154 research outputs found

    Electromyography Based Human-Robot Interfaces for the Control of Artificial Hands and Wearable Devices

    Get PDF
    The design of robotic systems is currently facing human-inspired solutions as a road to replicate the human ability and flexibility in performing motor tasks. Especially for control and teleoperation purposes, the human-in-the-loop approach is a key element within the framework know as Human-Robot Interface. This thesis reports the research activity carried out for the design of Human-Robot Interfaces based on the detection of human motion intentions from surface electromyography. The main goal was to investigate intuitive and natural control solutions for the teleoperation of both robotic hands during grasping tasks and wearable devices during elbow assistive applications. The design solutions are based on the human motor control principles and surface electromyography interpretation, which are reviewed with emphasis on the concept of synergies. The electromyography based control strategies for the robotic hand grasping and the wearable device assistance are also reviewed. The contribution of this research for the control of artificial hands rely on the integration of different levels of the motor control synergistic organization, and on the combination of proportional control and machine learning approaches under the guideline of user-centred intuitiveness in the Human-Robot Interface design specifications. From the side of the wearable devices, the control of a novel upper limb assistive device based on the Twisted String Actuation concept is faced. The contribution regards the assistance of the elbow during load lifting tasks, exploring a simplification in the use of the surface electromyography within the design of the Human-Robot Interface. The aim is to work around complex subject-dependent algorithm calibrations required by joint torque estimation methods

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users

    An active back-support exoskeleton to reduce spinal loads: actuation and control strategies

    Get PDF
    Wearable exoskeletons promise to make an impact on many people by substituting or complementing human capabilities. There has been increasing interest in using these devices to reduce the physical loads and the risk of musculoskeletal disorders for industrial workers. The interest is reflected by a rapidly expanding landscape of research prototypes as well as commercially available solutions. The potential of active exoskeletons to reduce the physical loads is considered to be greater compared to passive ones, but their present use and diffusion is still limited. This thesis aims at exploring and addressing two key technological challenges to advance the development of active exoskeletons, namely actuators and control strategies, with focus on their adoption outside laboratory settings and in real-life applications. The research work is specifically applied to a back-support exoskeleton designed to assist repeated manual handling of heavy objects. However, an attempt is made to generalise the findings to a broader range of applications. Actuators are the defining component of active exoskeletons. The greater the required forces and performance, the heavier and more expensive actuators become. The design rationale for a parallel-elastic actuator (PEA) is proposed to make better use of the motor operating range in the target task, characterized by asymmetrical torque requirements (i.e. large static loads). This leads to improved dynamic performance as captured by the proposed simplified model and measures, which are associated to user comfort and are thus considered to promote user acceptance in the workplace. The superior versatility of active exoskeletons lies in their potential to adapt to varying task conditions and to implement different assistive strategies for different tasks. In this respect, an open challenge is represented by the compromise between minimally obtrusive, cost-effective hardware interfaces and extracting meaningful information on user intent resulting in intuitive use. This thesis attempts to exploit the versatility of the active back-support exoskeleton by exploring the implementation of different assistive strategies. The strategies use combinations of user posture and muscular activity to modulate the forces generated by the exoskeleton. The adoption of exoskeletons in the workplace is encouraged first of all by evidence of their physical effectiveness. The thesis thus complements the core contributions with a description of the methods for the biomechanical validation. The preliminary findings are in line with previous literature on comparable devices and encourage further work on the technical development as well as on more accurate and specific validation

    Smart Textile-Driven Soft Spine Exosuit for Lifting Tasks in Industrial Applications

    Full text link
    Work related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user comfort and flexibility. This paper addresses this issue by presenting a smart textile actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user movement and is incredibly lightweight. The SARE can assist the human erector spinae to complete any action with virtually infinite degrees of freedom. To detect the strain on the spine and to control the smart textile automatically, a soft knitting sensor which utilizes fluid pressure as sensing element is used. The new device is validated experimentally with human subjects where it reduces peak electromyography (EMG) signals of lumbar erector spinae by around 32 percent in loaded and around 22 percent in unloaded conditions. Moreover, the integrated EMG decreased by around 24.2 percent under loaded condition and around 23.6 percent under unloaded condition. In summary, the artificial muscle wearable device represents an anatomical solution to reduce the risk of muscle strain, metabolic energy cost and back pain associated with repetitive lifting tasks.Comment: 6 pages, 7 figure
    corecore