1,804 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Appropriate Design of Parallel Manipulators

    Get PDF
    International audienceAlthough parallel structures have found a niche market in many applications such as machine tools, telescope positioning or food packaging, they are not as successful as expected. The main reason of this relative lack of success is that the study and hardware of parallel structures have clearly not reached the same level of completeness than the one of serial structures. Among the main issues that have to be addressed, the design problem is crucial. Indeed, the performances that can be expected from a parallel robot are heavily dependent upon the choice of the mechanical structure and even more from its dimensioning. In this chapter, we show that classical design methodologies are not appropriate for such closed-loop mechanism and examine what alternatives are possible

    Dexterity, workspace and performance analysis of the conceptual design of a novel three-legged, redundant, lightweight, compliant, serial-parallel robot

    Get PDF
    In this article, the mechanical design and analysis of a novel three-legged, agile robot with passively compliant 4-degrees-of-freedom legs, comprising a hybrid topology of serial, planar and spherical parallel structures, is presented. The design aims to combine the established principle of the Spring Loaded Inverted Pendulum model for energy efficient locomotion with the accuracy and strength of parallel mechanisms for manipulation tasks. The study involves several kinematics and Jacobian based analyses that specifically evaluate the application of a non-overconstrained spherical parallel manipulator as a robot hip joint, decoupling impact forces and actuation torques, suitable for the requirements of legged locomotion. The dexterity is investigated with respect to joint limits and workspace boundary contours, showing that the mechanism stays well conditioned and allows for a sufficient range of motion. Based on the functional redundancy of the constrained serial-parallel architecture it is furthermore revealed that the robot allows for the exploitation of optimal leg postures, resulting in the possible optimization of actuator load distribution and accuracy improvements. Consequently, the workspace of the robot torso as additional end-effector is investigated for the possible application of object manipulation tasks. Results reveal the existence of a sufficient volume applicable for spatial motion of the torso in the statically stable tripodal posture. In addition, a critical load estimation is derived, which yields a posture dependent performance index that evaluates the risks of overload situations for the individual actuators

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Incorporation of the influences of kinematics parameters and joints tilting for the calibration of serial robotic manipulators

    Get PDF
    Serial robotic manipulators are calibrated to improve and restore their accuracy and repeatability. Kinematics parameters calibration of a robot reduces difference between the model of a robot in the controller and its actual mechanism to improve accuracy. Kinematics parameter’s error identification in the standard kinematics calibration has been configuration independent which does not consider the influence of kinematics parameter on robot tool pose accuracy for a given configuration. This research analyses the configuration dependent influences of kinematics parameters error on pose accuracy of a robot. Based on the effect of kinematics parameters, errors in the kinematics parameters are identified. Another issue is that current kinematics calibration models do not incorporate the joints tilting as a result of joint clearance, backlash, and flexibility, which is critical to the accuracy of serial robotic manipulators, and therefore compromises a pose accuracy. To address this issue which has not been carefully considered in the literature, this research suggested an approach to model configuration dependent joint tilting and presents a novel approach to encapsulate them in the calibration of serial robotic manipulators. The joint tilting along with the kinematics errors are identified and compensated in the kinematics model of the robot. Both conventional and proposed calibration approach are tested experimentally, and the calibration results are investigated to demonstrate the effectiveness of this research. Finally, the improvement in the trajectory tracking accuracy of the robot has been validated with the help of proposed low-cost measurement set-up.Thesis (M.Phil.) (Research by Publication) -- University of Adelaide, School of Mechanical Engineering , 201
    • …
    corecore