3 research outputs found

    Adaptive static scheduling in IEEE 802.15.4 TSCH networks

    Get PDF

    Performance analysis of Routing Protocol for Low power and Lossy Networks (RPL) in large scale networks

    Get PDF
    With growing needs to better understand our environments, the Internet-of-Things (IoT) is gaining importance among information and communication technologies. IoT will enable billions of intelligent devices and networks, such as wireless sensor networks (WSNs), to be connected and integrated with computer networks. In order to support large scale networks, IETF has defined the Routing Protocol for Low power and Lossy Networks (RPL) to facilitate the multi-hop connectivity. In this paper, we provide an in-depth review of current research activities. Specifically, the large scale simulation development and performance evaluation under various objective functions and routing metrics are pioneering works in RPL study. The results are expected to serve as a reference for evaluating the effectiveness of routing solutions in large scale IoT use cases

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects
    corecore