecture with the conventional machine learning models such as Logistic Regression and 
SVM and confirm that CNN performs better. We, therefore, focus more on deep learning approaches in 
the following sections. Figure 3 summarizes the flow of the rest of the chapter.

Figure 3. Misinformation Containment: Methods and challenges
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Methods and Models

In the following paragraphs, although there is a reference to both deep learning and traditional machine 
learning-based approaches as they relate to the misinformation containment problem, most of the dis-
course is on deep learning. The purpose again is not for an exhaustive survey, which is almost infeasible 
given the amount of literature but to provide a high-level overview of some of the emerging trends not 
covered in other surveys on the topic.

Few-Shot Learning

The problem of misinformation detection has been addressed using meta-algorithms in traditional ma-
chine learning such as random forest and extra tree classifier with substantial reported success (Hakak, 
et al., 2021). The authors claim that the experiments resulted in 100% training and test accuracy on one 
dataset but training and testing accuracy of 99.8% and 44.15% respectively on a different training set 
(Hakak, et al., 2021). Few-shot learning (FSL) uses meta-learning that can work with fewer training 
examples. Model-agnostic meta-learning (MAML) is one such FSL technique that has been shown to 
result in better performance on fake news classification as compared to a host of other machine learning 
models (Salem, et al., 2021). Authors (Lwowski & Najafirad, 2020) propose identifying a latent space 
using self-supervised learning for few-shot learning and claim good results.

Language Models

Language models like BERT and Sentence BERT are quite popularly used for misinformation classifica-
tion and efforts have been made to improve the classification performance by combining with enhanced 
attention-based methods (Paka, Bansal, Kaushik, Sengupta, & Chakraborty, 2021). When even human 
beings are not good at detecting fake news by just reading them, merely generating embeddings using 
NLP techniques is not sufficient for the task. Mining a wider corpus for additional features related to the 
information that needs to be classified can improve the results (Deepak & Chitturi, 2020). However, the 
secondary features so added are metadata like domain name and author details, which may not make a 
substantial difference. A similar approach is taken in (Braşoveanu & Andonie, 2019), but the augmented 
features include relations extracted from knowledge graphs. Despite the successes reported, language 
models based classification of misinformation in the form of short sentences is fundamentally flawed 
(Mifsud et al., 2021). It has been confirmed (Guderlei & Aßenmacher, 2020) that pre-trained BERT-
based language models are good to start with for a subsequent transfer learning task for stance detection.

Graph Theoretic Approaches

Social media is often used synonymously with Online Social Networks. social media can be modeled 
as a network or a graph of users, and artifacts from the user posts. Such a model can then be used to 
predict the trust or credibility in the media. If we know the credibility of the nodes of a subset of this 
graph, that information can then be used by machine learning algorithms to estimate the credibility of 
the remaining graph. Researchers (O’Brien et al., 2019) prove that graph dependencies play an important 
role in credibility estimation in social media. We can relate this to the real world, where the credibility 
of a well-connected person can be much more easily established than a completely isolated person. The 
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idea can be related to the concept of homophily in psychology, where similar people are expected to bond 
with each other. Graph theoretic techniques can be used to model connections in social media and then 
exploit these homophily tendencies. The authors (O’Brien et al., 2019) use traditional machine learning 
algorithms such as Logistic Regression and Decision trees on the local and relational features based on 
the graphical structures, to achieve reasonably good accuracies in estimating credibility.

Learning from the neighborhood of a graph node using deep learning and generalizing the function 
learned to unseen nodes in the graph has many applications. Authors (Ghafari et al., 2019) use and ex-
tend Stanford University’s GraphSAGE (Hamilton et al., 2017), which does exactly this to predict the 
trust between a pair of reviewers on an online review website such as Epinions. The authors use two 
datasets, one of which is from Epinions to do their experiments. This is an improvement over the Web-
of-trust approach for Epinions like websites surveyed earlier (Pendyala, 2019) because it takes context 
into account. Trust is often contextual; an entity can be trusted in certain contexts but not all. As the 
authors (Ghafari et al., 2019) point out, most trust computing frameworks ignore this fact, whereas this 
work (Ghafari et al., 2019) leverages it. The system developed extracts contextual features from user 
demographics and reviews and uses them for the classification of the pairwise trust.

The work discussed above extracts a graphical structure from the social media entities and components 
to predict trustable relationships. Work has also been done the other way around to create a graphical 
framework in which entities are assured of trustable exchanges even in the presence of malicious play-
ers. Using several trust-based parameters and math around them, authors (Urena et al., 2020) create 
a robust framework for reputation-based communication. The authors run simulations to evaluate its 
performance and obtain good results. The Online Social Network (OSN) view of social media brings 
out the need for graph theoretic approaches for analyzing trust and credibility relationships between the 
entities in the social media space. We discussed only a few such approaches in this section, but until the 
problem of distrust is entirely solved, which probably is unlikely, we can expect to see a growth in the 
graph-theoretic-based approaches to address the problem.

Representation Learning

Manual feature engineering is increasingly getting replaced by representation learning. The goal of repre-
sentation learning is to derive (or learn) a representation of the data automatically. The representation is 
usually in the form of an embedding, typically a vector. The embeddings can then be processed like any 
other feature vectors, possibly as the input layer for artificial neural networks. Representation learning 
is particularly effective with natural language and graphs. From the literature survey, we present a case 
study each, for natural language and graphs in the context of misinformation containment. Researchers 
(Borges et al., 2019) have used representation learning for stance detection as described in the “Fake News 
Challenge – 1 (FNC-1)” problem description1. Stance detection determines if two pieces of informa-
tion agree with each other. In the FNC-1 case, the agreement is between the headline and the body of a 
news snippet. Using word embeddings from the pre-trained model, bi-directional RNNs such as LSTM 
and GRU, maxpooling, and attention mechanism, the researchers (Borges et al., 2019) model long news 
articles. Representation learning comes in handy when the data is a large graph. Social network graphs 
are large and evolving. New nodes can get added rapidly. Node embeddings for the new nodes need to 
be computed rapidly as well. Using the entire graph structure in a transductive manner to compute the 
embeddings may not scale well. Researchers (Rath, et al., 2020) therefore used an inductive approach 
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inspired by the GraphSAGE work (Hamilton et al., 2017) to compute embeddings based on the induc-
tive representation learning. The graph models how fake news spreads on microblog sites like Twitter.

Reinforcement Learning

A predominant assumption in most machine learning models is that the data is i.i.d, Independent and 
Identically Distributed. Most of the machine learning solutions presented in the literature for the mis-
information containment problem focus on a dataset from a single domain such as politics (Pendyala 
et al., 2018) or healthcare (Pendyala & Figueira, 2015), the embeddings for which are i.i.d. However, 
misinformation often covers multiple domains. Reinforcement learning can be used for cross-domain 
modeling (Mosallanezhad et al., 2022). Users’ comments, interactions, and information in two disparate 
domains are used to learn a domain-agnostic representation of the information to aid in its classification. 
Reinforcement learning is used to convert the representations in the source domain into a representation 
in the target domain. Reinforcement learning has also been used to increase the availability of labeled 
data (Wang, et al., 2020). Annotating information is an expensive process and requires manual exper-
tise. An automatic annotator assigns the labels based on user reports. This initial labeling is weak and 
not entirely accurate. Reinforcement learning is then used to select the best-labeled instances from the 
weakly labeled data.

Semi-Supervised Learning

Similar to the above reinforcement learning approach to augment the labeled data, researchers (Li, et 
al., 2022) introduced a “confidence network layer” into a bidirectional LSTM to filter out the data that 
is confidently labeled. The neural network is initially trained on a limited labeled dataset in a supervised 
manner. The confidence network layer adds the confidently labeled data to this initial dataset in an itera-
tive manner, quite along the lines of semi-supervised learning. Semi-supervised learning is often used in 
conjunction with graphs. Typically, each data item is a node, and the weighted edges connecting them 
indicate the similarity between the nodes. Labels can then propagate from labeled nodes to unlabeled 
ones. A graphs-based semi-supervised learning approach has also been used for fake news detection 
(Benamira, 2019). A graph is constructed from the GloVe embeddings of the documents. Each node is 
a document. Some of the nodes are already labeled as genuine, some others are labeled fake, and several 
others are unlabeled. The nodes are interconnected based on the k-nearest neighbors algorithm. Graph 
convolution network approach is used to classify the unlabeled nodes.

Transfer Learning

Pretrained language models like BERT, RoBERTa, GPT2, and Funnel generate embeddings that can be 
used subsequently as inputs to Artificial Neural Networks (ANN) or Convolutional Neural Networks 
(CNN) to determine the veracity of a given text (Samadi, Mousavian, & Momtazi, 2021). Capsule net-
works can also be used with word embeddings in the process of transfer learning (Goldani, Momtazi, 
& Safabakhsh, 2021). The datasets used for the problem are well-known and limited in scope. The 
literature survey confirms that there have not been any attempts to generate embeddings exclusively 
from misinformation.
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DETECTING BOTS

Misinformation spread often happens on social media using accounts owned by software. The trend has 
given rise to the growth of companies that even offer Bot-as-a-service (BAAS). During the 2016 US 
Presidential elections, about 20% of the social media discussions on the topic happened using bots (Wu 
et al., 2018). A wide spectrum of various types of machine learning algorithms can be used to detect 
bots. Algorithms vary, but the overall process of classification of the user as a bot or not is somewhat 
similar when the machine learning is supervised. Various features such as the screen name, description, 
and the number of followers are extracted from the user profiles. Parametric, supervised machine learn-
ing algorithms such as logistic regression determine the weights for each of these features from already 
classified data. The algorithms model the classification as a function of the weighted features. The model 
can then be applied to new user data, based on which the user needs to be classified as a bot or human.

Obtaining user profile data that is already classified as belonging to a bot or a human being may 
pose challenges. In the absence of such a training set, unsupervised learning algorithms can be used to 
cluster the data into those belonging to bots and others to real humans. Researchers (Wu et al., 2018) use 
several clustering algorithms on network traffic to detect if a host is infected by bots. Similar techniques 
can be used on social media profiles as well. Hegelich and Janetzko (Hegelich & Janetzko, 2016) apply 
k-means and hierarchical clustering algorithms to the posts made by social bots in Ukraine elections 
to draw interesting conclusions about the behavioral patterns of the social bots. Clustering algorithms 
still work with the features extracted from the data and group the data into clusters based on similarity.

For certain classification problems, deep learning can achieve better classification accuracy, as noted 
in the preceding section on fake profile identification. Authors (Kudugunta & Ferrara, 2018) have proven 
that the problem of classifying accounts as bots or humans can be solved with superlative accuracies using 
deep neural networks, but this time, using a different architecture than CNNs. Using Long Short-Term 
Memory (LSTM) architecture, the authors bring out the advantage of using deep learning techniques 
over conventional machine learning algorithms. The LSTM architecture can be applied even when the 
feature set is small and the size of the dataset is limited, as the authors show. LSTM networks are a type 
of Recurrent Neural network (RNN), which provide for information to persist. RNNs have been exten-
sively used to come up with outstanding solutions to challenging problems.

Generative Adversarial Networks

Machine learning and deep learning particularly have been central to some of the techniques discussed 
earlier. One area of deep learning that requires special mention in the context of trusting social media 
is Generative Adversarial Network or GAN. GAN models have helped create unbelievably realistic 
fake content that includes images and text. The website, ThisPersonDoesNotExist.com displays several 
faces generated using GANs that look amazingly realistic but are completely synthesized. The fake 
facial images created using GAN models are used on social media to create fake accounts to propagate 
malicious agendas. Since the fake content generated by GAN is close to real, it becomes a challenge to 
differentiate the fake ones from the real images. GAN can be used for addressing the problem of trust in 
social media in two ways: (a) to generate a dataset of fake content for training the model used to detect 
new fake content and (b) to detect fake content itself.
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Multiple techniques have been developed to deal with the problem of detecting fakes generated by 
GAN and one of them is using part of GAN itself. A GAN has two parts – a generator and a discriminator, 
both implemented as neural networks, typically convolutional or recurrent. The generator creates fake 
content and the discriminator keeps rejecting it until it is convinced that the content from the generator 
is real. The function of the discriminator is really to reject fake content. Hence, GAN discriminators can 
potentially be used to detect fake content (Marra et al., 2018). The authors use the same GAN discrimina-
tor that was used in the process of generating fake images to train various other models described in the 
paper, as a baseline algorithm to detect fake content. To make sure that the discriminator is not biased 
because it has already gone through the training samples, the discriminator needs to be retrained. The 
work uses several other models as well and compares the results with those obtained by using the GAN 
discriminator.

Given that majority of the social media is still in text format, a major development in detecting mis-
leading content is to apply the powerful GAN models to text data (Aghakhani et al., 2018). Here too, 
the discriminator part of the GAN does the job of determining fake content, this time, textual reviews 
on TripAdvisor with an accuracy of 89.1%. Since Convolutional Neural Network (CNN) works better 
with text, the discriminator is implemented as a CNN. The authors use two discriminators, both CNN, 
instead of just one that the GAN model originally proposed. Based on the experiments and results ob-
tained from them, they confirm that using two discriminators works better in this case of textual reviews.

Interpretable models, which can explain the classification done by the model are the need of the hour. 
Explanations provide transparency and better confidence in the model. Authors (Carton et al., 2018) 
use the GAN philosophy to develop “Extractive Adversarial Networks” to go a step further, beyond text 
classification, to provide explanations for the classification decisions. Their work detects comments on 
social media that are personal attacks and points out the words in those comments that are the reason 
the model classified the comment as a personal attack. The key difference between their model from the 
original GAN is that their model extracts a modified sample from an existing sample instead of generat-
ing one, as done in GAN. The generation function is thus replaced by extraction, hence the name they 
chose for the model.

MISINFORMATION CONTAINMENT IS STILL UNSOLVED: WHY?

As the previous sections indicate, substantial research and success have been reported in the literature 
so far. However, there is no ambiguity in stating that the problem is largely unsolved. To understand the 
reasons, there is a need to understand the nature of misinformation. Unlike spam, which can be detected 
based on the occurrence of certain word patterns, misinformation is highly complex. It is hugely a chal-
lenge even for human beings to detect misinformation. For instance, it can take years for the truth to be 
established in a court of law. The following paragraphs discuss a few points to consider when designing 
solutions to misinformation containment.

Truth is Temporal, Subjective, and Relative

There were times when the truth about the earth was that it is flat, people who believe that the truth is 
that God does not exist, and objects that are small only when compared to other relatively large objects. 
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On the other hand, machine learning models used in the current literature are fixed and cannot handle 
the dynamic variations in subjectivity or relativity.

Determining Truth can Require a huge Corpus of Prior Knowledge

Often, the truth can be determined only after cross-checking against a huge corpus of facts, evidence, 
and reasoning. Machine learning models are incapable of such cross-checking as compared to First-
Order-Logic (FOL) and other formal methods that have the implements to reason and inference from 
prior statements.

Truth can evade Feature Engineering

The same source of information with their features intact can produce conflicting statements. For in-
stance, there are several cases where a user on Twitter posted conflicting tweets. Merely extracting the 
features, whether manually engineered or automatically generated by the hidden layers via deep learn-
ing are unlikely to flag the misinformation. The feature set used in a substantial part of the literature is 
limited to temporal or contextual or content-based, whereas the need is for much more comprehensive 
and exhaustive information.

Ingenuity in Camouflaging Misinformation

Misinformation is often seamlessly interwoven with truth in ingenious ways. Even the intent and purport 
can sound genuine. Latent space mapping and self-supervised learning approaches can help only to some 
extent but are not always accurate or exhaustive.

Limitations of the Machine Learning Models

RNNs, CNNs, and other language models that are often used for Natural Language Understanding (NLU) 
in the process of misinformation detection cannot capture long-term dependencies in large texts. Even 
the latest transformer-based models like BERT are only good for 512 tokens in the text and efforts were 
made to increase it to 2048 tokens (Yang, et. al., 2020).

There is no Silver Bullet

Misinformation containment is not a single problem to have a single do-it-all solution. Misinformation 
is manifested in many modalities and forms. Each manifestation needs to be addressed in one or more 
ways. The current approaches address the problem by experimenting with a sample dataset, which is 
usually identically distributed, report the results from the same dataset and portray general success based 
on those results. On the other hand, misinformation is far from being identically distributed.
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FUTURE RESEARCH DIRECTIONS

Despite its limitations and extensive use, it does not appear that machine learning has been fully used in 
addressing the misinformation containment problem. For instance, unsupervised and semi-supervised 
techniques do not seem to have been used in areas they can be used, such as pointed out in the subsection 
on “Detecting Bots”. Given that most of the available data in the social media space cannot easily be 
classified with certainty into bot-generated or genuinely generated by humans, unsupervised and semi-
supervised methods should show substantial promise. State-of-the-art deep learning frameworks in general 
are computationally expensive and require humongous data. Once trained, the essential parameters are 
fixed, so newer patterns are not modeled if the data is still evolving. Static feature extraction for subsequent 
classification using parametric methods does not model the evolving nature of misinformation either. On 
the other hand, Misinformation Containment (MC) needs to be continuous, instantaneous, evolve with 
the changing patterns in the data, and use fewer resources so that users can deploy the models on edge 
devices such as smartphones. Future research needs to address these characteristics.

The research needs to focus on both applications of the existing machine learning frameworks and 
changing the underlying methodologies to suit the needs of misinformation containment. Graph theoretic 
approaches hold substantial promise because they can capture dependencies in a long sequence substan-
tially well and can serve as the long-term memory that RNNs fail to provide. Inductive approaches to 
compute embeddings such as GraphSAGE (Hamilton et al., 2017) can scale well. The problem indeed 
needs to be solved in multiple stages as pointed out in the Fake News Challenge -1 (FNC-1)1 problem 
description.

CONCLUSION

Misinformation containment is a complex problem. The problem has been addressed using several 
techniques, algorithms, and frameworks available in machine learning, but the problem remains un-
solved. Similar problems such as spam, viruses, cyberattacks, and other malicious implements are in 
reasonable control, but not misinformation, which is a reflection of the complexity of the problem. This 
chapter presented a brief survey of the trends in misinformation containment using machine learning 
and explained why the current approaches have not been effective. Future research directions should 
go beyond the traditional dataset collection, train, validate, and test cycle, and use frameworks that can 
model the characteristics of misinformation better.
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