14,301 research outputs found

    손끝 햅틱 장비를 위한 의사 햅틱의 활용

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2016. 2. 이동준.We propose a novel design of cutaneous fingertip haptic device and approach of integrating pseudo-haptics into our cutaneous haptic device. With 2-DoF cutaneous device, angle-force calibration result is presented for its operation. Then, 3-DoF cutaneous haptic device is designed for more realistic contact feedback in virtual reality (VR). Preliminary result of integrating cutaneous device and hand tracking device for complete wearable haptic interface is also demonstrated. Meanwhile, we explore possible utility of pseudo-haptics for cutaneous fingertip haptic device, whose performance is inherently limited due to the lack of kinesthetic feedback. We experimentally demonstrate that: 1) pseudo-haptics can render virtual stiffness to be more rigid or softer only by modulating visual cueand 2) pseudo-haptics can be used to expand the range of the perceived virtual stiffness to be doubled.Chapter 1 Introduction 1 1.1 Motivation and Objectives 1 1.2 Related Works 3 Chapter 2 Cutaneous Fingertip Haptic Device 6 2.1 2-DoF Cutaneous Haptic Device 6 2.1.1 Design and Specification 6 2.1.2 Angle-Force Calibration 8 2.1.3 Application of 2-DoF Cutaneous Haptic Device 10 2.2 3-DoF Cutaneous Haptic Device 11 2.2.1 Design and Specification 11 2.2.2 Control Design 14 2.2.3 IMU Distortion Offset Calibration 17 2.2.4 Device Validation 20 2.2.5 Integration with Wearable Hand Tracking Interface 21 Chapter 3 Pseudo-Haptics with Cutaneous Haptic Feedback 25 3.1 Limitation of Cutaneous Haptic Device 25 3.2 Application of Pseudo-Haptics Effect 26 Chapter 4 Experimental Study 28 4.1 Experimental Settings 28 4.2 Experiment #1 32 4.3 Experiment #2 34 4.4 Experiment #3 36 4.5 Discussion 38 Chapter 5 Conclusion and Future Work 40 5.1 Conclusion 40 5.2 Future Work 41 Bibliography 42 요약 50Maste

    A teleoperation framework for mobile robots based on shared control

    Get PDF
    Mobile robots can complete a task in cooperation with a human partner. In this paper, a hybrid shared control method for a mobile robot with omnidirectional wheels is proposed. A human partner utilizes a six degrees of freedom haptic device and electromyography (EMG) signals sensor to control the mobile robot. A hybrid shared control approach based on EMG and artificial potential field is exploited to avoid obstacles according to the repulsive force and attractive force and to enhance the human perception of the remote environment based on force feedback of the mobile platform. This shared control method enables the human partner to tele-control the mobile robot’s motion and achieve obstacles avoidance synchronously. Compared with conventional shared control methods, this proposed one provides a force feedback based on muscle activation and drives the human partners to update their control intention with predictability. Experimental results demonstrate the enhanced performance of the mobile robots in comparison with the methods in the literature

    Haptic guidance improves the visuo-manual tracking of trajectories

    Get PDF
    BACKGROUND: Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking ("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories

    Putting the feel in ’look and feel‘

    Get PDF
    Haptic devices are now commercially available and thus touch has become a potentially realistic solution to a variety of interaction design challenges. We report on an investigation of the use of touch as a way of reducing visual overload in the conventional desktop. In a two-phase study, we investigated the use of the PHANToM haptic device as a means of interacting with a conventional graphical user interface. The first experiment compared the effects of four different haptic augmentations on usability in a simple targeting task. The second experiment involved a more ecologically-oriented searching and scrolling task. Results indicated that the haptic effects did not improve users performance in terms of task completion time. However, the number of errors made was significantly reduced. Subjective workload measures showed that participants perceived many aspects of workload as significantly less with haptics. The results are described and the implications for the use of haptics in user interface design are discussed

    Contributing to VRPN with a new server for haptic devices (ext. version)

    Get PDF
    This article is an extended version of the poster paper: Cuevas-Rodriguez, M., Gonzalez-Toledo D., Molina-Tanco, L., Reyes-Lecuona A., 2015, November. “Contributing to VRPN with a new server for haptic devices”. In Proceedings of the ACM symposium on Virtual reality software and technology. ACM.http://dx.doi.org/10.1145/2821592.2821639VRPN is a middleware to access Virtual Reality peripherals. VRPN standard distribution supports Geomagic® (formerly Phantom) haptic devices through the now superseded GHOST library. This paper presents VRPN OpenHaptics Server, a contribution to VRPN library that fully reimplements VRPN support of Geomagic Haptic Devices. The implementation is based on the OpenHaptics v3.0 HLAPI layer, which supports all Geomagic Haptic Devices. We present the architecture of the contributed server, a detailed description of the offered API and an analysis of its performance in a set of example scenarios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Quantifying perception of nonlinear elastic tissue models using multidimensional scaling

    Get PDF
    Simplified soft tissue models used in surgical simulations cannot perfectly reproduce all material behaviors. In particular, many tissues exhibit the Poynting effect, which results in normal forces during shearing of tissue and is only observed in nonlinear elastic material models. In order to investigate and quantify the role of the Poynting effect on material discrimination, we performed a multidimensional scaling (MDS) study. Participants were presented with several pairs of shear and normal forces generated by a haptic device during interaction with virtual soft objects. Participants were asked to rate the similarity between the forces felt. The selection of the material parameters – and thus the magnitude of the shear\ud and normal forces – was based on a pre-study prior to the MDS experiment. It was observed that for nonlinear elastic tissue models exhibiting the Poynting effect, MDS analysis indicated that both shear and normal forces affect user perception

    A haptic-enabled multimodal interface for the planning of hip arthroplasty

    Get PDF
    Multimodal environments help fuse a diverse range of sensory modalities, which is particularly important when integrating the complex data involved in surgical preoperative planning. The authors apply a multimodal interface for preoperative planning of hip arthroplasty with a user interface that integrates immersive stereo displays and haptic modalities. This article overviews this multimodal application framework and discusses the benefits of incorporating the haptic modality in this area
    corecore