3 research outputs found

    Edge inference for UWB ranging error correction using autoencoders

    Get PDF
    Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU

    Experimental researches on an UWB NLOS identification method based on machine learning

    No full text

    Ultra-wideband Based Indoor Localization of Mobile Nodes in ToA and TDoA Configurations

    Get PDF
    Zandian R. Ultra-wideband Based Indoor Localization of Mobile Nodes in ToA and TDoA Configurations. Bielefeld: Universität Bielefeld; 2019.This thesis discusses the utilization of ultra-wideband (UWB) technology in indoor localization scenarios and proposes system setup and evaluates different localization algorithms in order to improve the localization accuracy and stability of such systems in non-ideal conditions of the indoor environment. Recent developments and advances of technology in the areas of ubiquitous Internet, robotics and internet of things (IoT) have resulted in emerging new application areas in daily life in which localization systems are vital. The significant demand for a robust and accurate localization system that is applicable in indoor areas lacking satellites link, can be sensed. The UWB technology offers accurate localization systems with an accuracy of below 10 cm and covering the range of up to a few hundred meters thanks to their dedicated large bandwidth, modulation technique and signal power. In this thesis, the technology behind the UWB systems is discussed in detail. In terms of localization topologies, different scenarios with the focus on time-based methods are introduced. The main focus of this thesis is on the differential time of arrival localization systems (TDoA) with unilateral constellation that is suitable for robotic localization and navigation applications. A new approach for synchronization of TDoA topology is proposed and influence of clock inaccuracies in such systems are thoroughly evaluated. For localization engine, two groups of static and dynamic iterative algorithms are introduced. Among the possible dynamic methods, extended Kalman filter (EKF), H∞ and unscented Kalman filter (UKF) are discussed and meticulously evaluated. In order to tackle the non-line of sight (NLOS) problem of such systems, for detection stage several solutions which are based on parametric machine learning methods are proposed. Furthermore, for mitigation phase two solutions namely adjustment of measurement variance and innovation term are suggested. Practical results prove the efficiency and high reliability of the proposed algorithms with positive NLOS condition detection rate of more than 87%. In practical trials, the localization system is evaluated in indoor and outdoor arenas in both line of sight and non-line of sight conditions. The results show that the proposed detection and mitigation methods can be successfully applied for both small and large-scale arenas with the higher performance of the localization filters in terms of accuracy in large-scale scenarios
    corecore