22,354 research outputs found

    Nearfield Acoustic Holography using sparsity and compressive sampling principles

    Get PDF
    Regularization of the inverse problem is a complex issue when using Near-field Acoustic Holography (NAH) techniques to identify the vibrating sources. This paper shows that, for convex homogeneous plates with arbitrary boundary conditions, new regularization schemes can be developed, based on the sparsity of the normal velocity of the plate in a well-designed basis, i.e. the possibility to approximate it as a weighted sum of few elementary basis functions. In particular, these new techniques can handle discontinuities of the velocity field at the boundaries, which can be problematic with standard techniques. This comes at the cost of a higher computational complexity to solve the associated optimization problem, though it remains easily tractable with out-of-the-box software. Furthermore, this sparsity framework allows us to take advantage of the concept of Compressive Sampling: under some conditions on the sampling process (here, the design of a random array, which can be numerically and experimentally validated), it is possible to reconstruct the sparse signals with significantly less measurements (i.e., microphones) than classically required. After introducing the different concepts, this paper presents numerical and experimental results of NAH with two plate geometries, and compares the advantages and limitations of these sparsity-based techniques over standard Tikhonov regularization.Comment: Journal of the Acoustical Society of America (2012

    Eigenspace-Based Minimum Variance Combined with Delay Multiply and Sum Beamformer: Application to Linear-Array Photoacoustic Imaging

    Full text link
    In Photoacoustic imaging, Delay-and-Sum (DAS) algorithm is the most commonly used beamformer. However, it leads to a low resolution and high level of sidelobes. Delay-Multiply-and-Sum (DMAS) was introduced to provide lower sidelobes compared to DAS. In this paper, to improve the resolution and sidelobes of DMAS, a novel beamformer is introduced using Eigenspace-Based Minimum Variance (EIBMV) method combined with DMAS, namely EIBMV-DMAS. It is shown that expanding the DMAS algebra leads to several terms which can be interpreted as DAS. Using the EIBMV adaptive beamforming instead of the existing DAS (inside the DMAS algebra expansion) is proposed to improve the image quality. EIBMV-DMAS is evaluated numerically and experimentally. It is shown that EIBMV-DMAS outperforms DAS, DMAS and EIBMV in terms of resolution and sidelobes. In particular, at the depth of 11 mm of the experimental images, EIBMV-DMAS results in about 113 dB and 50 dB sidelobe reduction, compared to DMAS and EIBMV, respectively. At the depth of 7 mm, for the experimental images, the quantitative results indicate that EIBMV-DMAS leads to improvement in Signal-to-Noise Ratio (SNR) of about 75% and 34%, compared to DMAS and EIBMV, respectively.Comment: arXiv admin note: substantial text overlap with arXiv:1709.0796

    Coarse-Graining Auto-Encoders for Molecular Dynamics

    Full text link
    Molecular dynamics simulations provide theoretical insight into the microscopic behavior of materials in condensed phase and, as a predictive tool, enable computational design of new compounds. However, because of the large temporal and spatial scales involved in thermodynamic and kinetic phenomena in materials, atomistic simulations are often computationally unfeasible. Coarse-graining methods allow simulating larger systems, by reducing the dimensionality of the simulation, and propagating longer timesteps, by averaging out fast motions. Coarse-graining involves two coupled learning problems; defining the mapping from an all-atom to a reduced representation, and the parametrization of a Hamiltonian over coarse-grained coordinates. Multiple statistical mechanics approaches have addressed the latter, but the former is generally a hand-tuned process based on chemical intuition. Here we present Autograin, an optimization framework based on auto-encoders to learn both tasks simultaneously. Autograin is trained to learn the optimal mapping between all-atom and reduced representation, using the reconstruction loss to facilitate the learning of coarse-grained variables. In addition, a force-matching method is applied to variationally determine the coarse-grained potential energy function. This procedure is tested on a number of model systems including single-molecule and bulk-phase periodic simulations.Comment: 8 pages, 6 figure

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival
    • …
    corecore