4 research outputs found

    Diagnosing transformer winding deformation faults based on the analysis of binary image obtained from FRA signature

    Get PDF
    Frequency response analysis (FRA) has been widely accepted as a diagnostic tool for power transformer winding deformation faults. Typically, both amplitude-frequency and phase-frequency signatures are obtained by an FRA analyzer. However, most existing FRA analyzers use only the information on amplitude-frequency signature, while phase-frequency information is neglected. It is also found that in some cases, the diagnostic results obtained by FRA amplitude-frequency signatures do not comply with some hard evidence. This paper introduces a winding deformation diagnostic method based on the analysis of binary images obtained from FRA signatures to improve FRA outcomes. The digital image processing technique is used to process the binary image and obtain a diagnostic indicator, to arrive at an outcome for interpreting winding faults with improved accuracy

    Influence of External Parameters on Transformer FRA Signature and Statistical Indices

    Get PDF
    Frequency Response Analysis (FRA) is the common tool for transformer condition diagnosis. FRA allows to detect alterations in the transformer structure due to coverage of wide frequency range. Nevertheless, the frequency response is sensitive to external parameters. In this work, different connection schemes for external parameters are implemented and investigated. The theoretical justification is provided for each scenario. The measurement trend is visualized. The interpretation of frequency response signature requires expert knowledge. Statistical indices can be used for unbiased interpretation. Therefore, four statistical indices are employed to analyze the effect of external resistance, capacitance and inductance on the test objects

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore