439 research outputs found

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Design and Characterization of a Three-Axis Hall Effect-Based Soft Skin Sensor

    Get PDF
    This research was partially supported by the JSPS Grant-in-Aid for Scientific Research (S) No. 25220005, JSPS Grant-in-Aid for Young Scientists (B) No. 15K21443, NEDO project No. 15657422, Research Institute for Science and Engineering of Waseda University, the Program for Leading Graduate Schools, “Graduate Program for Embodiment Informatics” of the Ministry of Education, Culture, Sports, Science and Technology, and Project LIMOMAN [PIEF-GA-2013-628315]

    Active haptic perception in robots: a review

    Get PDF
    In the past few years a new scenario for robot-based applications has emerged. Service and mobile robots have opened new market niches. Also, new frameworks for shop-floor robot applications have been developed. In all these contexts, robots are requested to perform tasks within open-ended conditions, possibly dynamically varying. These new requirements ask also for a change of paradigm in the design of robots: on-line and safe feedback motion control becomes the core of modern robot systems. Future robots will learn autonomously, interact safely and possess qualities like self-maintenance. Attaining these features would have been relatively easy if a complete model of the environment was available, and if the robot actuators could execute motion commands perfectly relative to this model. Unfortunately, a complete world model is not available and robots have to plan and execute the tasks in the presence of environmental uncertainties which makes sensing an important component of new generation robots. For this reason, today\u2019s new generation robots are equipped with more and more sensing components, and consequently they are ready to actively deal with the high complexity of the real world. Complex sensorimotor tasks such as exploration require coordination between the motor system and the sensory feedback. For robot control purposes, sensory feedback should be adequately organized in terms of relevant features and the associated data representation. In this paper, we propose an overall functional picture linking sensing to action in closed-loop sensorimotor control of robots for touch (hands, fingers). Basic qualities of haptic perception in humans inspire the models and categories comprising the proposed classification. The objective is to provide a reasoned, principled perspective on the connections between different taxonomies used in the Robotics and human haptic literature. The specific case of active exploration is chosen to ground interesting use cases. Two reasons motivate this choice. First, in the literature on haptics, exploration has been treated only to a limited extent compared to grasping and manipulation. Second, exploration involves specific robot behaviors that exploit distributed and heterogeneous sensory data

    Design of a 3D-printed soft robotic hand with distributed tactile sensing for multi-grasp object identification

    Get PDF
    Tactile object identification is essential in environments where vision is occluded or when intrinsic object properties such as weight or stiffness need to be discriminated between. The robotic approach to this task has traditionally been to use rigid-bodied robots equipped with complex control schemes to explore different objects. However, whilst varying degrees of success have been demonstrated, these approaches are limited in their generalisability due to the complexity of the control schemes required to facilitate safe interactions with diverse objects. In this regard, Soft Robotics has garnered increased attention in the past decade due to the ability to exploit Morphological Computation through the agent's body to simplify the task by conforming naturally to the geometry of objects being explored. This exists as a paradigm shift in the design of robots since Soft Robotics seeks to take inspiration from biological solutions and embody adaptability in order to interact with the environment rather than relying on centralised computation. In this thesis, we formulate, simplify, and solve an object identification task using Soft Robotic principles. We design an anthropomorphic hand that has human-like range of motion and compliance in the actuation and sensing. The range of motion is validated through the Feix GRASP taxonomy and the Kapandji Thumb Opposition test. The hand is monolithically fabricated using multi-material 3D printing to enable the exploitation of different material properties within the same body and limit variability between samples. The hand's compliance facilitates adaptable grasping of a wide range of objects and features integrated distributed tactile sensing. We emulate the human approach of integrating information from multiple contacts and grasps of objects to discriminate between them. Two bespoke neural networks are designed to extract patterns from both the tactile data and the relationships between grasps to facilitate high classification accuracy

    On neuromechanical approaches for the study of biological and robotic grasp and manipulation

    Get PDF
    abstract: Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.The electronic version of this article is the complete one and can be found online at: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0305-

    Intelligent Haptic Perception for Physical Robot Interaction

    Get PDF
    Doctorado en Ingeniería mecatrónica. Fecha de entrega de la Tesis doctoral: 8 de enero de 2020. Fecha de lectura de Tesis doctoral: 30 de marzo 2020.The dream of having robots living among us is coming true thanks to the recent advances in Artificial Intelligence (AI). The gap that still exists between that dream and reality will be filled by scientific research, but manifold challenges are yet to be addressed. Handling the complexity and uncertainty of real-world scenarios is still the major challenge in robotics nowadays. In this respect, novel AI methods are giving the robots the capability to learn from experience and therefore to cope with real-life situations. Moreover, we live in a physical world in which physical interactions are both vital and natural. Thus, those robots that are being developed to live among humans must perform tasks that require physical interactions. Haptic perception, conceived as the idea of feeling and processing tactile and kinesthetic sensations, is essential for making this physical interaction possible. This research is inspired by the dream of having robots among us, and therefore, addresses the challenge of developing robots with haptic perception capabilities that can operate in real-world scenarios. This PhD thesis tackles the problems related to physical robot interaction by employing machine learning techniques. Three AI solutions are proposed for different physical robot interaction challenges: i) Grasping and manipulation of humans’ limbs; ii) Tactile object recognition; iii) Control of Variable-Stiffness-Link (VSL) manipulators. The ideas behind this research work have potential robotic applications such as search and rescue, healthcare or rehabilitation. This dissertation consists of a compendium of publications comprising as the main body a compilation of previously published scientific articles. The baseline of this research is composed of a total of five papers published in prestigious peer-reviewed scientific journals and international robotics conferences
    • …
    corecore