52,375 research outputs found

    Experimental analysis of connectivity management in mobile operating systems

    Get PDF
    We are immerse in a world that becomes more and more mobile every day, with ubiquitous connectivity and increasing demand for mobile services. Current mobile terminals support several access technologies, enabling users to gain connectivity in a plethora of scenarios and favoring their mobility. However, the management of network connectivity using multiple interfaces is still starting to be deployed. The lack of smart connectivity management in multi interface devices forces applications to be explicitly aware of the variations in the connectivity state (changes in active interface, simultaneous access from several interfaces, etc.). In this paper, we analyze the present state of the connection management and handover capabilities in the three major mobile operating systems (OSes): Android, iOS and Windows. To this aim, we conduct a thorough experimental study on the connectivity management of each operating system, including several versions of the OS on different mobile terminals, analyzing the differences and similarities between them. Moreover, in order to assess how mobility is handled and how this can affect the final user, we perform an exhaustive experimental analysis on application behavior in intra- and inter-technology handover. Based on this experience, we identify open issues in the smartphone connectivity management policies and implementations, highlighting easy to deploy yet unimplemented improvements, as well as potential integration of mobility protocols.This work has been partially supported by the European Community through the CROWD project, FP7-ICT-318115.Publicad

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section
    • …
    corecore