6,256 research outputs found

    Context-aware Dynamic Discovery and Configuration of 'Things' in Smart Environments

    Full text link
    The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future Internet. Currently, such Internet-connected objects or `things' outnumber both people and computers connected to the Internet and their population is expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT applications, such `things' must become dynamically integrated into emerging information networks supported by architecturally scalable and economically feasible Internet service delivery models, such as cloud computing. Achieving such integration through discovery and configuration of `things' is a challenging task. Towards this end, we propose a Context-Aware Dynamic Discovery of {Things} (CADDOT) model. We have developed a tool SmartLink, that is capable of discovering sensors deployed in a particular location despite their heterogeneity. SmartLink helps to establish the direct communication between sensor hardware and cloud-based IoT middleware platforms. We address the challenge of heterogeneity using a plug in architecture. Our prototype tool is developed on an Android platform. Further, we employ the Global Sensor Network (GSN) as the IoT middleware for the proof of concept validation. The significance of the proposed solution is validated using a test-bed that comprises 52 Arduino-based Libelium sensors.Comment: Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, 201

    A user perspective of quality of service in m-commerce

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2004 Springer VerlagIn an m-commerce setting, the underlying communication system will have to provide a Quality of Service (QoS) in the presence of two competing factors—network bandwidth and, as the pressure to add value to the business-to-consumer (B2C) shopping experience by integrating multimedia applications grows, increasing data sizes. In this paper, developments in the area of QoS-dependent multimedia perceptual quality are reviewed and are integrated with recent work focusing on QoS for e-commerce. Based on previously identified user perceptual tolerance to varying multimedia QoS, we show that enhancing the m-commerce B2C user experience with multimedia, far from being an idealised scenario, is in fact feasible if perceptual considerations are employed

    Keep Your Nice Friends Close, but Your Rich Friends Closer -- Computation Offloading Using NFC

    Full text link
    The increasing complexity of smartphone applications and services necessitate high battery consumption but the growth of smartphones' battery capacity is not keeping pace with these increasing power demands. To overcome this problem, researchers gave birth to the Mobile Cloud Computing (MCC) research area. In this paper we advance on previous ideas, by proposing and implementing the first known Near Field Communication (NFC)-based computation offloading framework. This research is motivated by the advantages of NFC's short distance communication, with its better security, and its low battery consumption. We design a new NFC communication protocol that overcomes the limitations of the default protocol; removing the need for constant user interaction, the one-way communication restraint, and the limit on low data size transfer. We present experimental results of the energy consumption and the time duration of two computationally intensive representative applications: (i) RSA key generation and encryption, and (ii) gaming/puzzles. We show that when the helper device is more powerful than the device offloading the computations, the execution time of the tasks is reduced. Finally, we show that devices that offload application parts considerably reduce their energy consumption due to the low-power NFC interface and the benefits of offloading.Comment: 9 pages, 4 tables, 13 figure

    MobiHealth-Innovative 2.5/3G mobile services and applications for health care

    Get PDF
    MobiHealth aims at introducing new mobile value added services in the area of healthcare, based on 2.5 (GPRS) and 3G (UMTS) technologies, thus promoting the use and deployment of GPRS and UMTS. This will be achieved by the integration of sensors and actuators to a Wireless Body Area Network (BAN). These sensors and actuators will continuously measure and transmit vital constants along with audio and video to health service providers and brokers, improving on one side the life of patients and allowing on the other side the introduction of new value-added services in the areas of disease prevention and diagnostic, remote assistance, para-health services, physical state monitoring (sports) and even clinical research. Furthermore, the MobiHealth BAN system will support the fast and reliable application of remote assistance in case of accidents by allowing the paramedics to send reliable vital constants data as well as audio and video directly from the accident site

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Enhancing Mobile Data Collection Applications with Sensing Capabilities

    Get PDF
    Over the past years, using smart mobile devices for data collection purposes has become ubiquitous in many application domains, replacing traditional pen-and-paper based data collection approaches. However, in many cases, modern approaches only aim to replicate traditional data collection instruments (e.g., paper-based questionnaires) in a digital from (e.g., smartphone surveys). Thereby, the full potential of smart mobile devices is often not fully exploited. Most modern smart mobile devices comprise a variety of sensing capabilities, which may provide valuable data, and thus insights. In addition, external sensors and devices may be easily connected to become part of the overall data collection process. In order to integrate sensing functionality into existing data collection applications, one has to address each desired sensor manually from within the application, which may cause severe development effort. Alternatively one can fall back on dedicated sensing frameworks to perform sensing operations. However, the latter are often targeted towards one specific mobile platform (e.g., iOS or Android) or lack required functionality, which may also lead to unnecessary development overhead when implementing mobile data collection applications. To cope with these issues, a cross-platform mobile sensing framework that can be used within large-scale mobile data collection scenarios was developed in the context of this thesis. Thereby, an in-depth look at existing mobile sensing frameworks as well as common use case scenarios is taken. Further, requirements derived from the latter are explicitly stated and were taken into consideration in the course of the overall development process. The latter is documented and discussed in detail in the course of this thesis, including the design of a framework architecture, implementation details and the integration of the framework into mobile data collection applications

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact
    • 

    corecore