5 research outputs found

    Parallel Local Search for the Costas Array Problem

    Get PDF
    The Costas Array Problem is a highly combina- torial problem linked to radar applications. We present in this paper its detailed modeling and solving by Adaptive Search, a constraint-based local search method. Experiments have been done on both sequential and parallel hardware up to several hundreds of cores. Performance evaluation of the sequential version shows results outperforming previous implementations, while the parallel version shows nearly linear speedups up to 8,192 cores

    Large-Scale Parallelism for Constraint-Based Local Search: The Costas Array Case Study

    Get PDF
    Abstract We present the parallel implementation of a constraint-based Local Search algorithm and investigate its performance on several hardware platforms with several hundreds or thousands of cores. We chose as the basis for these experiments the Adaptive Search method, an efficient sequential Local Search method for Constraint Satisfaction Problems (CSP). After preliminary experiments on some CSPLib benchmarks, we detail the modeling and solving of a hard combinatorial problem related to radar and sonar applications: the Costas Array Problem. Performance evaluation on some classical CSP benchmarks shows that speedups are very good for a few tens of cores, and good up to a few hundreds of cores. However for a hard combinatorial search problem such as the Costas Array Problem, performance evaluation of the sequential version shows results outperforming previous Local Search implementations, while the parallel version shows nearly linear speedups up to 8,192 cores. The proposed parallel scheme is simple and based on independent multi-walks with no communication between processes during search. We also investigated a cooperative multi-walk scheme where processes share simple information, but this scheme does not seem to improve performance

    A review of literature on parallel constraint solving

    Get PDF
    As multicore computing is now standard, it seems irresponsible for constraints researchers to ignore the implications of it. Researchers need to address a number of issues to exploit parallelism, such as: investigating which constraint algorithms are amenable to parallelisation; whether to use shared memory or distributed computation; whether to use static or dynamic decomposition; and how to best exploit portfolios and cooperating search. We review the literature, and see that we can sometimes do quite well, some of the time, on some instances, but we are far from a general solution. Yet there seems to be little overall guidance that can be given on how best to exploit multicore computers to speed up constraint solving. We hope at least that this survey will provide useful pointers to future researchers wishing to correct this situation

    Experiments in Parallel Constraint-Based Local Search

    Get PDF
    International audienceWe present a parallel implementation of a constraint-based local search algorithm and investigate its performance results on hardware with several hundreds of processors. We choose as basic constraint solving algorithm for these experiments the "adaptive search" method, an efficient sequential local search method for Constraint Satisfaction Problems. The implemented algorithm is a parallel version of adaptive search in a multiple independent-walk manner, that is, each process is an independent search engine and there is no communication between the simultaneous computations. Preliminary performance evaluation on a variety of classical CSPs benchmarks shows that speedups are very good for a few tens of processors, and good up to a few hundreds of processors
    corecore