
 Fafoutis, X., Elsts, A., Oikonomou, G., Piechocki, R., & Craddock, I. (2018).
Adaptive static scheduling in IEEE 802.15.4 TSCH networks. In 2018 IEEE
4th World Forum on Internet of Things (WF-IoT) (pp. 263-268). Institute of
Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/WF-
IoT.2018.8355114

Peer reviewed version

Link to published version (if available):
10.1109/WF-IoT.2018.8355114

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8355114/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/141198232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/WF-IoT.2018.8355114
https://doi.org/10.1109/WF-IoT.2018.8355114
https://doi.org/10.1109/WF-IoT.2018.8355114
https://research-information.bris.ac.uk/en/publications/adaptive-static-scheduling-in-ieee-802154-tsch-networks(bfafab3a-7f19-4ac6-80b3-b2090ce85a90).html
https://research-information.bris.ac.uk/en/publications/adaptive-static-scheduling-in-ieee-802154-tsch-networks(bfafab3a-7f19-4ac6-80b3-b2090ce85a90).html

Adaptive Static Scheduling in
IEEE 802.15.4 TSCH Networks

Xenofon Fafoutis, Atis Elsts, George Oikonomou, Robert Piechocki and Ian Craddock
Department of Electrical and Electronic Engineering

University of Bristol, UK
Email: {xenofon.fafoutis, atis.elsts, g.oikonomou, r.j.piechocki, ian.craddock}@bristol.ac.uk

Abstract—TSCH (Time-Slotted Channel Hopping) is a syn-
chronous MAC (Medium Access Control) protocol, introduced
with the recent amendments to the IEEE 802.15.4 standard.
Due to its channel hopping nature, TSCH is a promising
enabling technology for dependable IoT (Internet of Things)
infrastructures that are deployed in environments that are prone
to interference. In TSCH, medium access is orchestrated by a
schedule that is distributed to all the nodes in the network. In
this paper, we propose Adaptive Static Scheduling to improve the
energy efficiency of TSCH networks. Adaptive Static Scheduling
builds on top of static schedules and allows each pair of
communicating nodes to adaptively activate a subset of their
allocated slots, effectively reducing the idle listening overhead
of unused slots. Moreover, the nodes can dynamically activate
more slots when they need to support bursts of high traffic,
without the need of redistributing new schedules. Simulation
results demonstrate that Adaptive Static Scheduling outperforms
static scheduling in dynamic environments, operating nearly as
efficiently as an oracle with knowledge of the optimal schedule.

Index Terms—Time-Slotted Channel Hopping, Scheduling,
IEEE 802.15.4-2015, Internet of Things

I. INTRODUCTION

The recent amendments to the IEEE 802.15.4 standard
introduced TSCH (Time-Slotted Channel Hopping) [1], a syn-
chronous MAC (Medium Access Control) protocol for duty-
cycling low power networks. TSCH has attracted significant
attention from the research community as it promises more
reliable and predictable wireless networking for the Internet
of Things (IoT) [2]. Indeed, TSCH constitutes a promising
enabling technology for dependable IoT infrastructures that are
deployed in interference-prone environments, as it implements
channel hopping at the link layer. Additionally, its time-
slotted nature makes the protocol relatively predictable, in
terms of energy consumption and delay. These characteristics
are generally considered particularly desirable in critical IoT
applications. As a result, TSCH has been implemented for
several IoT operating systems (see e.g., the OpenWSN [3] and
the Contiki OS [4] implementations) and used in several IoT
domains, such as eHealth [5], Smart Grid [6] and Industrial
IoT [7]. In addition, there are standardisation efforts for the
use of IPv6 over TSCH by the 6TiSCH IETF working group
[8]; efforts that can enable the Internet of Everything [9].

TSCH combines elements of TDMA (Time Division Multi-
ple Access) and FDMA (Frequency Division Multiple Access).

978-1-5090-4130-5/16/$31.00 c©2018 IEEE

Indeed, time in TSCH is globally synchronised and divided
in timeslots. Access to the medium is controlled by a global
schedule which allocates slots to particular wireless links. A
TSCH schedule can be visualised as a matrix where each row
corresponds to a channel offset and each column corresponds
to a time offset. For each transmission, the physical channel
is determined pseudo-randomly, combining the channel offset
in the schedule and the ASN (Absolute Slot Number), i.e. a
globally-synchronised counter of the slots that have passed
since the beginning of the TSCH network. The TSCH schedule
is executed within a TSCH frame and is repeated perpetually.
Thus, the duration of the frame is equal to the length of the
TSCH schedule.

In this paper, we focus on increasing the energy efficiency
of TSCH networks that are characterised by dynamic traf-
fic: either because of dynamic traffic generation rates from
the sensor nodes or because of the ever-changing wireless
channel conditions and, thus, the unpredictable number of
retransmissions. The timescale of these changes is often in
the order of seconds or even milliseconds. In such scenarios,
it is impractical to generate and distribute new schedules in
a reactive manner. Instead, static scheduling with proactive
overallocation of TSCH slots is necessary.

The number of allocated TSCH slots in a static TSCH
schedule controls a performance trade-off. On one hand, con-
servative overallocation may lead to packet loss as the capacity
of the TSCH schedule is not sufficient to support bursts of
high traffic. On the other hand, excessive overallocation of
TSCH slots can hinder the energy efficiency of the TSCH
network, since each allocated slot that is not used by the
sender, translates to idle listening overheads for the receiver.

In this paper, we propose Adaptive Static Scheduling to
address this challenge. The proposed scheduling scheme builds
on top of static TSCH schedules with excessive overallocation,
allowing the owners of the timeslots (sender and receiver) to
adapt the number of the allocated slots they wish to use, based
on the level of slot utilisation. Adaptive Static Scheduling is
evaluated using a discrete-time TSCH simulator [10] that is
extended to capture the aforementioned trade-off. The evalu-
ation results demonstrate that (i) Adaptive Static Scheduling
outperforms static scheduling in environments with dynamic
traffic conditions; and (ii) the performance of Adaptive Static
Scheduling is very near to the optimal (yet unreachable)
performance of an oracle schedule.

The remainder of the paper is structured as follows. Sec-
tion II summarises the related work. Section III quantifies the
energy efficiency trade-off of static scheduling. Section IV
elaborates on the details of Adaptive Static Scheduling. Sec-
tion V evaluates the proposed scheme. Lastly, Section VI
concludes the paper.

II. BACKGROUND

A. Related Work

According to the TSCH specification [1], time in a TSCH
network is globally synchronised and divided in timeslots. The
typical duration of a TSCH timeslot is 10 ms. Within a single
active timeslot, transmission or reception of a single packet
along its acknowledgement takes place. Timeslots are grouped
in slotframes; a single slotframe consists of a number of cells,
described by timeslot, channel offset, type (e.g., Tx, Rx, or
idle), and other properties, such as whether the timeslot is
dedicated to a single pair of nodes, or shared. The schedule of
a TSCH network is a collection of one or more periodically
repeating slotframes.

The currently active 6tisch IETF working group [8] is work-
ing on integrating TSCH with the low-power IPv6 (6LoW-
PAN) network stack. The minimal 6tisch schedule [11] pro-
posed by this working group consists of a single slotframe with
a single, shared active slot. The main goals of this schedule are
interoperability, flexibility, and basic fall-back functionality for
the moments when a more complicated schedule is not present.
This minimal schedule is designed to support event-driven
(unpredictable) traffic, and does not require knowledge of the
topology of the network. There are two main weaknesses of the
slotted-Aloha-like behaviour of the 6tisch minimal schedule:
a large number of collisions when the traffic rate is high, and
suboptimal energy usage due to idle listening when it is low.

Duquennoy et al. [12] propose Orchestra, a scheduling
mechanism exploiting the state of RPL routing in 6tisch
networks. A node running the Orchestra schedule allocates
slots for traffic of its single parent node and each of its child
nodes; the slots can be either dedicated or shared. However,
in contrast to this work, Orchestra is not adaptive with regards
to the traffic rate.

Elsts et al. [10] propose a schedule for high rate traffic.
Here, some dedicated slots between each pair of nodes coexist
with shared slots from the nodes to the gateway in the same
slotframe. This schedule adds extra flexibility compared with a
purely dedicated schedule, as nodes with worse links or more
data to send are able to improve their performance by using
the shared slots. However, [10] assumes permanently-on nodes
and does not concern itself with energy efficiency – a challenge
we aim to handle in the present paper.

There are plenty of existing centralized TSCH scheduling
algorithms. For a few examples, Palattella et al. [13] use graph
colouring methods to find the optimal schedule of a TSCH
network. Exarchakos et al. [14] in describe a web service for
adaptive scheduling of TSCH networks based on inter-arrival
time of packets. However, the additional requirement of a
centralised monitoring and control service leads to a significant

increase in implementation and run-time complexity and adds
overhead.

Tinka et al. [15] propose a decentralised, reservation based
scheduling algorithm. Their work is tailored towards highly
dynamic networks with mobile nodes, and their scheduling
scheme spent a lot of resources to discover and maintain the
set of neighbours of a node – a functionality and overhead
not necessary for this work that deals with statically deployed
networks.

B. Motivation

This work is motivated by the SPHERE (a Sensor Platform
for HEalthcare in a Residential Environment) deployment in
100 houses in Bristol, UK [16]. SPHERE is a multi-purpose
sensing platform that is using several sensing modalities to
capture health-related data, including: (i) a low-power en-
vironmental sensor network, which captures light, humidity,
temperature, presence, and noise sensors at a room-level gran-
ularity [17]; and (ii) a network of low-power wearable devices
equipped with accelerometer sensors (one per home resident)
broadcasting multiple packets per second [18]. A TSCH home
network, based on Contiki TSCH [4], is responsible for
relaying the sensor data to a central station for post-processing
and long-term storage.

The TSCH networks of SPHERE rely on static scheduling
with overallocation, because of the fact that they are de-
ployed in very dynamic environments in which the reactive
generation and distribution of TSCH schedules is impractical.
Indeed, residential deployments are very dynamic because of
the unpredictable human factor. For example, (i) the amount
of traffic a TSCH node needs to relay is ever-changing
due to the mobility of wearable sensors; (ii) unpredictable
body shadowing is responsible for dynamic link qualities
and retransmissions; and (iii) electromagnetic interference is
generated by the residents of the house (e.g. laptops, smart
TVs, etc.). The level of slot overallocation in static TSCH
schedules controls a performance trade-off. On one hand,
modest overallocation cannot provide the necessary capacity
for bursts of high traffic, leading to packet loss. On the other
the hand, excessive overallocation introduces idle listening
energy overheads at the receiver. Adaptive Static Scheduling,
proposed in this paper, handles this trade-off, providing a
means of improving the energy efficiency of TSCH networks
that depend on static scheduling, such the TSCH networks of
SPHERE.

III. THE ENERGY EFFICIENCY OF TSCH NETWORKS

A. The TSCH Simulator

To evaluate the energy efficiency of TSCH networks, we
employ and extend the discrete-time event TSCH Simulator1

[10]. This tool simulates star-type TSCH neighbourhoods with
arbitrary TSCH schedules. For each TSCH link, the simulator
supports retransmissions, a configurable queue size, and a
configurable link-layer packet reception probability, denoted

1Available at https://github.com/irc-sphere/tsch-simulator

2 4 6 8 10 12
Active Slots

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

En
er

gy
 p

er
 P

ac
ke

t (
m

J)

Fig. 1. Energy consumed per packet for various numbers of active slots per
sender per frame (r = 4, p = 0.7).

2 4 6 8 10 12
Active Slots

40

50

60

70

80

90

100

PD
R

(%
)

Fig. 2. Packet delivery rate (with retransmissions) for various numbers of
active slots per sender per frame (r = 4, p = 0.7).

as p, that models the effect of channel errors and interference.
The simulator supports both dedicated (contention-free) slots
and shared (contention-based) slots; yet, in this work we use
solely contention-free schedules.

The original simulator evaluates different schedules and
assesses their quality. Indeed, it estimates the end-to-end
Packet Delivery Rate (PDR) via keeping track of the number
of packets that are lost either due to full queues or because
the maximum number of retransmissions is reached. For the
purposes of this work, we extend the simulator with the
capability of estimating the energy consumed for the execution
of the schedule. Focusing on contention-free schedules with
unicast transmissions each slot can be classified in one of the
following three categories:

• Sleeping slot: This slot is specified as unused in the TSCH
schedule. Both the sender and the receiver are sleeping
with the radios turned off.

• TxRx slot: This slot is dedicated for communication
between a sender and a receiver. Hence, the sender wakes

2 4 6 8 10 12
Active Slots

1.1

1.2

1.3

1.4

1.5

1.6

1.7

En
er

gy
 p

er
 R

el
ia

bl
y

De
liv

er
ed

 P
ac

ke
t (

m
J)

Fig. 3. Energy per reliably delivered packet (Equation 5) for various numbers
of active slots per sender per frame (r = 4, p = 0.7).

up with the intention to transmit and the receiver listens
to the channel for incoming transmissions. In addition,
the queue of the sender has at least one frame to transmit
to the sender.

• Idle listening slot: This slot is dedicated for communi-
cation between a sender and a receiver. However, in this
case, the queue of the sender is empty. As a result, the
receiver wastes energy in idle listening.

We have extended the simulator to keep track of the number
of slots that fall in each category during the simulation,
namely Nsleep, Ntxrx and Nidle, respectively. The total energy
consumed during the sleeping slots can be calculated by:

Esleep = Nsleep · (2 ·Qsleep · V) , (1)

where V is the supply voltage of the system, Qsleep is the
electric charge consumed during a sleeping slot (given a supply
voltage V) and the factor 2 corresponds to the sender and the
receiver. Similarly, the total energy consumed during the TxRx
slots can be calculated by:

Etxrx = Ntxrx · (QTxDataRxAck · V +QRxDataTxAck · V) ,
(2)

where QTxDataRxAck is the electric charge consumed by
the sender for transmitting a data packet and receiving an
acknowledgement and QRxDataTxAck is the electric charge
consumed by the receiver respectively. These values also
represent an upper bound for the case of an a unsuccessful data
exchange due to channel errors or interference. For simplicity,
we treat these events similarly to successful transmissions and
count them as part of Ntxrx. Lastly, the total energy consumed
during the idle listening slots can be calculated by:

Eidle = Nidle · (Qsleep · V +Qidle · V) , (3)

where Qidle is the electric charge consumed by the receiver
for idle listening. For the electric charge values we use the
measurements on the GINA mote [19], presented in [20] and

Table I (supply voltage V = 3.3 V). The average energy per
packet is estimated by:

E =
Esleep + Etxrx + Eidle

r · FRAMES
, (4)

where r the traffic rate expressed in packets per frame and
FRAMES is the total number of simulated frames.

TABLE I
MEASURED CHARGE DRAWN FOR EACH TYPE OF SLOT [20]

State Charge (µC)
Qsleep 4.9
QTxDataRxAck 92.6
QRxDataTxAck 96.3
QIdle 47.9

B. The Energy Efficiency Trade-off

Using our TSCH simulator, in this section, we demonstrate
the energy efficiency trade-off of static schedules and define an
performance metric that evaluates jointly both the reliability
and the energy consumption of TSCH networks.

Let us simulate a TSCH neighbourhood which consists of
4 senders and a single receiver node. Let us also assume
that the frame size is 100 slots, the maximum queue size is
equal to 8 packets, the maximum retransmission attempts is
8, each link has a packet reception probability of p = 0.7,
and the traffic rate is constant, r = 4 packets per frame.
Fig. 1 and Fig. 2 plot the average energy consumed per packet
and the reliability (PDR) of the TSCH network respectively,
for various numbers of active slots per sender per frame. In
both graphs, we can clearly observe a trend shift at 6 active
slots, which roughly corresponds to the Expected Transmission
Count (ETX), r/p = 5.71. Reducing the active slots, is
beneficial for the energy consumption as the radios spend more
time in sleeping. Yet, if the schedule has less than 6 active
slots, the capacity of the schedule is not sufficient to relay all
the traffic. On the other hand, if the schedule has more than
6 active slots, energy is wasted in idle listening. To capture
this trade-off we define η as the energy consumed per reliably
delivered packet, similarly to [21]:

η =
E

PDRn
, (5)

where n controls the relative importance of reliability against
energy consumption. The lower the η metric, the more energy-
efficient the TSCH network is. Fig. 3 plots η for the above
scenario (n = 1.2). The simulations demonstrate the fact that
there exists an optimum schedule (in this case, 6 active slots)
that maximises the energy efficiency of the TSCH network.

IV. ADAPTIVE STATIC SCHEDULING

A properly configured static schedule would perform opti-
mally in a static scenario. However, a fixed number of active
slots would perform sub-optimally when either the traffic or
the channel conditions are dynamic. In this paper, we propose
Adaptive Static Scheduling to address this issue.

TABLE II
AN ADAPTIVE STATIC SCHEDULE WITH Sa = 3 AND Sm = 4

A→ B A→ B

A→ B

A→ B

Notes: ‘x → y’ correspond to a contention-free slot allocated to
sender x and receiver y. Gray slots are activated allocated slots,
whereas white slots are inactive allocated slots.

Adaptive Static Scheduling builds on top of static sched-
ules, inheriting their simplicity, robustness and efficiency. The
scheme operates as follows. A static schedule allocates Sm

dedicated (contention-free) slots per frame to a particular pair
of nodes (sender and receiver). Sm should be high enough
to support the worst-case scenario traffic conditions. On top
of this static schedule, the sender and the receiver adaptively
agree on the number of slots that they wish to use, denoted as
Sa ∈ [1, Sm]. In other words, the first Sa slots are activated
and the remaining Sm−Sa of their allocated slots are inactive
(example shown in Table II). The sender maintains a Exponen-
tially Weighted Moving Average (EWMA) of the utilisation
level of the activated slots (u) with coefficient α. Before a
transmission, the sender adapts Sa based on u and a particular
policy, and piggy-backs the updated value in the header of
the packet. Note that this introduces a negligible overhead of
log2(Sm) bits. If the packet transmission is successful, the
sender and the receiver adapt the schedule to reflect the current
Sa value. The process is summarised in Algorithm 1.

Algorithm 1 Adaptive Static Scheduling
u = u0;
for every activated slot in the static schedule do

if QUEUESIZE == 0 then
u = (1− α) · u+ α · 0;

else
u = (1− α) · u+ α · 1;
adapt Sa by executing Algorithm 2;
transmit packet including Sa in the header;
if transmission acknowledged then

apply adaptation Sa;
end

end
end

Algorithm 2 summarises the adaptation policy which is
characterised by a low and high threshold: ul and uh. Note
that we do not decrease the number of activated slots unless

Algorithm 2 Adaptation Policy
input : Sa, u
output: Sa

if u > uh then
Sa = min(Sm, Sa + 1);

end
if u < ul and QUEUESIZE == 1 then

Sa = max(1, Sa − 1);
end

2 4 6 8 10 12
Traffic (packets per frame)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
En

er
gy

 p
er

 R
el

ia
bl

y
De

liv
er

ed
 P

ac
ke

t (
m

J)
Adaptive
Static
Oracle

0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRR

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

En
er

gy
 p

er
 R

el
ia

bl
y

De
liv

er
ed

 P
ac

ke
t (

m
J)

Adaptive
Static
Oracle

Fig. 4. The energy per reliably delivered packet (Equation 5) of Adaptive Static Scheduling compared against a static schedule that favours reliability and
an oracle schedule. Left: depending on traffic rate; right: depending on channel quality.

2 4 6 8 10 12
Traffic (packets per frame)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

En
er

gy
 p

er
 R

el
ia

bl
y

De
liv

er
ed

 P
ac

ke
t (

m
J)

Adaptive
Static
Oracle

0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRR

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

En
er

gy
 p

er
 R

el
ia

bl
y

De
liv

er
ed

 P
ac

ke
t (

m
J)

Adaptive
Static
Oracle

Fig. 5. The energy per reliably delivered packet (Equation 5) of Adaptive Static Scheduling compared against a static schedule that favours energy consumption
and an oracle schedule. Left: depending on traffic rate; right: depending on channel quality.

the queue size is expected to be empty after the transmission
of the current packet, regardless of the slot utilisation level.

It should be noted that Adaptive Static Scheduling is not
applicable on busy TSCH networks that relay very high
traffic. Indeed, in such scenarios TSCH slots are a scarce
resource and it would be inefficient to keep them allocated
when inactive. For those scenarios, the authors recommend
alternative scheduling techniques [10].

V. EVALUATION

We evaluate Adaptive Static Scheduling by comparing it
against a static schedule that favours reliability against energy
consumption (i.e. Sa always equal to Sm), a static schedule
that favours energy consumption against reliability (i.e. Sa

always equal to Sm/2), and an oracle static schedule in which
we brute-force all possible static schedules and select the
best. The simulations are conducted using the TSCH simulator
(see Section III-A) with the configuration parameters listed
in Table III. Each simulation is repeated 100 times and the

average values are reported. All standard deviations are less
than 3% of the reported average values.

TABLE III
SIMULATION PARAMETERS

Parameter Notation Value
Frame Size - 100 slots
Duration of Simulation FRAMES 100 frames
Max. Retransmissions - 8
Max. Queue Size - 8
No. of Sender Nodes - 4
Allocated Slots Sm 12
EWMA coefficient α 0.1
Initial utilisation level u0 0.95
High utilisation threshold uh 0.9
Low utilisation threshold ul 0.8
Energy Efficiency Exponent n 1.2

In the first series of simulations, we consider dynamic
traffic (r) under static channel conditions (p = 0.8). Fig. 4a
plots the energy per reliably delivered packet of the TSCH
network (Eq. 5) under various traffic conditions (r ∈ [1, 12]

packets per frame). In this simulation, the static schedule is
configured to favour reliability against energy consumption.
As a result, the static schedule performs optimally in high
traffic conditions (r > 8). However, in low traffic conditions,
the static schedule is highly inefficient, up to two times
more energy per reliably delivered packet compared to the
oracle. Adaptive Static Scheduling, on the other hand, adapts
to all the traffic conditions, performing near-optimally. The
simulation in Fig. 5a is similar except for the fact that the static
schedule is configured to favour energy consumption instead
of reliability. It can be observed that static schedule operates
optimally only when the traffic conditions match it (r = 5),
similarly to Fig. 3. However, it is inefficient otherwise. Again,
the energy efficiency of Adaptive Static Scheduling is very
close to the optimal performance of the oracle.

In the second series of simulations, we consider dynamic
channel conditions (p) under static traffic (r = 6). First, we
consider the static schedule that favours reliability instead of
energy consumption. Fig. 4b plots the energy per reliably
delivered packet of the TSCH network (Eq. 5) under various
link-layer PRRs (p ∈ [0.4, 1.0]). Similarly to the previous
simulations, the static schedule performs optimally in very
bad channel conditions, yet inefficiently in good channel
conditions. The performance of Adaptive Static Scheduling,
on the other hand, converges to a near-optimal configuration.
This trend is also verified in the last simulation, in which the
static schedule now favours energy consumption.

Overall, the simulations demonstrate that Adaptive Static
Scheduling is a robust scheduling solution that achieves near-
optimal performance in a wide variety of dynamic scenarios.

VI. CONCLUSION

This work focuses on TSCH networks that rely on static
scheduling with overallocation, because of the fact that they
are deployed in very dynamic environments in which the
reactive generation and distribution of TSCH schedules is im-
practical. The level of slot overallocation in TSCH schedules,
however, controls a performance trade-off between reliability
and energy consumption. In this paper, we propose Adaptive
Static Scheduling to allow each pair of nodes to adaptively
manage their allocated slots in a fully distributed manner.
Practically, Adaptive Static Scheduling builds on top of static
schedules with excessive slot overallocation; yet, the nodes
can dynamically activate or deactivate their allocated slots,
matching them to the current traffic conditions. The proposed
scheme is compared against static scheduling in a series
of simulations. The results demonstrate that Adaptive Static
Scheduling operates robustly in a wide variety of application-
layer traffic levels and wireless channel conditions, reaching
near-optimal energy efficiency levels.

ACKNOWLEDGMENT

This work was performed under the SPHERE (a Sensor
Platform for HEalthcare in a Residential Environment) IRC
funded by the UK Engineering and Physical Sciences Research
Council (EPSRC), Grant EP/K031910/1.

REFERENCES

[1] “IEEE Standard for Local and metropolitan area networks—Part 15.4,”
IEEE Std 802.15.42015, 2015.

[2] D. Singh, G. Tripathi, and A. J. Jara, “A survey of Internet-of-Things:
Future vision, architecture, challenges and services,” in 2014 IEEE World
Forum on Internet of Things (WF-IoT), March 2014, pp. 287–292.

[3] T. Watteyne, X. Vilajosana, B. Kerkez et al., “OpenWSN: a standards-
based low-power wireless development environment,” Transactions on
Emerging Telecommunications Technologies, vol. 23, no. 5, pp. 480–493,
2012.

[4] S. Duquennoy, A. Elsts, B. A. Nahas, and G. Oikonomou, “TSCH and
6TiSCH for Contiki: Challenges, Design and Evaluation,” in 13th Int.
Conf. on Distributed Comput. in Sensor Syst. (DCOSS), 2017.

[5] A. Elsts, G. Oikonomou, X. Fafoutis, and R. Piechocki, “Internet of
Things for smart homes: Lessons learned from the SPHERE case study,”
in Global Internet of Things Summit (GIoTS), June 2017, pp. 1–6.

[6] A. Paventhan, B. D. Darshini, H. Krishna, N. Pahuja, M. F. Khan, and
A. Jain, “Experimental evaluation of IETF 6TiSCH in the context of
Smart Grid,” in 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), Dec 2015, pp. 530–535.

[7] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, December 2014.

[8] P. Thubert, T. Watteyne, M. R. Palattella, X. Vilajosana, and Q. Wang,
“IETF 6TSCH: Combining IPv6 Connectivity with Industrial Perfor-
mance,” in 2013 Seventh International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing, July 2013, pp. 541–546.

[9] A. J. Jara, L. Ladid, and A. Skarmeta, “The Internet of Everything
through IPv6: An Analysis of Challenges, Solutions and Opportunities,”
Journal of Wireless Mobile Networks, Ubiquitous Computing, and De-
pendable Applications (JoWUA), vol. 4, no. 3, pp. 97–118, 9 2013.

[10] A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, and
I. Craddock, “Scheduling High-Rate Unpredictable Traffic in IEEE
802.15.4 TSCH Networks,” in 13th Int. Conf. on Distributed Comput.
in Sensor Syst. (DCOSS), 2017.

[11] “Minimal 6TiSCH Configuration,” https://tools.ietf.org/html/
draft-ietf-6tisch-minimal.

[12] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2015, pp. 337–350.

[13] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
ieee 802.15.4e networks,” in Proc. IEEE Int. Symp. Personal, Indoor
and Mobile Radio Commun. (PIMRC), 2012, pp. 327–332.

[14] G. Exarchakos, I. Oztelcan, D. Sarakiotis, and A. Liotta, “plexi: Adaptive
re-scheduling web-service of time synchronized low-power wireless
networks,” Journal of Network and Computer Applications, 2016.

[15] A. Tinka, T. Watteyne, and K. Pister, “A decentralized scheduling
algorithm for time synchronized channel hopping,” in Int. Conf. Ad Hoc
Networks (ADHOCNETS), 2010, pp. 201–216.

[16] P. Woznowski, A. Burrows, T. Diethe et al., “SPHERE: A Sensor
Platform for Healthcare in a Residential Environment,” in Designing,
Developing, and Facilitating Smart Cities: Urban Design to IoT Solu-
tions. Springer International Publishing, 2017, pp. 315–333.

[17] X. Fafoutis, A. Elsts, A. Vafeas, G. Oikonomou, and R. Piechocki,
“Demo: SPES-2 – A Sensing Platform for Maintenance-Free Residen-
tial Monitoring,” in Proc. Int. Conf. Embedded Wireless Systems and
Networks (EWSN), 2017, pp. 240–241.

[18] X. Fafoutis, A. Vafeas, B. Janko et al., “Designing Wearable Sensing
Platforms for Healthcare in a Residential Environment,” EAI Endorsed
Trans. Pervasive Health and Technology, vol. 17, no. 12, Sept. 2017.

[19] A. M. Mehta and K. S. J. Pister, “WARPWING: A complete open source
control platform for miniature robots,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct 2010, pp. 5169–5174.

[20] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister, “A Realistic Energy Consumption Model for TSCH Networks,”
IEEE Sensors Journal, vol. 14, no. 2, pp. 482–489, Feb 2014.

[21] G. Z. Papadopoulos, A. Mavromatis, X. Fafoutis, R. Piechocki, T. Try-
fonas, and G. Oikonomou, “Guard Time Optimisation for Energy
Efficiency in IEEE 802.15.4-2015 TSCH Links,” in Proc. 2rd EAI Int.
Conf. on Interoperability in IoT (Inter-IoT), 2016, pp. 56–63.

