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ABSTRACT Frequency response analysis (FRA) has been widely accepted as a diagnostic tool for
power transformer winding deformation faults. Typically, both amplitude-frequency and phase-frequency
signatures are obtained by an FRA analyzer. However, most existing FRA analyzers use only the information
on amplitude–frequency signature, while phase–frequency information is neglected. It is also found that in
some cases, the diagnostic results obtained by FRA amplitude–frequency signatures do not comply with
some hard evidence. This paper introduces a winding deformation diagnostic method based on the analysis
of binary images obtained from FRA signatures to improve FRA outcomes. The digital image processing
technique is used to process the binary image and obtain a diagnostic indicator, to arrive at an outcome for
interpreting winding faults with improved accuracy.

INDEX TERMS Frequency response analysis, power transformers, windings, binary image, fault
identification.

I. INTRODUCTION
As the heart of a substation, a power transformer functions
as the significant link for voltage conversion and energy
delivery. Survey results show that most power transformers
worldwide were installed in the 1980s, and many of them
are reaching the end of their life [1]. The failure rate of
these transformers has been persistently increasing in recent
years, particularly in utilities with poormaintenance and asset
management regimes. One of the key factors that induce
transformer failure is winding deformation. The typical types
of winding deformation are tilting, forced bulking, free buck-
ling, forced buckling, hoop tension, and telescoping. These
winding deformations are typically due to large electro-
magnetic forces induced by the short circuit currents [2].
Normally, the initial stage of winding deformation is char-
acterized by winding minor deformation. Winding minor
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deformation will have limited impact on the normal opera-
tion of a power transformer, and it is difficult to detect and
diagnose these faults. However, the minor deformation can
develop into catastrophic failure if no steps are taken. Thus,
it is of significance to detect winding deformation faults when
they are at the early stage.

Several winding deformation fault detection methods
have been successively proposed in recent years. To date,
major detection methods consist of vibration method [3],
ultra-wideband (UWB) antenna method [4], short circuit
impedance (SCI) method [5], [6], low voltage impulse
(LVI) method [7] and frequency response analysis (FRA)
method [8]. Of all these methods, FRA is now widely
accepted as the most superior method for winding move-
ment related fault detection in transformers. According to
the nature of the FRA input signal, FRA can be divided into
sweep FRA (SFRA) and impulse FRA (IFRA) [9]. In both
FRAmethods, the frequency response signatures of the trans-
former are obtained by injecting the excitation signal to the
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winding and measuring the response signal. The difference is
that the SFRA uses a sinusoidal sweep signal for excitation,
while IFRA uses an impulse signal for excitation.

Among the above methods, FRA is a reliable, simple,
fast, economic and non-destructive diagnostic tool [10].
IFRA has reached potential for online application; however,
it is currently at the rapid developmental phase [9], [11].
SFRA is discussed the most in the literature, and is frequently
referred to FRA. FRA has been under development for years.
Chinese power industry standard [12] and IEC standard [13]
have been successively proposed to standardize the tech-
nique. This method is widely accepted by power equipment
owners, operators, producers and testing companies. How-
ever, there still exist some problems when FRA is applied in
the field.
• The FRA signatures of a power transformer measured
by an FRA analyzer normally include the amplitude–
frequency and phase–frequency characteristic signature.
Only the variation of amplitude–frequency signature
is analyzed in the existing diagnostic method, and the
information of phase–frequency signature is mostly
neglected [14].

• The FRA interpretation relies on graphical comparison,
namely, analyzing the variation between the FRA signa-
tures and the reference. The current comparison process
calls for experienced personnel, as there is no standard
and automatic interpretation code to date. When the
FRA amplitude–frequency signature is used for diag-
nosing a winding minor deformation fault, the variation
of signature is not remarkable, and as a result, it is
hard to detect using visual inspection, which makes the
diagnostic result obtained by conventional FRA tech-
nique inaccurate. Although the detection sensitivity can
be improved by extending FRA frequency ranges [15],
the FRA frequency band beyond 1 MHz is easily
affected by the external factors, for instance the FRA
equipment wiring, parasitic impedance, noise, etc [16].
Thus, improving FRA sensitivity by extending the upper
limit of frequency is not an optimum method.

To solve above problems, researchers have recently
introduced some novel and improved methods.
M. H. Samimi et al. have proposed improved numeri-
cal indices for the FRA interpretation by including phase
response, in which a new diagnostic index, complex dis-
tance, was introduced in addition to a method to include
the phase information [17]. It was demonstrated that using
the phase data increases the sensitivity of the indices versus
mechanical displacements. O. Aljohani et al. have introduced
a novel FRA interpretation approach to detect transformer
winding short-circuit fault, radial deformation and bushing
faults by using polar plot and digital image processing, in
which the various image unique features of a polar plot are
extracted using geometric dimensions, invariant moments
and texture analysis to construct diagnosticmetrics [18]–[20].
It was found that the polar plot exhibits more features than
the magnitude of the FRA signature, and the investigated

metrics are consistently increasing with the increase in fault
level. The above outcomes are significant contributions for
improving the performance of FRA diagnostics. However,
in complex distance index, the FRA phase information is
included in a specific equation, not intuitively presented in a
waveform or image. Nevertheless, the practical validation of a
small dry–type transformer is performed in the latter finding,
but most FRA data of winding faults are acquired by a
3-D finite-element analysis (FEA) of transformers, and are
not verified in a large oil-immersed power transformer.

In view of the above background, this study investigates a
winding deformation diagnostic method based on the analy-
sis of binary image obtained from the FRA signature. The
FRA amplitude–frequency and phase–frequency signatures
are used to construct plane polar plots. The digital image
processing technique is used to process polar plots to out-
come binary images, which can be analyzed to diagnose and
identify the winding deformation faults. In this study, all
FRA raw data are obtained from actual transformer mea-
surements, including a specially manufactured transformer
that can emulate variable winding faults and two large oil-
immersed power transformers.

II. THEORETICAL ANALYSIS
A. BASIC PRINCIPLE
The FRA signature is obtained by a sweep frequency
approach. The sinusoidal sweep frequency excitation voltage
with an amplitude of <20 V is applied to one terminal of
transformer winding and the response voltage at the other
terminal is measured. The excitation signal and response
signal under the same frequency point are used to plot an
amplitude–frequency and a phase–frequency characteristic
signature, as shown in Equation (1)-(2) [10], [16],

Hf = 20 log10
|U2 (f )|
|U1 (f )|

(1)

ϕf = ϕ(U2 (f ))− ϕ(U1 (f )) (2)

where U1(f ) and U2(f ) are the excitation voltage and
response voltage of tested winding; Hf is the amplitude–
frequency characteristic signature; ϕ() is the angle of signal;
ϕf is the phase–frequency characteristic signature; and f rep-
resents different frequency.

Plane polar plot consists of polar radius coordinate and
polar angle coordinate, represented by (ρ, θ ). The method
of constructing polar a plot of frequency response is that the
polar radius and polar angle are equivalent to the amplitude
and phase of frequency response, respectively. Thus, the ver-
tical projection of the polar plot alongX axis andY axis under
frequency f can be defined as Equation (3)-(4),

xf = |Hf| · cos(ϕf) (3)

yf = |Hf| · sin(ϕf) (4)

where xf is the vertical projection of the polar plot along
X axis under specific frequency f ; yf is the vertical projection
of the polar plot along Y axis under specific frequency f .

40464 VOLUME 7, 2019



Z. Zhao et al.: Diagnosing Transformer Winding Deformation Faults

FIGURE 1. FRA amplitude-frequency characteristic and phase-frequency
characteristic signature of a transformer winding.

It can be demonstrated that Equation (3) and (4) are fit
for various values of ϕf, namely, ϕf lies in four different
quadrants.

As the information of amplitude and phase of fre-
quency response are included in the plane polar plot [18],
the sensitivity of using polar plot to diagnose winding fault
may be higher than the current traditional FRA method,
which only considers the amplitude–frequency characteristic
signature [17]–[18].

The typical amplitude–frequency characteristic and phase–
frequency characteristic signature of a power transformer is
shown in Fig. 1. There exist multiple resonances and anti-
resonances between 1 and 1000 kHz. According to Chinese
power industry standard [12], the frequency band of FRA
could be divided into low frequency band (1 ∼ 100 kHz),
middle frequency band (100 ∼ 600 kHz) and high frequency
band (600 ∼ 1000 kHz) for interpretation. The FRA low
frequency band is characterized by the transformer inductive
components because flux penetration to the core is significant
within this frequency range, the FRA high frequency band is
dominated by the transformer distributed capacitive compo-
nents, while the FRA middle frequency band is characterized
by inductive, as well as capacitive, components [9], [12], [16].
According to above standard, the polar plot that corresponds
to this FRA signature is presented in Fig. 2. The upper two
sub-figures are the polar plot of an entire frequency band
and the polar plot of 1 to 100 kHz, and the lower two sub-
figures are the polar plot of 100 to 600 kHz and the polar plot
of high frequency band 600 to 1000 kHz.

B. DIAGNOSTIC PROCEDURE OF WINDING
DEFORMATION FAULT
The proposed procedure of diagnosing transformer winding
deformation fault is shown in Fig. 3. The procedure also
relies on graphical comparison of winding healthy and faulty
transformer binary images.
Step 1: The FRA data of power transformer under healthy

and faulty status are accuratelymeasured by an FRA analyzer,
including amplitude–frequency and phase–frequency signa-
tures. The frequency range is selected as 1 ∼ 1000 kHz, and

FIGURE 2. Polar plot of variable frequency bands which corresponds to
transformer frequency response signature.

FIGURE 3. Flow chart for diagnosis of proposed method.

frequency interval is no less than 2 kHz [12]. A linear fitting
moving average method can be adopted to preprocess the
FRA raw data, and the large burrs are smoothed to decrease
the effect of external disturbance [21].
Step 2: The frequency response data of healthy and faulty

transformer are imported to MATLAB software.
Step 3: The polar plots that correspond to 1 ∼ 100 kHz,

100 ∼ 600 kHz and 600 ∼ 1000 kHz frequency ranges are
plotted, respectively.
Step 4: Image extraction. The polar plots can be transferred

into plane Cartesian coordinate system. The background of
the MATLAB figure is set as white color, and the coordi-
nate axes are removed. The three primary colors (red, green,
blue, RGB) pattern diagram of frequency response polar plot
is then obtained. Considering that there may be significant
differences between images of healthy and faulty winding
under the individual sub-frequency range, it is meaningful to
compare two images under the same image scale. The image
scale factor k is defined. The extents of RGB image under the
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sub-frequency range can be obtained by
x
′

max = xmax + |xmax − xmin| /k
x
′

min = xmin − |xmax − xmin| /k
y
′

max = ymax + |ymax − ymin| /k
y
′

min = ymin − |ymax − ymin| /k

(5)

where x
′

max and x
′

minare the maximum and minimum value
of the Cartesian coordinate horizontal axis corresponding to
the image border after the RGB image is scaled, respectively;
y
′

max and y
′

min are the maximum and minimum value of the
Cartesian coordinate vertical axis corresponding to the image
border after the RGB image is scaled, respectively; xmax and
xmin are the maximum and minimum value of the Cartesian
coordinate horizontal axis corresponding to the image border
before the RGB image is scaled, respectively; ymax and ymin
are the maximum and minimum value of the Cartesian coor-
dinate vertical axis corresponding to the image border before
the RGB image is scaled, respectively. The test demonstrates
that the performance is good when image scale factor k is
between 8 and 15, and the value of k is selected as 10 in this
study.
Step 5: Image gray and binary transformation is performed.

The RGB image obtained by step 4 is first processed by gray
transformation, and the gray image of frequency response is
obtained. The gray image is then transformed into a binary
image. The data matrix which corresponds to the binary
image consists of ‘‘1’’ and ‘‘0’’, ‘‘1’’ represents background
pixels of the image, while ‘‘0’’ represents the corresponding
pixels of the frequency response. Fig. 4 shows the binary
image obtained from polar plot of Fig. 2, the frequency band
is 100 ∼ 600 kHz, the dash line of Fig. 4 is the border of the
scaled image.
Step 6: Fault diagnosis. Fault diagnosis is realized by

comparison of the binary image with its referenced image.
To quantify and standardize the diagnosis process, the binary
images of different frequency ranges are further analyzed
by introducing a correlation indicator (ci). Specifically,
the matrix similarity is used to process the data matrix of
binary images, and the formula is given as,

ci =

∑
m

∑
n

(
Amn − Ā

) (
Bmn − B̄

)
√(∑

m

∑
n

(
Amn − Ā

)2)(∑
m

∑
n

(
Bmn − B̄

)2) (6)

where ci represents the matrix similarity; m and n are the row
and column of thematrix;Amn andBmn are the elements of the
matrix A and B, respectively; Ā and B̄ are the average values
of all elements of matrix A and B, respectively.

The distribution of ci of healthy and faulty binary images
under individual frequency ranges can then be analyzed to
diagnose winding deformation fault.

In the current conventional FRA technique, variable sta-
tistical indicators are proposed to interpret FRA signatures,
for instance, the correlation coefficient, standard deviation,
variance, standard error of mean, root mean square, et.al [22].

FIGURE 4. Binary image obtained from polar plot of Fig. 2 in middle
frequency band.

FIGURE 5. Difference between the distributions of data corresponding to
ci and Rxy indicators.

Of all these indices, the Chinese standard DL/T 911 suggests
relative factor (Rxy) as the diagnostic indicator [12].
For the two FRA amplitude–frequency traces Xi and Yi,

the Rxy is defined as follows [23],

Rxy =

{
10 1− Pxy < 10−10

− log10(1− Pxy) otherwise
(7)

where Pxy is given by,

Pxy =

1
N

N∑
i=1

(Xi −
1
N

N∑
i=1

Xi) · (Yi −
1
N

N∑
i=1

Yi)√
DxDy

(8)

and Dx and Dy are defined as,

Dx =
1
N

N∑
i=1

(Xi −
1
N

N∑
i=1

Xi)2 (9)

Dy =
1
N

N∑
i=1

(Yi −
1
N

N∑
i=1

Yi)2 (10)

ci is an indicator that computes the 2-D ‘‘0-1’’ data matrix
of binary image, while Rxy is an indicator that computes the
1-D vector data of FRA amplitude–frequency signature. The
difference between the distributions of data corresponding
to two indicators is visually presented in Fig. 5. In Fig. 5,
‘‘x’’ is the data of binary image with values of 0 and 1,
which represent the frequency response and background,
respectively. ‘‘O’’ represents the amplitude data of the
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TABLE 1. Design specifications of specifically manufactured model
transformer.

FRA signature. Obviously, 2-D ‘‘0-1’’ data matrix comprises
the amplitude as well as phase information of frequency
response.

In addition, it can be concluded from Fig. 5 and Eq. (6)
that the proposed binary image method analyzes the FRA
data and background from a mathematical point of view. The
calculation of proposed binary image method is easy and fast,
which may be suitable for field application.

III. TEST PLATFORM OF EMULATING POWER
TRANSFORMER WINDING DEFORMATION FAULT AND
FRA SIGNATURES OF TYPICAL WINDING FAULTS
It is possible to precisely analyze the behavior of trans-
former windings by emulating the winding faults in actual
transformers. A test platform was built to perform groups
of winding deformation fault experiments in [21] and [24].
The tested transformer is a specially manufactured core-type
model transformer with a voltage ratio of 10/0.4 kV. Some
nameplate parameters can be found in Tab. 1. The internal
configuration of the model transformer is designed as that
of a 110 kV power transformer, as shown in Fig. 6. The
HV winding is a disk type winding with a total of 30 disks,
where the upper and lower 10 disks are interleaved twist and
the middle 10 disks are sequential twist. The LV winding
is designed as a layer type with 6 layers. Variable windings
were also manufactured, which can be used to replace the
middle 10 disks winding to emulate diverse winding radial
deformation faults.

Typical winding radial deformation (RD) fault, inter-disk
short circuit (SC) fault and disk space variation (DSV) fault
were simulated, respectively.

FIGURE 6. Tested model transformer with its tank uncovered.

FIGURE 7. Images of actual RD winding. (a) 10% RD fault degree with
fault happened in one direction. (b) 5% RD fault degree with fault
happened in 3 directions.

In winding RD fault, the middle twisted windings are
replaced by other manufactured deformed windings, includ-
ing different fault degrees and fault directions. Fig. 7 shows
some images of actual RD winding, where the size and posi-
tion of radial deformed part is variable to emulate different
fault degree and direction. More detailed information about
winding RD fault setup can be found in [21]. Winding inter-
disk SC fault is simulated by simply shortening the con-
nectors of the middle sequential twist windings; the greater
the number of connectors that are shortened, the closer the
severity of inter-disk SC fault. Shortening winding disks for
emulating the inter-disk SC fault changes the turns of winding
and the distribution of leakage magnetic field. Thus, the
self-inductance and mutual-inductance are changed, which
contributes to the variation of winding FRA signature.

Reference [25] indicates that winding DSV fault is nor-
mally characterized by the reduction of disk space distance,
the inter-disk capacitance and mutual inductance of winding
equivalent electrical model increase. Thus, for simulating this
type of fault, a capacitor is connected to the connectors of two
continuous disks. The connected capacitor mainly increases
the inter-disk capacitance. There also exists a new path for
the current that flows through the winding, and the distribu-
tion of leakage magnetic field is changed. Thus, indirectly,
the mutual inductance parameter of the winding equivalent
electrical model is changed. The inter-disk capacitance of
healthy sequential twist windings is calculated as approx-
imately 2 nF based on the finite element method (FEM),
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FIGURE 8. FEM model for calculating inter-disk capacitance of healthy
windings.

FIGURE 9. Some cases of FRA amplitude-frequency signatures under
simulated winding inter-disk SC fault.

FIGURE 10. Some cases of FRA amplitude-frequency signatures under
simulated winding DSV fault.

the FEM model is shown in Fig. 8. Otherwise, the degree
of DSV fault is emulated by increasing and decreasing the
capacitance value, and the fault location is emulated by
changing the sequence numbers of the two connectors.

End-to-end open circuit measurements were performed in
the HV winding of phase A with various fault statuses of
the model transformer, and a sample database was obtained.
Various FRA signatures of simulated winding deformation
are shown in Figs. 9-11.

Fig. 9 shows some cases of FRA amplitude–frequency
signatures under simulated inter-disk SC fault, in which
‘‘1-2 connectors’’ means that the first and second connectors

FIGURE 11. Some cases of FRA amplitude-frequency signatures under
simulated winding RD fault.

of the middle sequential twist windings are short circuited,
seen from top to bottom. Fig. 9 shows that FRA signatures of
inter-disk SC fault are entirely different throughout the entire
frequency band compared to a healthy signature. Moreover,
the FRA signatures of the ‘‘1-2 connectors’’ and ‘‘5-6 connec-
tors’’ are similar because these two fault cases are artificially
manufactured in the symmetrical position of the HVwinding.

Fig. 10 shows some cases of FRA amplitude–frequency
signatures under simulated DSV faults. The fault simulated
capacitor is paralleled with the third and fourth connectors
of the middle sequential twist disks of HV phase A winding.
10% indicates the percentage of the paralleled capacitance
(200 pF) to the capacitance of the adjacent healthy disk (2 nF),
with similar meanings for 20% ∼ 40%. In Fig. 10, the faulty
signature changes notably in the middle and high frequency
bands, compared to the healthy FRA signature. The variations
in the faulty signature become more noticeable as the fault
level increases. Furthermore, the faulty FRA signature shifts
toward the low frequency band. The changing trend of above
FRA signatures is consistent with the trend described in [25],
which also demonstrates the feasibility of emulating
DSV fault.

Fig. 11 shows some cases of FRA amplitude–frequency
signatures under simulated RD faults, in which the middle
10 disks healthy windings of HV phase A are replaced by
RD fault windings with degrees of 5%, 7% and 10%, all in
one direction. Fig. 11 illustrates that the faulty FRA signature
changes in the middle and high frequency bands, and the
difference is particularly remarkable beyond 700 kHz; both
the frequency and gain of resonant points shift for a certain
extent. The changing trend of above FRA signatures is con-
sistent with the trend described in [12], [26], and [27], which
also demonstrates the feasibility of emulating RD fault.

IV. ANALYSIS OF WINDING TYPICAL FAULT
EXPERIMENTS
A. TYPICAL CASE
The polar binary images obtained from FRA signature of
winding RD fault (5%) is shown in Fig. 12, this figure also
presents the binary images corresponding to the FRA signa-
ture of a healthy winding. In Fig. 12(a) and (b), the binary
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FIGURE 12. Frequency response binary image of healthy winding and 5%
RD fault winding. (a) 0 ∼ 100 kHz of healthy winding, (b) 0 ∼ 100 kHz of
deformed winding, (c) 100 ∼ 600 kHz of healthy winding, (d) 100 ∼

600 kHz of deformed winding, (e) 600 ∼ 1000 kHz of healthy winding,
(f) 600 ∼ 1000 kHz of deformed winding.

image is relatively sparse, and there exists few inflection
points on the trace of image. The reason is that there is a
small quantity (100 groups) of frequency response data points
within the low frequency range, and the number of resonant
points is limited. In contrast, in Fig. 12(c) ∼ (f), the binary
images are relatively intensive, and there exist more inflection
points on the trace of the image. Correspondingly, more
frequency response data points (600 and 500 groups) and
numbers of resonant points within middle and high frequency
bands contribute to this particular phenomenon. Additionally,
in Fig. 12, binary images of healthy and faulty windings in
low and middle frequency bands are very similar, while the
difference between two binary images in high frequency band
is significant.

The Rxy of healthy and faulty FRA amplitude–frequency
signature, which corresponds to Fig. 12, has been evaluated
within various frequency bands, which is shown in Tab. 2.
Although the Rxy of high frequency band is much less than
those of the middle and low frequency bands, according to the
Chinese standard [12], the status of winding is still diagnosed
as healthy. The diagnostic result is not consistent with the
actual experimental setup of winding RD fault. This case indi-
cates that there might be false positives and false negatives in
the diagnostic result when traditional FRA method is used to
detect winding faults.

The ci of two binary images, which correspond to the
healthy and faulty winding of Fig. 12, has also been evaluated
within three frequency bands, as also presented in Tab. 2.
Clearly, the ci of two binary images in high frequency band is

TABLE 2. Relative factor of frequency response and correlation indicator
of binary image corresponding to figure 12.

FIGURE 13. Distribution of correlation indicators of healthy and faulty
frequency response binary images in all experimental setup.

considerably less than those of the middle and low frequency
bands, which indicates there could exist some abnormalities
in the tested winding. However, the threshold value that is
required for evaluating the winding status needs to be con-
cluded from extensive tests, yet it can still be derived that
the variance of ci in high frequency band to ci of middle
and low frequency band is closed to one order of magnitude.
Apparently, the proposed method is more sensitive to the
winding fault than the traditional FRA method.

B. ANALYSIS OF EXPERIMENTAL RESULT
For the simulated winding fault experiments performed in
section III. A total of 42 groups of experiments were con-
ducted. The groups of inter-disk SC faults is 15, including
variable fault extent and fault locations setup. The combina-
tion of simulated RD status is extensive; however, to match
the numbers of inter-disk SC fault, the groups of RD fault
is set as 13, and the groups of DSV fault is 14, including
variable fault extent and fault locations setup as well. In each
fault experimental setup, the FRA amplitude–frequency as
well as phase–frequency signatures are measured, the binary
image is plotted based on the proposed procedure, and the ci
of healthy and faulty binary images under low, middle and
high frequency band are obtained, respectively.

The ci of sub-frequency binary images obtained from all
the above experimental FRA signatures are plotted in Fig. 13,
in which X axis varies from 1 to 100 kHz, Y axis varies from
100 to 600 kHz, and Z axis varies from 600 to 1000 kHz.
It can be concluded that the distribution of ci corresponding
to each type of fault is not consistent in 3-dimensional spaces,
which is due to a certain span in simulating winding fault.
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TABLE 3. Effect of various faults on correlation indicator corresponding
to figure 13.

In other words, there exists a certain interval between fault
extents. In addition, the distribution of ci, which corresponds
to each winding fault, is gathered. For instance, all ci of inter-
disk SC fault in sub-frequency bands are relatively small. The
ci of DSV fault is larger (>0.2) in low frequency band, while
it is smaller (<0.2) in the middle and high frequency band.
For ci of winding RD fault, it is larger (>0.2) in the low
and middle frequency band, while it is smaller in the high
frequency band. The changing trends of FRA signatures cor-
responding to three types of faults are totally diverse in each
sub-frequency band; thus, there exist significant differences
between the distributions of ci of binary images. The effect
of various faults on correlation indicator corresponding to
Fig. 13 is presented in Tab. 3, which shows obvious difference
between three types of fault. This characteristic can be used
to distinguish and recognize the types of winding inter-disk
SC, DSV and RD faults by analyzing the distribution of ci in
individual frequency range.

Advanced machine learning technique such as support
vector machine (SVM) can be used to differentiate three fault
types. SVM is suitable for processing the classification prob-
lem of small-scale samples. In this study, the performance of
SVM has been initially tested. 42 groups of experimental data
are divided into two categories, the training set and testing set.
The training set is randomly selected, including 10 groups of
inter-disk SC fault, 10 groups of DSV fault and 10 groups
of RD fault. The rest of data consist of testing set, including
5 groups of inter-disk SC fault, 4 groups of DSV fault and
3 groups of RD fault. The basic element of training and testing
set is the ci of binary images in three sub-frequency bands.
Thus, the training set is a matrix of 30× 3 and the testing set
is a matrix of 12×3, a row of the matrix is expressed in (11),
which is the input of SVM algorithm.[

ciLow ciMid ciHigh
]

(11)

The most frequently used radial basis function (RBF) has
been chosen as the kernel function [28]. The parameter g of
RBF and the penalty coefficient C are optimized by the grid
searching and cross validation algorithm. Due to the test data
is not massive, we construct 5 groups of different training
and testing sets by randomly selecting from the data [24].
Thus, the optimal parameter g and C are different from each
other in each specifically selected training and testing set.
Fig. 14 shows the parameter optimization of g and C for a
group of typical training and testing set, in which the opti-
mal g and C are 0.125 and 4, respectively. The classification
accuracies for 5 groups of testing sets are 100%, 91.7%,

FIGURE 14. Parameter optimization of g and C for a group of typical
training and testing set.

TABLE 4. Classification result of winding deformation fault types
corresponding to one group of testing test (91.7%).

91.7%, 100% and 100%. The classification result of winding
deformation fault types corresponding to one group of testing
set (91.7%) is shown in Tab. 4. The averaged classification
accuracy of 5 groups is 96.7%, which initially demonstrates
the SVM is capable of differentiating three fault types.

Moreover, a criterion for judging whether fault exists or not
can be roughly derived from the above sample data. As the
fault degree is smaller, the coincidence of two binary images
in a certain sub-frequency band is higher, and the value
of ci in this certain sub-frequency band is then larger. Thus,
a threshold value of judging criterion can be derived from the
boundaries of Fig. 13 in three axes, in which the ci around
the boundaries corresponds to the winding minor deforma-
tion fault. If the ci of binary images in low frequency band
ci < 0.45, the ci in middle frequency band ci < 0.4 or the ci
in high frequency band ci < 0.2, it can be preliminary deter-
mined that there exists a certain fault in the tested winding.

V. APPLICATION OF PROPOSED METHOD ON LARGE
OIL-IMMERSED POWER TRANSFORMER
A. ANALYSIS OF A 110 kV OIL-IMMERSED POWER
TRANSFORMER
A 110 kV oil-immersed power transformer was out of ser-
vice owing to the outlet short circuit fault. The amplitude–
frequency and phase–frequency signatures of phase a and b
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FIGURE 15. FRA amplitude-frequency and phase-frequency signature of a
110 kV oil-immersed power transformer.

TABLE 5. Relative factor, correlation indicator and diagnostic result
corresponding to 110 KV power transformer frequency responses.

in 10 kV LV side were measured by an FRA analyzer,
as shown in Fig. 15. The difference between two FRA sig-
natures is significant, which indicates that there may be
winding deformation fault in one phase winding. The relative
factor Rxy of two FRA amplitude–frequency signatures in
low, middle and high frequency band are calculated and listed
in Tab. 5. According to the Chinese standard [12], the tested
winding was diagnosed as a minor deformation.

Moreover, the FRA data are converted into binary images
based on the proposed procedure, as shown in Fig. 16. It can
be seen that the difference between two binary images of
the middle frequency band is significant. The correlation
indicators ci of two binary images in the low, middle and high
frequency band are calculated and listed in Tab. 5. According
to the criterion proposed in section IV, the tested winding
was also diagnosed as deformed, which indicates that the
diagnostic result obtained by the proposed method is similar
to that obtained by the traditional FRA method when the
difference of two FRA signatures is significant.

B. ANALYSIS OF A 220 kV OIL-IMMERSED POWER
TRANSFORMER
A220 kV oil-immersed power transformer was out of service.
FRA amplitude–frequency and phase–frequency signatures
of phase a winding were measured in 10 kV sides, as shown
in Fig. 17 (marked in after fault). Fig. 17 also presents the
reference FRA signature of the tested phase winding (marked
in before fault). It is found that the difference between two
FRA signatures is not significant. The relative factors Rxy of

FIGURE 16. Frequency response binary image of LV phase a and b
winding of a 110 kV oil-immersed power transformer. (a) 0 ∼ 100 kHz of
phase a winding, (b) 0 ∼ 100 kHz of phase b winding, (c) 100 ∼ 600 kHz
of phase a winding, (d) 100 ∼ 600 kHz of phase b winding, (e) 600 ∼

1000 kHz of phase a winding, (f) 600 ∼ 1000 kHz of phase b winding.

FIGURE 17. FRA amplitude–frequency and phase–frequency signature of
a 220 kV oil-immersed power transformer.

two FRA amplitude–frequency signatures in the low, mid-
dle and high frequency band are calculated and presented
in Tab. 6. However, according to the Chinese standard, this
tested winding was diagnosed as healthy.

Moreover, the above FRA data are converted into binary
images, as shown in Fig. 18. The correlation indicators of two
binary images in the low, middle and high frequency band are
calculated and presented in Tab. 6, respectively. According to
the criterion proposed in section IV, the tested winding was
diagnosed as deformed. The transformer was disassembled
afterwards, and it was found that there exist some minor
deformed parts on the exterior of tested phase a winding.
The above analysis implies that the winding minor deforma-
tion fault sometimes cannot be detected by the traditional
FRA method, while the proposed method shows a higher
sensitivity to the winding minor fault.
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FIGURE 18. Frequency response binary image of LV phase a winding of a
220 kV oil-immersed power transformer obtained before and after a fault
occurrence. (a) 0 ∼ 100 kHz image obtained before fault, (b) 0 ∼ 100 kHz
image obtained after fault, (c) 100 ∼ 600 kHz image obtained before fault,
(d) 100 ∼ 600 kHz image obtained after fault, (e) 600 ∼ 1000 kHz image
obtained before fault, (f) 600 ∼ 1000 kHz image obtained after fault.

TABLE 6. relative factor, correlation indicator and diagnostic result
corresponding to 220 KV power transformer frequency responses.

VI. DISCUSSION
This study successfully applied the digital image processing
technique to analyze transformer winding deformation faults
via several winding fault emulating experiments.

1) Although a criterion for judging whether faults
exist or not has been proposed, given the limitations of current
experimental conditions, the experimental sample data set is
not massive. More experimental data and field cases are still
needed to obtain a precise and accurate judging criterion.
Nevertheless, the effectiveness of the method is demonstrated
successfully. In addition, although the FRA data of two oil-
immersed power transformers have been analyzed and eval-
uated, further research is still needed to include more data
related to large power transformers to verify the reliability,
repeatability and robustness of the binary image method.

2) There exist clear boundaries between the distributions of
correlation indicator of binary images corresponding to three
common fault types, and SVM has been successively demon-
strated to differentiate these winding fault types. However,
the winding deformation fault emulating experiments are
confined to the inter-disk SC, DSV and RD fault, the actual
winding deformation fault is not limited to these 3 categories.
The distribution of correlation indicator corresponding to

other winding fault types such as axial deformation may
be overlapped with the distribution area that corresponds
to the above 3 categories. Nevertheless, the classifying and
clustering characteristic of Fig. 13 can still be used to identify
these main fault types.

3) The fault types and extent of winding deformation
cannot be totally distinguished by the binary image method,
but information of FRA amplitude–frequency and phase–
frequency characteristic signatures are simultaneously uti-
lized to improve the diagnostics of faults. Compared with the
traditional FRA method, the binary image method is more
sensitive to the winding fault.

4) In addition, Yousof et al. [29] discussed the possibility
of FRA to detect transformer insulation aging, and found that
the insulation aging will induce small variation of FRA curve
in most frequency range, which is caused by the variation
of winding capacitive component and dielectric permittivity.
At present, frequency domain dielectric spectroscopy (FDS)
measurement is the main technique to detect transformer
insulation aging. The main frequency range of FDS is 1 mHz
to 1 kHz, which is different from that of FRA (1 kHz to
1 MHz). Due to FRA is more sensitive to the transformer
winding deformation in frequency range of 1 kHz to 1 MHz,
the shift of FRA curve caused by insulation aging is signifi-
cantly minor. Thus, it is possible to distinguish the winding
deformation and insulation aging failure by simply analyzing
the variation pattern of FRA curve. Nevertheless, the effect of
insulation aging on the performance of the proposed method
and the new threshold value can still be further studied in the
next step.

VII. CONCLUSIONS
The FRA amplitude–frequency and phase–frequency infor-
mation are combined and utilized in transformer winding
deformation fault diagnostic method based on the frequency
response binary image.

In the winding fault emulating experiments conducted on a
specially designed and manufactured lego style transformer,
the variations of FRA signatures of winding inter-disk SC,
DSV and RD fault are shown to exhibit certain regularities.
The distribution of correlation indicators of binary images
in sub-frequency bands corresponding to 3 types of winding
faults present classifying and clustering characteristics in
a 3-dimensional space, which can be used to distinguish sev-
eral common winding fault types. Advanced machine learn-
ing technique SVM has been successfully applied to classify
these fault types.

The analyses of two actual large oil-immersed power trans-
former test cases demonstrate that the binary image method
can be used to diagnose winding deformation faults in actual
power transformers. Although the extents and locations of
winding deformation fault cannot be totally determined at the
present stage, this method can still be used to identify the
fault types, similar to the traditional FRA method. Moreover,
the higher sensitivity of themethod can contribute to the accu-
rate diagnosis of some minor winding deformation faults.
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