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Abstract. Cloud computing has become an important driver for IT service pro-

visioning in recent years. It offers additional flexibility to both customers and 

IT service providers, but also comes along with new challenges for providers. 

One of the major challenges for providers is the reduction of energy consump-

tion since today, already more than 50% of operational costs in data centers ac-

count for energy. A possible way to reduce these costs is to efficiently distribute 

load within the data center. Although the effect of load distribution algorithms 

on energy consumption is a topic of recent research, an analysis-framework for 

evaluating arbitrary load distribution algorithms with regard to their effects on 

the energy consumption of cloud data centers is still nonexistent. Therefore, in 

this contribution, a concept of a simulation-based, quantitative analysis-

framework for load distribution algorithms in cloud environments with respect 

to the energy consumption of data centers is developed and evaluated. 

Keywords: cloud computing, load distribution, energy consumption, simulation 

1 Introduction 

The paradigm of IT service-orientation has led to an increase of the usage of IT ser-

vices on the part of private and enterprise consumers. In recent years, this trend has 

been intensified by the advent of cloud computing, which is a concept that allows 

customers to obtain computing resources on-demand. Cloud service providers make 

such a deployment process possible by using virtualization technologies to provide 

customers with exactly the resources they need [1]. Although this paradigm signifi-

cantly improves the flexibility for customers, still new challenges arise for providers 

due to the IT service-orientation: the increasing demand for computational power [2] 

leads to constantly growing data centers since more resources are needed in order to 

satisfy customer demands, especially during peak times. Even though hardware con-

stantly becomes more energy-efficient [3], the energy consumption of data centers 

increased by 56% from 2005 to 2010 [4]. Taking into account that energy prices and 

demand will continue to rise, the energy costs will therefore become the dominant 

factor in the total cost of ownership of data centers [5]. In addition to that, the climate 

change and the trend of sustainable power generation make energy efficiency of data 

centers not only an economic, but also an environmental necessity.  



Since the energy costs for the IT equipment and for cooling account for more than 

50 % of the total operational costs of data centers [6] and due to the characteristics of 

cloud computing, an automatic consolidation of resources can be used in order to 

reduce the energy consumption in cloud data centers. One important method to 

achieve this goal is to find an optimal technique for load distribution in terms of 

scheduling – which means placing and migrating – virtual machines within the cloud 

data center [7, 8]. However, virtualization and rapid elasticity make this task very 

difficult and cause traditional a priori approaches for analyzing load distribution strat-

egies from other distributed systems (such as grid computing) to fail [9, 10]. Testing 

load distribution strategies during the operation of data centers is also not feasible 

since service level agreements may be violated. Hence, there are several methodolo-

gies that can be used to investigate and experiment with large scale systems, such as 

clouds. These methodologies can be in-situ, emulation, benchmarking, simulation or 

mathematical-analytical modeling [10, 11]. In order to investigate clouds, simulation 

is a suitable approach [12] that is widely used since, in contrast to the other method-

ologies, it ensures the repeatability and controllability of experiments [12, 13]. How-

ever, existing simulation approaches often have limitations regarding the possibility to 

test arbitrary load distribution algorithms and to investigate their effects on the energy 

consumption in cloud data centers, confer [14]. Additionally, modeling limitations in 

existing approaches restrict their suitability for energy consumption analysis. For 

instance, several simulators do not consider different energy models for mapping 

component attributes to energy consumption [14]. In order to resolve these deficits, a 

quantitative simulation-based analysis-framework is conceptualized, implemented and 

evaluated in this paper according to the design science research methodology, confer 

e.g. [15]. This contribution should be a first step for understanding the influences and 

effects of load distribution algorithms on the energy consumption of cloud data cen-

ters. The prototypical implementation of the conceptualized framework might be used 

by researchers for designing new energy efficient load distribution algorithms, while 

practitioners could use the prototype as a tool for decision support. 

The remainder of this paper is organized as follows: Section 2 provides insights in-

to related work, discussing existing simulation approaches for analyzing cloud data 

centers. Section 3 presents the conceptual model for the analysis-framework as well 

as its prototypical implementation. In Section 4, the proposed concept is evaluated. 

First, the verification of the implemented prototype is presented as a proof-of-concept. 

Second, an experiment is conducted in order to show the ability of the model to ana-

lyze the effects of different load distribution algorithms in specific scenarios. Section 

5 concludes the contribution by providing a summary, a discussion of the results of 

the paper and an outlook on further research activities. 

2 Related Work 

Since simulation is a suitable approach when investigating large scale systems such as 

clouds [11, 12], several simulators for investigating clouds have been proposed in 

recent years. However, these often have limitations regarding the simulation of energy 



consumption [14] and correspondingly regarding the determination of the effects of 

load distribution algorithms on energy consumption. 

CloudSim is a frequently used toolkit for modeling and simulating cloud compu-

ting environments [9]. It enables users to define the parameters of data centers, such 

as the number of servers and their configuration, the network topology and virtualiza-

tion-concepts. Furthermore, CloudSim enables users to develop algorithms for the 

placement/migration of virtual machines on/between physical hosts and also provides 

functionalities for power modeling. However, a major disadvantage of CloudSim is 

the network component. Although the simulator was evaluated by a proof-of-concept 

with different experiments, the authors of [16] have recently invalidated its network 

model. Furthermore, there is a bug
1
 in the most recent version of CloudSim (version 

3.0.3). This bug causes different network topologies not to lead to different results. 

GreenCloud is a packet-level cloud simulator [17] that has been developed as an 

extension of the network simulator ns-2
2
. In contrast to CloudSim, GreenCloud has 

been explicitly designed for determining the energy consumption of cloud data cen-

ters. Unlike other simulators, it determines the energy consumption not only for serv-

ers, but also for network components. Since GreenCloud is based on the packet-level 

simulator ns-2, it is very accurate regarding network aspects, although this leads to 

high time exposure for simulation and limitations in terms of scalability [16]. Alt-

hough many relevant components of data centers can be modeled, there are some 

shortcomings regarding these modeling capabilities. For example, aspects that are 

highly relevant for cloud computing, such as rapid elasticity, are omitted by Green-

Cloud. Thus, it is questionable if GreenCloud is suitable for investigating cloud envi-

ronments. 

iCanCloud is also a packet-level simulator and is based on OMNET++
3
 in con-

junction with its extension-package INET
4
 [12]. Numerous components of a data cen-

ter can be modeled with iCanCloud. Regarding cloud computing, however, several 

important aspects are excluded. For example, it does neither provide a feature for 

simulating virtual machine scheduling nor for aspects that concern energy consump-

tion. Therefore, iCanCloud is not suitable for determining the energy consumption of 

clouds. 

SimGrid – confer for example [18] – is an open source library that has originally 

been developed for the simulation of grids. Since it has only recently been adapted to 

the simulation of clouds, many aspects that are important for clouds have not been 

covered yet. For example, rapid-elasticity is not considered by SimGrid. 

GDCSim is a simulator that can be used for estimating the energy efficiency and 

thermal properties of data centers and that has been implemented in order to iterative-

ly design green data centers [19]. But since virtualization concepts are not part of the 

simulator, GDCSim is not suitable for investigating clouds. 

                                                           
1  Confer https://code.google.com/p/cloudsim/issues/detail?id=46 (last accessed: 25.07.2014) 
2  For further information, confer http://www.isi.edu/nsnam/ns/ 
3  For further information, confer http://www.omnetpp.org 
4  For further information, confer http://inet.omnetpp.org 

https://code.google.com/p/cloudsim/issues/detail?id=46


MDCSim is a proprietary discrete event simulator that was developed at the Penn-

sylvania State University [20]. A major disadvantage of MDCSim is that all resources 

in the simulator are modeled as an M/M/1 queue. These assume that service request 

arrivals are determined by a Poisson process and that their processing time is expo-

nentially distributed. However, Reiss et al. recently demonstrated that simple statisti-

cal distributions [21] are not suitable for clouds. Therefore, modeling all components 

as an M/M/1 queue is restricting and limits the applicability of MDCSim. 

A weakness that is shared by all simulators is that they do not provide a method for 

implementing arbitrary load distribution algorithms. For example, each of the afore-

mentioned simulators is limited to centralized load distribution algorithms. Decentral-

ized algorithms are omitted by CloudSim, GreenCloud, iCanCloud and SimGrid. For 

GDCSim and MDCSim, no statement can be made regarding this aspect, since the 

possibility of modeling decentralized load distribution algorithms is not mentioned in 

the respective publications. A further weakness that all simulators have in common is 

that many parameters need to be defined prior to a simulation run but should be vary-

ing at runtime. For example, the number of virtual machines needs to be defined in 

every simulator before starting an experiment. Especially in infrastructure as a service 

(IaaS) environments, however, virtual machines can be started at any time and there-

fore the exact number of virtual machines cannot be known beforehand. 

3 Conceptual Model 

After having analyzed related work, it can be stated that none of the considered simu-

lators provides the opportunity to test arbitrary load distribution algorithms with re-

gard to their effects on energy consumption. Therefore, a novel concept that aims to 

address this problem is introduced in the first part of this section. Subsequently, the 

prototype implementation of this concept is described.  

3.1 Component Model 

In order to analyze the effects of load distribution to energy consumption in cloud 

data centers, the components that are relevant for this problem have to be modeled. 

These components include, among other things, the energy consuming components in 

a data center such as network, server and cooling components [22]. A power and en-

ergy model is assigned to each energy consuming component. This model maps the 

current state of a component to its power consumption, so it can be used to compute 

the energy consumption of a component by integrating the respective power con-

sumption over time. A load distribution algorithm is then used to control the migra-

tion of virtual machines between servers. The components of this concept and their 

relations are illustrated as a UML class diagram in Fig. 1 and are explained in detail in 

the following. 

Server. The individual servers provide the resources of a cloud data center. The re-

sources of a server are determined by several entities, such as computing power or 



network adapters. The resources provided by a server are allocated by virtual ma-

chines that are used in order to serve user requests.  

 

 

Fig. 1. High-Level Concept as a UML Class Diagram 

Network. The “Network” components define a structure that connects the single 

servers within a data center. Among simulating the communication between compo-

nents, the network is used to distribute load between servers. In order to define such a 

structure, different network models can be used. According to [16], three different 

types of network models can be distinguished: delay models, flow-level models, and 

packet-level models. Packet-level models are very accurate since they simulate the 

movements of all network packets. However, this level of detail is not needed when 

simulating clouds [16]. In a flow-level model, each communication is simulated as an 

entity which leads to a higher scalability. Delay models simulate network delays be-

tween servers. Such models are not very accurate regarding the results that concern 

network-issues, but very scalable. Besides such models, also network devices and 

different types of network topologies are captured by these components. 

Cooling. Cooling is a crucial task in data centers since cooling systems remove the 

heat generated by the equipment [3]. In order to cool the equipment, some hierarchy 

of loop systems is needed, which brings in a cold medium that is used for heat ex-

change and needs to be cooled afterwards. This can be achieved by different devices, 

confer [3]. Therefore, some type of cooling unit as well as a thermal model is im-

portant in order to simulate cooling processes in data centers. 

Power & Energy Model. Energy and power models can be used in order to estimate 

the consumption of components or of an entire infrastructure [5]. The power model of 

a component depicts the relation between the current state of the component and its 

power consumption. A power-consuming component c can refer to a component of 

the set of servers S, the set of network components N or the set of cooling components 

C. Then, Pc(t) denotes the power consumption of the component c at the time t. Let 

ac(t) be a vector of attributes of the component c at time t. The power model of com-

ponent c, denoted mc, maps the attribute vector of c to Pc according to equation 1. 
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The total energy consumption Ec of a component c over the simulation time T can be 

computed by integrating the power consumption over time (equation 2). 
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Virtual Machine. A virtual machine (VM) is created by a user request and processes 

the workload that is generated by the user. Therefore, a certain amount of resources is 

initially allocated on the server on which the virtual machine is placed. A scaling of 

the allocated resources is conducted with respect to the actual workload of the user. 

Virtual machines can be moved between different physical servers at runtime. 

Load Distribution Algorithm. Load distribution in clouds can either refer to task 

scheduling or to virtual machine scheduling [13]. Task scheduling is used to assign 

tasks to virtual machines while virtual machine scheduling refers to the placement or 

migration of VMs. 

Initially, a virtual machine is placed on a server that fulfills specific criteria that are 

defined by an algorithm. Under certain conditions, a VM may be migrated to another 

server in the data center. Regarding the migration of a VM, an algorithm addresses 

three sub problems [7]: (1) when to migrate VMs, (2) which VMs to migrate, and (3) 

where to migrate VMs. In the course of this contribution, load distribution always 

refers to virtual machine scheduling since VM scheduling can significantly contribute 

to lowering the costs for energy and is furthermore one of the major challenges re-

garding cloud computing [2]. 

3.2 Prototypical Implementation 

In the prototypical implementation, the previously defined high-level components of 

the concept are instantiated as described in the following. The prototype was imple-

mented in Java using the multi-method simulation tool AnyLogic
5
 as a basis. 

 

Server. The components of a server that are instantiated in the prototypical imple-

mentation are CPU, main memory, and disk space, which define the amount of avail-

able resources of a server.  

Network. Since the level of detail provided by packet-level models is not necessary 

for the purpose of this paper and since a flow-level model is only needed when net-

work contention is to be simulated [16], a delay-model is used in this contribution in 

order to implement a feasible model. In this model, all servers of a data center are 

arranged in a graph that represents a grid topology. If a VM is transferred between 

                                                           
5 For further information, confer http://www.anylogic.com 



two servers, all connections between the source server and the destination server de-

fined by a routing algorithm have to process a load according to the allocated VM 

resources which leads to a delay. 

Cooling. A model for cooling is not included in the prototypical implementation of 

the conceptual framework. In general, a computational fluid dynamics (CFD) ap-

proach is used in order to model cooling systems in data centers. Nonetheless, these 

models can be very complex while still showing a root mean square error of up to 

100% [23]. Therefore, and since cooling is not the focus of this contribution, it has 

been excluded from the prototypical implementation. 

Power & Energy Model. For the proof-of-concept developed in this contribution, a 

power model was implemented for servers only – confer equation 3. 
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There are different ways to build the attribute vector ac since servers have multiple 

energy consuming components [3, 24]. Within a server, the CPU is the component 

that consumes the greatest proportion of energy [3, 24] and also has the greatest dy-

namic power range [25] while further studies showed that disk and network compo-

nents almost have a constant consumption [26]. Therefore, the CPU power consump-

tion is used for approximating the server power consumption like for instance also 

done in Google data centers [24]. The power model applied in the prototype builds the 

attribute vector based on the CPU utilization since such models are a common and 

flexible implementation of power models, confer [27]. Since there are different posi-

tions in the scientific discussion how to model the relationship between utilization and 

power consumption (confer e.g. [24, 28]), empirical data from the industry-standard 

benchmark SPECpower_ssj2008
6
 was analyzed. This benchmark was chosen since it 

is an industry standard and therefore provides a lot of data for different types of serv-

ers. 

The results of this analysis indicate that there are linear as well as non-linear rela-

tions between the utilization and the power consumption of servers. There are exam-

ples of linear (HP ProLiant DL385-G6), convex (Fujitsu PRIMERGY TX300 S7) and 

concave (ASUS RS160-E5) functions mapping utilization to power consumption as 

illustrated in Fig. 2. In order to be able to model linear as well as non-linear relations 

of utilization and power, the following power model is proposed (equation 4). 

 ))((f)(),,(m)(m rmaxcc tuPPPu(t),rPPt idleidlemaxidle   (4) 

Pidle denotes the constant amount of power that is consumed even if the server is 

idle. Pmax defines the upper bound of the power consumption when the server is fully 

utilized. u(t) is the CPU usage ratio at a given time t with u [0,1]. fr describes an 

                                                           
6  http://www.spec.org/power_ssj2008/ 



arbitrary function that characterizes the dependency of the CPU’s power consumption 

and its utilization using the shape parameter r. 

 

Fig. 2. Three Empirical Power Models and their Approximations using Equations 4 and 5 

This power model is a generalization of the power model proposed in [24], where the 

authors used fr(u(t)) = 2∙u(t) – u(t)
r
 in order to fit non-linear power profiles. However, 

the power model defined in equation 5 is used in this paper since, in comparison to 

the empirical values, the root mean square error is smaller for the model defined in 

equation 5 than for the model proposed in [24]. 

 rttu )u())((fr   (5) 

Regarding the servers mentioned before, we computed r=1 for the HP ProLiant 

DL385 G6, r=1.5 for the Fujitsu PRIMERGY TX300 S7, and r=0.68 for the ASUS 

RS160-E5 in order to minimize the root mean square error between empirical and 

predicted values. In Fig. 2, the graphs of the computed power models and the 

resp2ective empirical values are illustrated. 

Using the computed power consumption for each simulation time step, the power 

consumption function of the component can be derived by connecting the single val-

ues with a linear spline. Hence, the energy consumption of a component c is defined 

by the mean consumed power Pm over the simulation time T as Ec=Pm ∙ T. 

Virtual Machine. In the prototypical implementation, virtual machines have a plain 

lifecycle which is a simplified version of the lifecycle presented in [29]. The lifecycle 

starts with the creation of a virtual machine on a server that provides enough re-

sources. VMs are created to process user requests arriving in the system according to 

a defined random distribution. Subsequently, the VM will stay active for a randomly 

distributed time until it can be shut down [29]. Between creation and shutdown, a 



scaling may be conducted according to the actual demand of a user, which ensures 

that rapid elasticity and on-demand self-service are, in contrast to the simulators out-

lined in Section 2, supported by the prototype. This time span is also defined by a 

random distribution. Virtual machines can be moved to other servers. During this 

process, a virtual machine exists on the source server as well as on the destination 

server. First, the needed resources are allocated on the target server. Second, the VM 

is copied to the target server. Afterwards, the VM on the source server will be re-

moved. Therefore, this process includes an expensive moment regarding energy con-

sumption since two servers consume energy for the same virtual machine during the 

migration [30]. 

Load Distribution Algorithms. Load distribution can be handled in centralized or 

decentralized manner. In the former, a single load distribution instance on a coordina-

tion server orchestrates in the data center. In the latter, a system-wide choreography 

distributes the load by applying load distribution instances of the load distribution 

algorithm on every server [31]. Both approaches are implemented in the prototype. In 

order to incorporate arbitrary load distribution algorithms, five policies are modeled 

which provide a generic interface for implementing arbitrary load distribution algo-

rithms [31]. These policies are defined as follows: 

 The transfer policy defines when a server is meant to initiate a load distribution. 

This can either refer to “threshold-based” algorithms or to “relative” algorithms. 

“Threshold-based” algorithms will initiate load distribution as soon as a certain 

threshold is exceeded. In “relative” algorithms, loads will be swapped as long as 

there is an imbalance between servers. 

 The selection policy provides criteria for the selection of VMs on a server that are 

meant to be migrated. A common implementation is to select the VMs via a “First 

In, First Out” or via a “Last in, Fist out” approach. 

 The location policy is concerned with the selection of an appropriate destination 

server. A “local” execution implies that only servers in a n-neighborhood are con-

sidered whereas “global” approaches consider all servers in the network. 

 The information policy declares what information about the state of a server is 

collected and when and where this information is collected. In “demand-driven” 

approaches, servers only start to collect information about potential partner servers 

once they are determined as initiating servers, whereas in a “state-driven” ap-

proach, all servers immediately spread state changes to other servers. Information 

about potential target servers can also be collected by conducting a “periodic” ap-

proach. Since the period interval is not dynamically adjusted according to the cur-

rent load of a system, busy systems tend to slow down due to the additional load. 

 The initiation policy defines which server initiates a load distribution task. “Send-

er-initiated” algorithms will be triggered by reaching an upper threshold and try to 

distribute their loads to other servers. In a “receiver-initiated” approach, load dis-

tribution will be conducted if the load of a server falls short of a lower threshold. A 

“symmetric” approach combines both approaches in order to take all advantages. 

 



 

Fig. 3. Interaction between the different Load Distribution Policies 

Fig. 3 illustrates how these policies interact. In the prototype, different types of algo-

rithms are instantiated. These can be distinguished into direct and iterative algo-

rithms. Direct algorithms determine sender or receiver servers and exchanges loads 

between two servers. The sender-initiated algorithm belongs to the group of direct 

algorithms and was implemented in the prototype. In iterative algorithms, servers in a 

n-neighborhood continuously try to distribute loads among each other [31]. A wide-

spread representative of those is the gradient model algorithm. The realization of the 

policies for both algorithms is depicted in Table 1. 

Table 1. Realized Policies for the Implemented Load Distribution Algorithms 

Policy Sender-Initiated Gradient Model 

Transfer Threshold-based Relative 

Selection First in, First out First in, First out 

Location Global Local 

Information Demand-driven Demand-driven 

Initiation Sender-initiated Sender-initiated 

4 Evaluation 

After the prototypical implementation of the conceptual framework that is described 

above, its correctness and suitability are investigated in the course of this section. 

Therefore, a verification and an experiment were conducted. 

In order to verify the implemented prototype, first the behavior of the simulation 

model was tested by conducting an event validity test and a fixed value test. The for-

mer was carried out in order to compare the occurrence of events in the simulation 

model to the expected behavior. The latter was used in order to eliminate any stochas-

tic influence from the simulation model. Thus, the simulation results can be compared 

to analytically obtained results [32]. Conducting these tests, the correctness of VM 

and server behavior as well as of the implemented load distribution algorithms could 

be verified. 



In addition to that, an experiment was performed in order to demonstrate the ability 

of the developed concept to support the analysis of load distribution algorithms and 

their energy consumption in specific scenarios. Therefore, two scenarios were de-

fined, both referring to real-world cloud infrastructure services: in the first scenario, a 

high performance cloud was modeled (high performance computing as a service – 

HPCaaS [33]) in which consumers demand VMs with plenty of resources to process 

problems with high complexity. In the second scenario, an IaaS provider was modeled 

for micro VM hosting that allows users to obtain VMs with limited resources in order 

to save costs (referred to as “micro infrastructure as a service” – μIaaS). VM instances 

similar to the VMs defined for the HPCaaS scenario as well as in the μIaaS are pro-

vided, for example, in the popular cloud platforms Amazon EC2
7
, Google Compute 

Engine
8
 and Rackspace

9
. 

The different parameters for both scenarios are presented in Table 2. In both sce-

narios, the data center was modeled as a composition of two of the servers described 

above, the ASUS RS160-R5 (4x2.5 GHz, 16 GiB RAM, 100 GB HDD) and the Fujit-

su PRIMERGY TX300 S7 (8x2.2 GHz, 8 GiB RAM, 100 GB HDD. The parameters 

have been chosen to make the scenarios comparable in terms of the processed work-

load. Hence, they lead to a mean CPU utilization of about 50% in both scenarios. 

Table 2. Experimental Setup 

Parameter Scenario 1 - HPCaaS Scenario 2 - μIaaS 

Requests Time to request ~exp(30 min) ~exp(10 min) 

Time to scaling ~exp(30 min) ~exp(30 min) 

Time to shutdown ~exp(2 d) ~exp(8 h) 

Resources CPU ~Gaussian(2 GHz, 200 

MHz) 

~Gaussian(750 MHz, 

150 MHz) 

RAM ~Gaussian(2 GiB, 512 

MiB) 

~Gaussian(512 MiB, 128 

MiB) 

HDD ~Gaussian(10 GB, 2 

GB) 

~Gaussian(2.5 GB, 250 

MB) 

Server 

count 

ASUS RS160 19 77 

Fujitsu 

PRIMERGY 

77 19 

 

The two scenarios were simulated each with the iterative gradient model and the di-

rect sender-initiated load distribution for 10,000 minutes (about one week) in 1,000 

replications. For the confidence level, α=0.1 was chosen as significance level. The 

                                                           
7 Confer the instance types at http://aws.amazon.com/ec2/instance-types/ 
8 Confer the instance types at https://developers.google.com/compute 
9 Confer the instance types at http://www.rackspace.com/cloud/pricing/ 



resulting confidence intervals of the energy consumption in the experiments are pre-

sented in Fig. 4. Since the confidence intervals do not intersect, the results are signifi-

cantly different. In the HPCaaS scenario, the gradient model provides better results in 

terms of data center energy consumption than the sender-initiated load distribution 

(mean value 2,187 kWh in comparison to 2,208 kWh), whereas in the μIaaS scenario, 

the situation is vice versa (2,184 kWh to 2,106 kWh). 

In the case of the sender-initiated load distribution, heavy loaded servers start to 

distribute VMs to slightly loaded servers. However, due to the larger amount of allo-

cated resources in the HPCaaS scenario, VM migration from various overloaded serv-

ers to a less loaded target server may consequently overload this server. The reason 

for this is that lower loads simply do not lead to overloaded states as quickly as higher 

loads. Since the fact that slightly loaded servers are thus more likely to become over-

loaded and have to distribute loads again in the next step, the sender-initiated algo-

rithm is more stable with smaller VM sizes, such as those defined in the μIaaS scenar-

io. Therefore, the algorithms archive opposite results in the respective scenarios.  

 

 

Fig. 4. Experimental Results of Energy Consumption for the tested Algorithms 

The experimental results show that the prototype of the developed concept has the 

ability to analyze the effect of different load distribution algorithms on energy con-

sumption. Furthermore it can be pointed out that different scenarios lead to different 

results while applying the same load distribution algorithm. Hence, it cannot be de-

cided which load distribution algorithm is most energy-efficient in general. A con-

crete load distribution algorithm must always be analyzed with respect to the concrete 

scenario. 

5 Conclusion 

In this contribution, a quantitative, simulation-based analysis-framework was concep-

tualized. It was designed to investigate the influences and effects of load distribution 

algorithms on the energy consumption of cloud data centers. In order to demonstrate 

the ability of the conceptual framework and its prototypical implementation, an exper-

iment that examined two different scenarios in heterogeneous data centers was con-



ducted. The experiment revealed that the effect of load distribution algorithms on the 

energy consumption in clouds seems to be strongly dependent on the configuration of 

the data center, for example in terms of hardware and offered services. 

The conceptualized prototype allows to model specific scenarios for heterogeneous 

cloud data centers and to evaluate their energy consumption. The presented approach 

allows for analyzing mean, worst- or best-case energy consumption over a simulated 

lapse of time. Different types of load distribution algorithms can be compared in 

terms of their energy efficiency. Additionally, the implemented prototype can be used 

in order to simulate changes in the cloud data center. For instance, a varying number 

of different servers could be simulated in order to foresee their effects on the overall 

energy consumption. Furthermore, a sensitivity analysis could be performed by 

changing the operational profile (e.g. the runtime of services) in order to analyze the 

energy consumption under varying conditions. Therefore, the conceptual framework 

can be used as a basis for a decision support system for managing the energy con-

sumption of cloud data centers. Supplementary, it can be used by researchers to eval-

uate new algorithms and architectures with regard to energy consumption, prior to a 

deployment in a real environment. 

The developed concept addresses the shortcomings of existing approaches as re-

vealed in Section 2. Arbitrary load distribution algorithms can be implemented and 

investigated by using a generic policy scheme, even centralized and decentralized 

algorithms can be implemented. The proposed energy model is very flexible and can 

map the different types of power profiles that have been identified in the course of an 

analysis of empirical data from the SPECpower_ssj2008 benchmark. In contrast to 

existing simulation approaches, relevant aspects of clouds can be simulated, such as 

the unilateral scaling of resources according to a user’s current demand (rapid elastici-

ty & on-demand self service). 

Nevertheless, there are also disadvantages that derive from the simulation ap-

proach. Since each replication only describes one possible system behavior, simula-

tion results can only be approximated by confidence intervals using a high number of 

replications. Depending on the experiment, this can result in a high effort in terms of 

computing time and computational resources that are needed. However, massive par-

allelization could mitigate this disadvantage. In the initial implementation, several 

simplifying assumptions were made in order to reduce the complexity of the proto-

type. For example, a simple VM lifecycle has been implemented and cooling has been 

omitted. Regarding the energy consumption, only the CPU was considered as con-

sumer. Although the CPU is suitable for approximating the power consumption of 

servers, the proportion is likely to decrease in future. Hence, also other components of 

servers need to be considered, especially memory and disks [3, 5, 25].  

Future work should identify the influences of the respective aspects of a scenario. 

For example, such aspects can be the application of energy models, the effects of 

heterogeneity and homogeneity of components, and parameters of the operational 

profile, such as the runtime of services. These aspects need to be addressed by extend-

ing the conceptual model. Additionally, the load distribution scheme needs to be ex-

tended in order to include genetic algorithms since these cannot be described by the 

current scheme. Regarding the component that addresses power & energy models, it 



should be verified that polynomial models are sufficient for modeling non-linear de-

pendencies between CPU utilization and power consumption. Otherwise, another 

approximation for non-linear dependencies needs to be defined. Other aspects of 

cloud data centers, such as performance and dependability, should be integrated into 

the concept in order to be able to consider service level agreements. Finally, the com-

ponents regarding cooling need to be integrated in future iterations of the concept 

since these were excluded in the initial prototype implementation. 
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