60,430 research outputs found

    Effects of glaucoma and snoring on cerebral oxygenation in the visual cortex: a study using functional Near Infrared Spectroscopy (fNIRS)

    Get PDF
    Purpose: The purpose of this study was to investigate the effects of snoring and glaucoma on the visual Haemodynamic Response (HDR) using functional Near Infrared Spectroscopy (fNIRS). Methods: We recruited 8 glaucoma patients (aged 56-79), 6 habitual snorers (aged 26-61) and 10 healthy control participants (aged 21-78). Glaucoma patients were of varying subtypes and under care of ophthalmologists. Prior to testing visual acuity, blood pressure, heart rate and a medical history were taken. HDRs were recorded over the primary visual cortex (V1) using a reversing checkerboard paradigm. Results & Discussion: All participants showed the characteristic increase of Oxyhaemoglobin concentration ([HbO]) and decrease of Deoxyhaemoglobin concentration ([HbR]) during visual stimulation (p < 0.001, η2 = 0.78). Despite this, there were signifi cant group differences with a large effect size (η2 = 0.28). During visual stimulation normal participants had greater [HbO] compared to snorers and glaucoma patients (p < 0.01). Both glaucoma patients and snorers presented with comparable HDR for [HbO] and [HbR] in V1. Importantly, during visual stimulation, the increased [HbO] in glaucoma patients correlated well with their visual fi elds and self-reported activities of daily living (r = -0.98, r = -0.82, p < 0.05). Both glaucoma patients and snorers presented with an attenuated HDR in V1. Our results suggest a possible vascular link between these conditions

    Effects Of 4-thiazolidinone Derivatives Les-2658 And Les-1205 On Sleep - Wakefulness Cycle In Kindled Rats

    Get PDF
    The research is dedicated to in-depth study of neurotrophic and antiepileptic properties of original potential anticonvulsant agents from 4-thiazolidinones – LES-2658 (5-(3-nitro-benzylidene)-2-(thiazol-2-ylimino)-thiazolidin-4-one) and LES-1205 ([2,4-dioxo-5-(thiazol-2-ylcarbamoylmethyl)-thiazolidin-3-yl]-acetic acid ethyl ester), synthesized at the Department of Pharmaceutical, Organic and Bioorganic Chemistry of Danylo Halytsky Lviv National Medical University, Ukraine. Studying of sleep - wakefulness cycle characteristics in animals with chronic epileptic syndrome in conditions of 4-thiazolidinones derivatives LES-2658 and LES-1205 use was performed. The kindling syndrome was induced in Wistar rats via daily pentylenetetrazol (PTZ) (30 mg/kg, i.p.) administrations during three weeks and sleep - wakefulness cycle was studied under conditions of LES-2658 and LES-1205 administrations at doses 25.0and 100.0 mg/kg i.p.. Total wakefulness, non - rapid eye movement sleep, rapid eye movement sleep, falling asleep latency, REM - onset latency and also number of REM sleep episodes have been determined by behavioral characteristics of experimental animals. It was established that 4-thiazolidinone derivatives Les-1205 and Les-2658 reduce REM sleep fragmentation and increase its duration in PTZ-kindled rats. Les-1205 compound at dose 100.0 mg/kg show a clear correcting influence on kindling - induced sleep disturbances

    Deleterious effect of suboptimal diet on rest-activity cycle in Anastrepha ludens manifests itself with age.

    Get PDF
    Activity patterns and sleep-wake cycles are among the physiological processes that change most prominently as animals age, and are often good indicators of healthspan. In this study, we used the video-based high-resolution behavioral monitoring system (BMS) to monitor the daily activity cycle of tephritid fruit flies Anastrepha ludens over their lifetime. Surprisingly, there was no dramatic change in activity profile with respect to age if flies were consistently fed with a nutritionally balanced diet. However, if flies were fed with sugar-only diet, their activity profile decreased in amplitude at old age, suggesting that suboptimal diet affected activity patterns, and its detrimental effect may not manifest itself until the animal ages. Moreover, by simulating different modes of behavior monitoring with a range of resolution and comparing the resulting conclusions, we confirmed the superior performance of video-based monitoring using high-resolution BMS in accurately representing activity patterns in an insect model

    Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy.

    Get PDF
    OBJECTIVE: Differentiating pathologic and physiologic high-frequency oscillations (HFOs) is challenging. In patients with focal epilepsy, HFOs occur during the transitional periods between the up and down state of slow waves. The preferred phase angles of this form of phase-event amplitude coupling are bimodally distributed, and the ripples (80-150 Hz) that occur during the up-down transition more often occur in the seizure-onset zone (SOZ). We investigated if bimodal ripple coupling was also evident for faster sleep oscillations, and could identify the SOZ. METHODS: Using an automated ripple detector, we identified ripple events in 40-60 min intracranial electroencephalography (iEEG) recordings from 23 patients with medically refractory mesial temporal lobe or neocortical epilepsy. The detector quantified epochs of sleep oscillations and computed instantaneous phase. We utilized a ripple phasor transform, ripple-triggered averaging, and circular statistics to investigate phase event-amplitude coupling. RESULTS: We found that at some individual recording sites, ripple event amplitude was coupled with the sleep oscillatory phase and the preferred phase angles exhibited two distinct clusters (p \u3c 0.05). The distribution of the pooled mean preferred phase angle, defined by combining the means from each cluster at each individual recording site, also exhibited two distinct clusters (p \u3c 0.05). Based on the range of preferred phase angles defined by these two clusters, we partitioned each ripple event at each recording site into two groups: depth iEEG peak-trough and trough-peak. The mean ripple rates of the two groups in the SOZ and non-SOZ (NSOZ) were compared. We found that in the frontal (spindle, p = 0.009; theta, p = 0.006, slow, p = 0.004) and parietal lobe (theta, p = 0.007, delta, p = 0.002, slow, p = 0.001) the SOZ incidence rate for the ripples occurring during the trough-peak transition was significantly increased. SIGNIFICANCE: Phase-event amplitude coupling between ripples and sleep oscillations may be useful to distinguish pathologic and physiologic events in patients with frontal and parietal SOZ

    Estimating Carotid Pulse and Breathing Rate from Near-infrared Video of the Neck

    Full text link
    Objective: Non-contact physiological measurement is a growing research area that allows capturing vital signs such as heart rate (HR) and breathing rate (BR) comfortably and unobtrusively with remote devices. However, most of the approaches work only in bright environments in which subtle photoplethysmographic and ballistocardiographic signals can be easily analyzed and/or require expensive and custom hardware to perform the measurements. Approach: This work introduces a low-cost method to measure subtle motions associated with the carotid pulse and breathing movement from the neck using near-infrared (NIR) video imaging. A skin reflection model of the neck was established to provide a theoretical foundation for the method. In particular, the method relies on template matching for neck detection, Principal Component Analysis for feature extraction, and Hidden Markov Models for data smoothing. Main Results: We compared the estimated HR and BR measures with ones provided by an FDA-cleared device in a 12-participant laboratory study: the estimates achieved a mean absolute error of 0.36 beats per minute and 0.24 breaths per minute under both bright and dark lighting. Significance: This work advances the possibilities of non-contact physiological measurement in real-life conditions in which environmental illumination is limited and in which the face of the person is not readily available or needs to be protected. Due to the increasing availability of NIR imaging devices, the described methods are readily scalable.Comment: 21 pages, 15 figure

    Compiler-assisted Adaptive Program Scheduling in big.LITTLE Systems

    Full text link
    Energy-aware architectures provide applications with a mix of low (LITTLE) and high (big) frequency cores. Choosing the best hardware configuration for a program running on such an architecture is difficult, because program parts benefit differently from the same hardware configuration. State-of-the-art techniques to solve this problem adapt the program's execution to dynamic characteristics of the runtime environment, such as energy consumption and throughput. We claim that these purely dynamic techniques can be improved if they are aware of the program's syntactic structure. To support this claim, we show how to use the compiler to partition source code into program phases: regions whose syntactic characteristics lead to similar runtime behavior. We use reinforcement learning to map pairs formed by a program phase and a hardware state to the configuration that best fit this setup. To demonstrate the effectiveness of our ideas, we have implemented the Astro system. Astro uses Q-learning to associate syntactic features of programs with hardware configurations. As a proof of concept, we provide evidence that Astro outperforms GTS, the ARM-based Linux scheduler tailored for heterogeneous architectures, on the parallel benchmarks from Rodinia and Parsec

    The Ouroboros Model

    Get PDF
    At the core of the Ouroboros Model lies a self-referential recursive process with alternating phases of data acquisition and evaluation. Memory entries are organized in schemata. Activation at a time of part of a schema biases the whole structure and, in particular, missing features, thus triggering expectations. An iterative recursive monitor process termed ‘consumption analysis’ is then checking how well such expectations fit with successive activations. A measure for the goodness of fit, “emotion”, provides feedback as (self-) monitoring signal. Contradictions between anticipations based on previous experience and actual current data are highlighted as well as minor gaps and deficits. The basic algorithm can be applied to goal directed movements as well as to abstract rational reasoning when weighing evidence for and against some remote theories. A sketch is provided how the Ouroboros Model can shed light on rather different characteristics of human behavior including learning and meta-learning. Partial implementations proved effective in dedicated safety systems
    corecore