12,597 research outputs found

    Technologies, methods, and approaches on detection system of plant pests and diseases

    Get PDF
    This research aims to identify the technology, methods, approaches applied in developing plant pest and disease detection systems. For this purpose, it mainly reviews systematically related research on identification, monitoring, detection, and control techniques of plant pests and diseases using a computer or mobile technology. Evidence from the literature shows previous both academia and practitioners have used various technologies, methods and approaches for developing detection system of plant pests and diseases. Some technologies have been applied for the detection system, such as web-based, mobile-based, and internet of things (IoT). Furthermore, the dominant approaches are expert system and deep learning. While backward chaining, forward chaining, fuzzy model, genetic algorithm (GA), K-means clustering, Bayesian networks and incremental learning, Naïve Bayes and Certainty Factors, Convolutional Neural Network, and Decision Tree are the most frequently methods applied in the previous researches. The review also indicated that no single technology or technique is best for developing accurate pest/disease detection system. Instead, the combination of technologies, methods, and approaches resulted in different performance and accuracies. A possible explanation for this is because the systems are used for detecting, controlling and monitoring various plants, such as corn, onion, wheat, rice, mango, flower, and others that are different. This research contributes by providing a reference for technologies, methods, and approaches to the detection system for plant pests and diseases. Also, it adds a way of literature review. This research has implications for researchers as a reference for researching in the computer system, especially for the detection of plant pest and disease research. Hence, this research also extends the body of knowledge of the intelligence system, deep learning, and computer science. For practice, the method references can be used for developing technology for detecting plant pest and disease

    An advanced deep learning models-based plant disease detection: A review of recent research

    Get PDF
    Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation

    An Efficient Deep Learning-based approach for Recognizing Agricultural Pests in the Wild

    Full text link
    One of the biggest challenges that the farmers go through is to fight insect pests during agricultural product yields. The problem can be solved easily and avoid economic losses by taking timely preventive measures. This requires identifying insect pests in an easy and effective manner. Most of the insect species have similarities between them. Without proper help from the agriculturist academician it is very challenging for the farmers to identify the crop pests accurately. To address this issue we have done extensive experiments considering different methods to find out the best method among all. This paper presents a detailed overview of the experiments done on mainly a robust dataset named IP102 including transfer learning with finetuning, attention mechanism and custom architecture. Some example from another dataset D0 is also shown to show robustness of our experimented techniques

    Agricultural Robot for Intelligent Detection of Pyralidae Insects

    Get PDF
    The Pyralidae insects are one of the main pests in economic crops. However, the manual detection and identification of Pyralidae insects are labor intensive and inefficient, and subjective factors can influence recognition accuracy. To address these shortcomings, an insect monitoring robot and a new method to recognize the Pyralidae insects are presented in this chapter. Firstly, the robot gets images by performing a fixed action and detects whether there are Pyralidae insects in the images. The recognition method obtains the total probability image by using reverse mapping of histogram and multi-template images, and then image contour can be extracted quickly and accurately by using constraint Otsu. Finally, according to the Hu moment characters, perimeter, and area characters, the contours can be filtrated, and recognition results with triangle mark can be obtained. According to the recognition results, the speed of the robot car and mechanical arm can be adjusted adaptively. The theoretical analysis and experimental results show that the proposed scheme has high timeliness and high recognition accuracy in the natural planting scene

    Site-Specific Rules Extraction in Precision Agriculture

    Get PDF
    El incremento sostenible en la producción alimentaria para satisfacer las necesidades de una población mundial en aumento es un verdadero reto cuando tenemos en cuenta el impacto constante de plagas y enfermedades en los cultivos. Debido a las importantes pérdidas económicas que se producen, el uso de tratamientos químicos es demasiado alto; causando contaminación del medio ambiente y resistencia a distintos tratamientos. En este contexto, la comunidad agrícola divisa la aplicación de tratamientos más específicos para cada lugar, así como la validación automática con la conformidad legal. Sin embargo, la especificación de estos tratamientos se encuentra en regulaciones expresadas en lenguaje natural. Por este motivo, traducir regulaciones a una representación procesable por máquinas está tomando cada vez más importancia en la agricultura de precisión.Actualmente, los requisitos para traducir las regulaciones en reglas formales están lejos de ser cumplidos; y con el rápido desarrollo de la ciencia agrícola, la verificación manual de la conformidad legal se torna inabordable.En esta tesis, el objetivo es construir y evaluar un sistema de extracción de reglas para destilar de manera efectiva la información relevante de las regulaciones y transformar las reglas de lenguaje natural a un formato estructurado que pueda ser procesado por máquinas. Para ello, hemos separado la extracción de reglas en dos pasos. El primero es construir una ontología del dominio; un modelo para describir los desórdenes que producen las enfermedades en los cultivos y sus tratamientos. El segundo paso es extraer información para poblar la ontología. Puesto que usamos técnicas de aprendizaje automático, implementamos la metodología MATTER para realizar el proceso de anotación de regulaciones. Una vez creado el corpus, construimos un clasificador de categorías de reglas que discierne entre obligaciones y prohibiciones; y un sistema para la extracción de restricciones en reglas, que reconoce información relevante para retener el isomorfismo con la regulación original. Para estos componentes, empleamos, entre otra técnicas de aprendizaje profundo, redes neuronales convolucionales y “Long Short- Term Memory”. Además, utilizamos como baselines algoritmos más tradicionales como “support-vector machines” y “random forests”.Como resultado, presentamos la ontología PCT-O, que ha sido alineada con otras ontologías como NCBI, PubChem, ChEBI y Wikipedia. El modelo puede ser utilizado para la identificación de desórdenes, el análisis de conflictos entre tratamientos y la comparación entre legislaciones de distintos países. Con respecto a los sistemas de extracción, evaluamos empíricamente el comportamiento con distintas métricas, pero la métrica F1 es utilizada para seleccionar los mejores sistemas. En el caso del clasificador de categorías de reglas, el mejor sistema obtiene un macro F1 de 92,77% y un F1 binario de 85,71%. Este sistema usa una red “bidirectional long short-term memory” con “word embeddings” como entrada. En relación al extractor de restricciones de reglas, el mejor sistema obtiene un micro F1 de 88,3%. Este extractor utiliza como entrada una combinación de “character embeddings” junto a “word embeddings” y una red neuronal “bidirectional long short-term memory”.<br /
    corecore