7,935 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Behavior quantification as the missing link between fields: Tools for digital psychiatry and their role in the future of neurobiology

    Full text link
    The great behavioral heterogeneity observed between individuals with the same psychiatric disorder and even within one individual over time complicates both clinical practice and biomedical research. However, modern technologies are an exciting opportunity to improve behavioral characterization. Existing psychiatry methods that are qualitative or unscalable, such as patient surveys or clinical interviews, can now be collected at a greater capacity and analyzed to produce new quantitative measures. Furthermore, recent capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometer, open avenues of novel questioning that were previously entirely unrealistic. Their temporally dense nature enables a cohesive study of real-time neural and behavioral signals. To develop comprehensive neurobiological models of psychiatric disease, it will be critical to first develop strong methods for behavioral quantification. There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge -- one that will necessitate new data processing tools, new machine learning techniques, and ultimately a shift in how interdisciplinary work is conducted. In my thesis, I detail research projects that take different perspectives on digital psychiatry, subsequently tying ideas together with a concluding discussion on the future of the field. I also provide software infrastructure where relevant, with extensive documentation. Major contributions include scientific arguments and proof of concept results for daily free-form audio journals as an underappreciated psychiatry research datatype, as well as novel stability theorems and pilot empirical success for a proposed multi-area recurrent neural network architecture.Comment: PhD thesis cop

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria

    Get PDF
    Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases

    International Academic Symposium of Social Science 2022

    Get PDF
    This conference proceedings gathers work and research presented at the International Academic Symposium of Social Science 2022 (IASSC2022) held on July 3, 2022, in Kota Bharu, Kelantan, Malaysia. The conference was jointly organized by the Faculty of Information Management of Universiti Teknologi MARA Kelantan Branch, Malaysia; University of Malaya, Malaysia; Universitas Pembangunan Nasional Veteran Jakarta, Indonesia; Universitas Ngudi Waluyo, Indonesia; Camarines Sur Polytechnic Colleges, Philippines; and UCSI University, Malaysia. Featuring experienced keynote speakers from Malaysia, Australia, and England, this proceeding provides an opportunity for researchers, postgraduate students, and industry practitioners to gain knowledge and understanding of advanced topics concerning digital transformations in the perspective of the social sciences and information systems, focusing on issues, challenges, impacts, and theoretical foundations. This conference proceedings will assist in shaping the future of the academy and industry by compiling state-of-the-art works and future trends in the digital transformation of the social sciences and the field of information systems. It is also considered an interactive platform that enables academicians, practitioners and students from various institutions and industries to collaborate

    Unified System on Chip RESTAPI Service (USOCRS)

    Get PDF
    Abstract. This thesis investigates the development of a Unified System on Chip RESTAPI Service (USOCRS) to enhance the efficiency and effectiveness of SOC verification reporting. The research aims to overcome the challenges associated with the transfer, utilization, and interpretation of SoC verification reports by creating a unified platform that integrates various tools and technologies. The research methodology used in this study follows a design science approach. A thorough literature review was conducted to explore existing approaches and technologies related to SOC verification reporting, automation, data visualization, and API development. The review revealed gaps in the current state of the field, providing a basis for further investigation. Using the insights gained from the literature review, a system design and implementation plan were developed. This plan makes use of cutting-edge technologies such as FASTAPI, SQL and NoSQL databases, Azure Active Directory for authentication, and Cloud services. The Verification Toolbox was employed to validate SoC reports based on the organization’s standards. The system went through manual testing, and user satisfaction was evaluated to ensure its functionality and usability. The results of this study demonstrate the successful design and implementation of the USOCRS, offering SOC engineers a unified and secure platform for uploading, validating, storing, and retrieving verification reports. The USOCRS facilitates seamless communication between users and the API, granting easy access to vital information including successes, failures, and test coverage derived from submitted SoC verification reports. By automating and standardizing the SOC verification reporting process, the USOCRS eliminates manual and repetitive tasks usually done by developers, thereby enhancing productivity, and establishing a robust and reliable framework for report storage and retrieval. Through the integration of diverse tools and technologies, the USOCRS presents a comprehensive solution that adheres to the required specifications of the SOC schema used within the organization. Furthermore, the USOCRS significantly improves the efficiency and effectiveness of SOC verification reporting. It facilitates the submission process, reduces latency through optimized data storage, and enables meaningful extraction and analysis of report data
    • …
    corecore