105,018 research outputs found

    SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget

    Full text link
    In the context of industrial engineering, it is important to integrate efficient computational optimization methods in the product development process. Some of the most challenging simulation-based engineering design optimization problems are characterized by: a large number of design variables, the absence of analytical gradients, highly non-linear objectives and a limited function evaluation budget. Although a huge variety of different optimization algorithms is available, the development and selection of efficient algorithms for problems with these industrial relevant characteristics, remains a challenge. In this communication, a hybrid variant of Differential Evolution (DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the framework of DE, in order to improve optimization efficiency on problems with the previously mentioned characteristics. The performance of the resulting derivative-free algorithm is compared with other state-of-the-art DE variants on 25 commonly used benchmark functions, under tight function evaluation budget constraints of 1000 evaluations. The experimental results indicate that the new algorithm performs excellent on the 'difficult' (high dimensional, multi-modal, inseparable) test functions. The operations used in the proposed mutation scheme, are computationally inexpensive, and can be easily implemented in existing differential evolution variants or other population-based optimization algorithms by a few lines of program code as an non-invasive optional setting. Besides the applicability of the presented algorithm by itself, the described concepts can serve as a useful and interesting addition to the algorithmic operators in the frameworks of heuristics and evolutionary optimization and computing

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore