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A B S T R A C T   

Mangos are native to South and Southeast Asian regions. They are one of the favorite fruits consumed globally, 
with an overall estimated consumption reaching up to 50.65 million metric tons in 2017. However, the pro-
duction of mango is usually severely affected by pests that attack the fruit, stem, root or mango leaf. Addressing 
the need for an early stage automated or semi-automated pest identification system, the research presented in 
this paper proposes an advanced machine learning (ML) technique for analyzing large-scale mango fields and 
identification of the onset of biological threats using computer vision and deep-learning technologies. The ML 
technique presented in the paper extends the pre-trained VGG-16 deep-learning model to supplement the last 
layer with a fully connected network training of consisting of 2-layers. In addition, the research presented in the 
paper also considers the real-world operational conditions commonly faced by Indonesian farmers for collecting 
and processing visual information obtained from the Mango farms. The sparsity of the dataset availability for 
effectively training deep-learning network is addressed through the application of data augmentation process 
that is able to accurately recreate the conditions faced by the farmers. The overall accuracy of the proposed 
training solution achieved is 73% on the validation dataset and 76% for the testing data. The application of the 
augmentation transformation function leads to an improvement of 13.43% of accuracy on the testing data.   

1. Introduction 

The agricultural industry and in particular the farming community 
has constantly faced the threat of pests and environmental disruptions 
and is being considered a severe threat for food security and economic 
stability for both farmers and general public (Strange & Scott, 2005). 
Traditionally, such challenges are addressed through the local knowl-
edge of farmers which has been passed down through generations and 
has paved way for mitigating some of the impact of pests. While the use 
of advanced scientific tools and solutions have influenced been largely 
adopted by various industrial sectors in the Indonesian region, the use of 
mobile computation and cloud deployment of deep-learning network 
models for the automation of agricultural services has not been fully 
exploited. Among the several types of agricultural plants which are 

affected by pests, infestation of leaves is regarded to have the maximum 
impact upon the food production. Among several plantation farms 
available in Indonesia, with an average quantity of Mango production 
reaching up to 2.2 Million metric tons out of the total global production 
of 50.65 Million metric tons as reported in 2017, the farming of Mango is 
considered one of the key economic factors that influences the Indone-
sian GDP. In order to ensure a steady volume of production, it is vital to 
ensure that the impact of possible diseases affecting the quality of the 
fruit is mitigated at an early stage. Addressing such a critical challenge in 
farming, the current practice adopted aims for the farmers to manually 
inspect and observe the presence of leaves infestation. However, 
following the increase in the growth of plantation areas of Mango within 
Indonesia, it is no longer feasible for farmers to undertake large-scale 
surveillance of Mango farms. 
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Subsequent to the developments reported in the field of cloud 
computing and smart handheld devices, there is an increasing interest in 
the development of modern tools and techniques for automating Inte-
grated Pest Management (IPM) system and solution. As identified by Ha 
in 2014 (Ha, 2014), the objective of IPM is to design and develop a 
system for managing pests in agricultural production that employs 
multiple tactics in consideration of economic, environmental, ecological 
and human health impacts. For the farmers to successfully adopt the 
usage of such IPM systems, it is critical to ensure appropriate informa-
tion from the wide-scale farming regions are collected and processed in a 
timely manner. 

Therefore, addressing the broad scope of challenges in the cultiva-
tion of Mango within Indonesian farming community, the paper presents 
a data augmentation process for improving the quality of the dataset 
with real-world pests captured followed by the design of a deep-learning 
network for creating a baseline for the classification of multi-class pests. 
In addition, the paper also reports on the deployment of an overall ho-
listic framework for the farmers to identify the pests from the field. The 
specific contributions of the paper include:  

• to generate a dataset for leaves infestation that reflects the challenges 
faced by real-world constraints 

• to extend the sparse dataset through the proposal of data augmen-
tation techniques that improve the robustness of the proposed ma-
chine learning algorithm against overfitting  

• to design and implement a fully connected deep-learning network 
extending VGG-16 network for multi-class classification of pest 
categories  

• to evaluate the performance of the augmentation process with 3 
different experimental runs  

• to report on the developments of the mobile application-based cloud 
deployment of machine learning model for pest-classification in the 
farming region. 

The paper is structured as follows. In Section 2, an overview of the 
literature review is presented followed by the description of the pro-
posed data augmentation process for creating a large dataset that would 
suitably enable the application of deep-learning techniques in Section 3. 
In addition, the section also outlines the proposed framework for clas-
sifying 16-class Mango pest classification framework consisting of 15- 
category of pests and healthy leaves based on the proposed refinement 
to the VGG-16 network. The section concludes with an outline of the 
overall workflow that enables farmers to effectively exploit the cloud- 
based deployment of the proposed solution and receive in real-time 
the classified output for the category of pests that might be affecting 
the production of Mango. The experimental results of the data 
augmentation process and subsequently the classification output from 
the deep-learning network are presented in Section 4. In Section 4, a 
brief discussion and summary of the proposed approach is presented. 
The paper concludes with a remark on the proposed novelty and the 
distribution of data assets in Section 5 along with an outline of the future 
work. 

2. Literature review 

The scope of the research presented in the paper relates to the use of 
data augmentation process and the classification models for categorizing 
multi-class pests that affect Mango cultivation. Therefore, the literature 
review presented in this section has been appropriately categorised into 
two sub-sections. The first subsection outlines the reported techniques in 
the literature on the use of data augmentation process for enriching the 
sparse datasets, while the second subsection presents in detail the 
various machine learning and deep-learning algorithms that have been 
reported in the literature for pest classification. 

2.1. Data augmentation 

In order to build robust deep-learning models, it is critical to ensure 
the validation error during the training phase to be continually mini-
mised along with training error. One of the approaches that has been 
successfully reported in the literature is data augmentation process 
(Shorten & Khoshgoftaar, 2019). The augmented data will represent a 
more comprehensive set of possible data points, thus minimizing the 
distance between the training and validation set, as well as any future 
testing sets. One of the common pitfalls in machine learning algorithms 
is for the algorithm to overfit on the training dataset and thus lose the 
ability to generalise the training model for new information that is 
presented upon which the network has not been trained. In order to 
address the robustness of the quality of training, several techniques have 
been published for improving the generalization ability of these models. 
The term ‘Generalizability’ refers to the performance difference of a 
model when evaluated on previously seen data (training data) versus 
data it has never seen before (testing data). Models with poor general-
izability have overfitted the training data. One way to discover over-
fitting is to plot the training and validation accuracy at each epoch 
during training (Shorten & Khoshgoftaar, 2019). 

In contrast, inspired by ManiFool (Paschali et al., 2019), present an 
augmentation process that is performed by a line-search manifold- 
exploration method which is hypothesised to learn the affine geometric 
transformations that had led to the misclassification on an image, while 
ensuring that it remains on the same manifold as the training data. This 
augmentation method populates any training dataset with images that 
lie on the border of the manifolds between two-classes and maximizes 
the variance the network is exposed to during training. The data 
augmentation process had been thoroughly evaluated on the chal-
lenging tasks of fine-grained skin lesion classification from limited data, 
and breast tumour classification of mammograms. However, such 
techniques have not been further explored in the context of agricultural 
domain for multi-class classification problems. 

In comparison, the image-based data augmentation process aims to 
perform data transformations, that will result in the increase of problem 
specification which will be used to train the network for achieving 
generalisation. A brief review of the various image manipulations that 
are commonly adopted in the literature for the development of data 
augmentation strategies and policies like flipping, color space, cropping, 
rotation, translation, noise injection and Colour space transformation. 
Despite these publications, the challenge of pest recognition that affects 
Mango cultivation in the Indonesian region remains an open problem. 

2.2. Machine learning for multi-class pest classification 

Following the recent innovations reported in the field of deep- 
learning and machine learning algorithms, a limited number of arti-
cles have been published addressing the challenge of pest detection 
based on the image processing. 

The cost of capturing visible scale images using low-cost visible 
sensors has been identified as a suitable for detecting pest. As such, the 
use of handheld devices including smart phones and tablets have been 
increasingly receiving acceptance among farmers for collection of in-
formation and subsequent processing (Zhang, Wu, You, & Zhang, 2017). 
The study of pests affecting the plants has been the areas of study for 
many researchers and in particular the use of images captured from 
smartphones has been accepted by farmers (Johannes, Seitz, & Se, 
2017). Following the wide-scale data aggregation from the fields, the 
application of statistical tools and machine learning algorithm for the 
classification of multi-class pests has been reported in the literature 
including the use of Support Vector Machine (SVM) (Avendano, Ramos, 
& Prieto, 2017), Neural networks (Srdjan Sladojevic, Marko Arsenovic, 
Andras Anderla, 2016), deep learning (Lu, Yi, Zeng, Liu, & Zhang, 2017) 
(Mohanty, Hughes, & Salathé, 2016) among others. 

Subsequent to the increasing popularity of deep-learning network 
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models that have been applied across other critical domains such as 
medical, object classification, the use of deep-learning algorithms has 
been proposed in the literature for the classification of pests (Mohanty 
et al., 2016) with results reported in a classification with a fairly good 

level of accuracy at 99.35% of the 26 types of plant diseases commonly 
affecting approximately 14 agricultural commodities. In particular, the 
use of Convolution Neural Network (CNN) for the classification of plant 
diseases affecting rice produce has been examined by (Lu et al., 2017). In 

Fig. 1. Example of Leaves infestation.  

Table 1 
Types of Pests affecting Mango farms in Indonesia.  
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the study authors report that, the type of disease was limited to 10 types 
of diseases that most often attacked rice and produced an accuracy of 
95.48%. In the context of agriculture, the number of cultivated plants 
vary in their origin along with environmental impact on climate and 
other parameters. The evaluation of the pest and disease classification 
techniques as reported in the literature considers a limited type of 
classes that are detected. For example (Zhang et al., 2017) presented the 
research formulated to detect pests and diseases affecting only one type 
of apples, cucumbers, tulips, and rice. 

The research presented in this paper aims at addressing the needs of 
the farmers with accessibility to real-time development and deployment 
of engineers other than for maintenance. In the next section, a detailed 
outline of the various techniques discussed is reported for the pest 
recognition system. 

3. Proposed framework for pest recognition system 

The proposed framework for pest recognition relies on the processing 
of real-world images captured with low-cost handheld devices from the 
Mango farms. One of the crucial requirements that is addressed in the 
research in the lack of resources for pre-processing the images captured 
by farmers. Thus, the image from the farm is processed as is and thus 
presents a set of unique challenges with complex background and partial 
occlusions and overlapping leaf structures upon other pests Therefore, 
addressing these challenges, the training of the pest recognition frame-
work is carried out using data augmentation techniques such as noise, 
blur and contrast along with affine transformations. The rest of the 
section provides a detailed outline of the data generation process carried 
out in the paper for training the pest recognition framework. 

3.1. Data generation 

One of the key contributions of the research presented in the paper is 
the dataset development for training multi-class pest infestation 
network. As mentioned earlier, the pest infestation process is unique to 
the regional environment and the plantation that is being affected, the 
data collection was conducted through samples aggregated from mango 
plants throughout Indonesian archipelago. A range of samples that have 
been collected from the data collection is presented in Fig. 1, with the 
left most image representing the original image and the rest of the im-
ages in Figure represent some form of pest infestation. 

The overall cultivation of the Mongo trees has been affected by a 
total of 181 pests including disease-causing pathogens and weeds out of 
which, 80% are commonly found in Indonesia (Suputa et al., 2015). The 
infestation of these pests tends to cause farm for various parts of the 
Mango cultivation including leaves, fruits, branches, stems and roots. 
Among these pests, 48 distinct types of pests have been identified to 
harm the leaves of the Mango trees globally. Therefore, in the research 
presented in the paper, 15 unique categories of pests that are identified 
to cause the most harm to Mongo cultivation are being studied and 
analyzed. The selected 15-pest categories also result in the structural 
deformity of the Mango leaves, facilitating the farmers to quickly 
contain the spread of the pest across the farm. Among the various 
challenges, researchers’ carryout studies on pest infestation 

management often suffer from the limited amount of resources available 
for carrying out large-scale tests for automating the detection and 
categorization of pests’ classes. These pests, Apoderus javanicus, Aula-
caspis tubercularis, Ceroplastes rubens, Cisaberoptus kenyae, Dappula tertia, 
Dialeuropora decempuncta, Erosomyia sp., Icerya seychellarum, Ischnaspis 
longirostris, Mictis longicornis, Neomelicharia sparsa, Orthaga euadrusalis, 
Procontarinia matteiana, and Valanga nigricornis, are commonly occurring 
in Indonesia and have been identified as a threat to the economic wel-
fare among trading partner countries, such as Australia (Australian 
Government Department of Agriculture and Water Resources). 

As an instance, the population of Apoderus javanicus increases from 
August to September (Manjunath, 2018). There is high population 
density of Aulacapsis tuberculari during April to August (Salem, Mah-
moud, & Ebadah, 2015). Cisaberoptus kenyae is recorded every year and 
the highest populations have been witnessed between January and 
August (Abou-Awad, Metwally, & Al–Azzazy, 2009). The most serious 
damage of D. tertia larvae often appears between June and July (Chang 
et al., 2018). High populations of Dialeuropora decempuncta is wit-
nessed between March to June and low populations from October to 
January (Singh, Maheshwari, & Saratchandra, 2005). Icerya seychella-
rum exists every year, and the population increases from March and 
subsequently decreases from September (Mohamed, 2015). 

The occurrence of following pests (Erosomyia sp., Ceroplastes rubens, 
Ischnaspis longirostris, Neomelicharia sparsa, Mictis longicornis, Orthaga 
euadrusalis, Procontarinia matteiana, Valanga nigricornis) have not been 
formally recorded in the literature, but based on the observations in the 
mango farms, these pests are always found at each time of observation. 
Based on observations in Indonesia the existence of this pest is always 
found throughout the year. 

There is a severe lack of visual examples from the suspicious 
destructor as this pest only appears occasionally but causes severe eco-
nomic damage to the overall Mango cultivation. An overview of the 
different types of pests and associated number of image samples 
collected from the Indonesia has been tabulated in Table 1. These pests, 
Apoderus javanicus, Aulacaspis tubercularis, Ceroplastes rubens, Cis-
aberoptus kenyae, Dappula tertia, Dialeuropora decempuncta, Erosomyia 
sp., Icerya seychellarum, Ischnaspis longirostris, Mictis longicornis, Neo-
melicharia sparsa, Orthaga euadrusalis, Procontarinia matteiana, and Val-
anga nigricornis, are commonly occurring in Indonesia and have been 
identified as a threat to the economic welfare among trading partner 
countries, such as Australia (Australian Government Department of 
Agriculture and Water Resources). 

As an instance, the population of Apoderus javanicus increases from 
August to September (Manjunath, 2018). There is high population 
density of Aulacapsis tuberculari during April to August (Salem et al., 
2015). Cisaberoptus kenyae is recorded every year and the highest pop-
ulations have been witnessed between January and August (Abou-Awad 
at al., 2009). The most serious damage of D. tertia larvae often appears 
between June and July (Chang et al., 2018). High populations of Dia-
leuropora decempuncta is witnessed between March to June and low 
populations from October to January (Singh et al., 2005). Icerya sey-
chellarum exists every year, and the population increases from March 
and subsequently decreases from September (Mohamed, 2015). 

The occurrence of following pests (Erosomyia sp., Ceroplastes rubens, 
Ischnaspis longirostris, Neomelicharia sparsa, Mictis longicornis, Orthaga 
euadrusalis, Procontarinia matteiana, Valanga nigricornis) have not been 
formally recorded in the literature, but based on the observations in the 
mango farms, these pests are always found at each time of observation. 
Based on observations in Indonesia the existence of this pest is always 
found throughout the year. The images depicted in the table represent 
the primary data that was captured from infested leaves from Mango 
farms. In order to highlight the visual characteristics of the pests, the 
collected images were cropped to indicate part of the pest specific 
characteristic. The images used in the experiments were taken real time 
from infested leaves, without any preprocessing. 

Despite the availability of a significant image database, the amount 
Fig. 2. Data augmentation workflow for training deep-learning 
network models. 
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of data is not enough to develop advanced classification models based on 
deep learning. In addition, due to the micro-differences between the 
various types of pest infestation the use of statistical machine learning 
techniques based on pixel-level hand-crafted features has not yielded 
high accuracy for the multi-class classification of pests. Therefore, the 
use of data augmentation techniques has been adopted for improving the 
quality of the data for the training of deep-learning network. The high- 
level outline of the image manipulation steps adopted for data 
augmentation in this paper is presented in Fig. 2. For each image 
collected from the Mango cultivation field, the samples are subjected to 
five mathematical operations namely (i) noise; (ii) blur; (iii) contrast 
and (iv) affine transformation. The novelty of the proposed approach is 
the construction of the sequential and non-sequential workflow in which 
each of the mathematical operators is performed in several 
combinations. 

The implementation framework of the augmentation sequence is 
presented in Fig. 2. The original dataset from obtained from the Mango 
farm has been subjected to three distinct forms of augmentation process. 
The steps have been carefully chosen to ensure the resulting outcome is 
subsequently used to train the deep-learning network that is able to 
avoid overfitting to the given training dataset. In addition, it is also 
worth noting that the selection of the various data augmentation steps 
and sequences that have been considered are inspired from the data 
collection process as undertaken by the farmers, in which the collected 

samples have been found to be rotated, blurred and illumination 
changes.  

• Noise Addition: 

In order to achieve robust generalisation of the image dataset, the 
next step in the data augmentation process included in the introduction 
of noise levels based on Gaussian distribution as presented in (Das et al., 
2016). In order to ensure the visibility of the random noise the random 
number is multiplied by a regularization constant. The mean parameter 
is randomly generated between {0.1, 0.2, 0.3, 0.4}, meanwhile the de-
viation parameter between {0,0.1, …, 0.5}  

• Blur: 

The next data augmentation process implemented in the paper re-
lates to blur and often represents the lack of auto-focus functionality in 
the collection of data samples. Therefore, the blur parameters that are 
used to transform the images also follow the Gaussian distribution of the 
parameters. This implementation of the Gausian blur was carried out by 
kernel size 5 and standard deviation {2, 3, 4, 5, 6, 7}  

• Contrast: 

Fig. 3. Sample images in the augmented dataset.  
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Contrast variations (Szeliski, 2010) are generated using contrast 
parameter {1, 1.5} and brightness {0,1,2,3,4,5}.  

• Affine Transformation: 

The affine transformation is used to simulate images rendered from 
different camera positions and projections. 

Sample outcomes of the data augmentation process are presented in 
Fig. 3. Here, three examples from the original dataset has been selected 
upon which three data distortion operations, as presented in Fig. 2, have 
been applied. In total, for every image in the original dataset, additional 
150 images have been generated through the presented augmentation 

process. 

3.2. Proposed machine learning framework 

Following the dataset generation step, the next stage in the pro-
cessing relates to the training of the deep-learning network for the 
classification of different types of pests that affect Mango plants in 
Indonesia. In order to achieve this, the VGG-16 network architecture 
(Simonyan & Zisserman, 2014) has been updated to replace the last 
block containing the softmax classification with a fully-connected layer 
(FCL) and train the network with the image features extracted from the 
VGG-16. The weights of the VGG-16 network have been preserved from 

Input Image 
(224 x 224 x 3)

Convolutional (ReLu)
(3 x 3), 1 stride, 64 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 64 filters

Max Pooling (2 x 2), 
2 strides

Convolutional (ReLu)
(3 x 3), 1 stride, 128 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 128 filters

Max Pooling (2 x 2), 
2 strides

Convolutional (ReLu)
(3 x 3), 1 stride, 256 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 256 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 256 filters

Max Pooling (2 x 2), 
2 strides

Convolutional (ReLu)
(3 x 3), 1 stride, 512 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 512 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 512 filters

Max Pooling (2 x 2), 
2 strides

Convolutional (ReLu)
(3 x 3), 1 stride, 512 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 512 filters

Convolutional (ReLu)
(3 x 3), 1 stride, 512 filters

Max Pooling (2 x 2), 
2 strides

Flatten, 
output = 1 x 1 x 25,088

Fully Connected (ReLu),
output = 1 x 1 x 4,096

Fully Connected (Softmax),
output = 1 x 1 x 1000

224 x 244 x 3

112 x 112 x 64

56 x 56 x 128

28 x 28 x 256

14 x 14 x 512

7 x 7 x 512

Fully Connected (ReLu),
output = 1 x 1 x 4,096

Fig. 4. VGG-16 Architecture with the original head is removed.  
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the pre-trained model. The extracted features are flattened and used as 
input to the FCL layer network which consists of 2-layers. The first layer 
is activated by the ReLU function and consists of 256 nodes, followed by 
the second layer consisting of 16 nodes activated by softmax. The output 
of the network classifies the pest model. The VGG-16 network archi-
tecture is presented in Fig. 4 followed by the proposed training frame-
work depicted in Fig. 5. 

3.3. Implementation specification 

The overall implementation of the FCL network is achieved in Ten-
sorFlow using Keras library (Chollet François, 2015). The training of the 
Pest classification has been achieved through by establishing a robust 

visual correspondence between the various types of the pests. The 
training parameters utilized include a learning rate of 1 × 10− 5 and 
epoch of 50. The loss function has been calculated using binary cross- 
entropy model. 

4. Result and discussion 

The overall original dataset has been divided into three subsets 
namely (i) training; (ii) validation and (iii) testing with 60%, 20% and 
20% respectively. As the quantity of datasets available is not enough to 
robustly train the deep-learning network models, the process of data 
augmented as presented in Section 3, is carried out. Therefore, the 
objective of the experimentation process is to validate both the 

Fig. 5. The new head of VGG-16.  

Fig. 6. Dataset distributed used for experimentation, version 0.  
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performance of the augmentation process and the proposed VGG-16 
network improvement with the FCL network for training on both orig-
inal and augmented dataset for improved classification process. 

4.1. Experimental setup 

In order to evaluate the impact of data augmentation, we carry out 
three experimental scenarios, as below:  

• Version 0: the dataset consists of 510 original images as captured 
from the mango cultivation farms in Indonesia. The overall image 

dataset is divided into 3 parts with 310 images as training data, 103 
images as validation data, 97 images as testing data. The objective of 
the experiment is to calculate the baseline performance of the system 
when the proposed network is trained using the limited number of 
images, validated and tested with originally captured images without 
any augmentation. The distribution of the dataset is presented in 
Fig. 6.  

• Version 1: the image dataset consists of 46.500 samples as training 
data following the application of the data augmentation process. The 
objective of the scenario is to evaluate the performance of the 
network training while the validation and testing sequences 

Fig. 7. Dataset distribution used for experimentation, version 1.  

Fig. 8. Dataset distribution used for experimentation, version 2.  
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represent the original dataset without data augmentation. The data 
augmentation process is carried out using the framework presented 
in Fig. 2, and consists of noise addition, blur, contrast and affine 

transformation operation. The overall distribution of the dataset is 
presented in Fig. 7.  

• Version 2: The dataset consists of 62.047 images in total. It consists of 
46.500 training images as a result of the augmentation process of 510 
original training images. The validation data consists of 15.450 im-
ages as a result of the augmentation for the original validation data. 
We keep the testing dataset without any modification to keep the 
original data from the field. The distribution of the dataset is pre-
sented in Fig. 8. 

4.2. Experiment result 

The training of the VGG-16 network with FCL network layer is pre-
sented in this section. The training of the FCL network layer is carried 
out for 50 epochs. The graphical representation of the training accuracy 
and the validation accuracy for each experimental run is presented in 
Fig. 9, Fig. 10 and Fig. 11 respectively. For the training of version 0, the 
training accuracy reaches a saturation at approximately 18 epochs, 
while the validation accuracy oscillates between 0.63 and 0.70 starting 
from 15 epochs. 

Following the training of the version 0, the experimental setup of 
version 1, with training performed with the augmented data is presented 
in Fig. 10. As opposed to the use of validation data from the augmen-
tation process, the experimental run uses the original data and ground 
truth to evaluate the training outcomes. As expected, the validation 
results have not been observed to be stabilised, with each the progres-
sion of each epochs. Despite the presence of the original data within the 
augmented dataset, the validation accuracy oscillates between 0.75 and 
0.70 with a global minimum achieved at epoch 47 resulting in less than 
67% accuracy. On the other hand, the training accuracy saturates 
around epoch 15, resulting in the zero slope for the training accuracy 
plot. 

Finally, the training of the third experimental run is presented in 
Fig. 11. The validation model uses the augmented dataset like the ones 
used in the training of the FCL network with the VGG-16 network fea-
tures extracted from the pre-trained model. The training outcomes 
resemble the version 0 model, which also uses a homogenous data 
sources for the training and validation process. The oscillations in the 
accuracy of validation dataset is minimal and is approximately 0.70 with 
0.3 tolerance. The training accuracy saturates around 15 epochs, like the 
version 0 and version 1 training models. 

4.3. Experimental results 

Following the training of the proposed network architecture with 
VGG-16 and FCL, the overall performance of the network upon testing is 
formulated in Table 2. Based on the experiment, it is shown that the 
version 2 experiments which uses augmented images for training, vali-
dation and testing yields the best performance. The improvement in the 
accuracy of the experiment is attributed to the overall learning distin-
guishability of features learnt by the network. Both validation and 
testing accuracies represent how well the model can generalize or pre-
dict an unseen data. As opposed to the use of validation data, the testing 
data represents the images captured from the real-world data. The 
comparative performance of validation accuracy in version 2 experi-
ments showcases the importance of data augmentation process in 
training the network model. As mentioned earlier, the version 2 

Fig. 9. Training process for version 0.  

Fig. 10. Training process for version 1.  

Fig. 11. Training process for version 2.  

Table 2 
Performance of the proposed network model for 16-class Mango pest 
classification.  

Experiment Validation Accuracy Testing Accuracy 

Version 0 70% 67% 
Version 1 75% 68% 
Version 2 71% 74%  
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experiment uses the augmented image sequences for both training and 
validation, while the version 0 and version 1 experiment run rely on the 
use of original data for the validation. We attribute the increase in 
performance to the generalisability of the proposed network for learning 
distinguishable features available through the data augmentation pro-
cess, which was not available in version 0 and version 1 runs. 

In addition, the overall comparison of version 0, version 1 and 
version 2 experimental results for precision, recall and F1-measure is 
presented in Figs. 12 and 13 and 14. The overall training of the VGG-16 
based proposed FCL network was carried out using the Titan V GPU with 
12 GB Memory, capable of processing 640 of tensor cores. The training 
server was operated with 9th Generation Intel processor 9900 K 

consisting of 8 cores. The training model was stored on the SSD M.2 hard 
disk. The overall training period for each of the experimental dataset 
version 0, version 1 and version 2 is 74 s, 2,175 s and 7, 116 s 
respectively. 

In addition to the performance assessment of the classification 
framework on the cumulative outcome of the proposed data augmen-
tation framework, a detailed assessment of each data augmentation 
function is carried out. The objective of this evaluation is to evaluate the 
overall contribution of the selected data augmentation function namely 
noise, blur, contrast and affine transform towards improving the clas-
sification performance of the proposed framework. To achieve this 
objective, a set of 18 different data sets were generated, with an 

Fig. 12. Precision of the proposed network architecture for version 0, version 1 and version 2 trained network.  

Fig. 13. Recall of the proposed network architecture for version 0, version 1 and version 2 trained network.  
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exhaustive combination of all four data augmentation functions. Each 
dataset set has been processed through the classification framework 
with the training of the network carried out using the data augmented 
images. The testing images used for the evaluation remain the same as 
version 2 dataset. The proposed scenario achieved the best performance 
at 76% of accuracy on contrast and affine transformation experiments. 
In Fig. 15, a percentage comparison of each data augmentation function 
against the classification accuracy is evaluated against the baseline 
classification performance when applied without the data augmentation 
process. The analysis of results highlights the disproportional influence 

of the data augmentation functions in enhancing the classification per-
formance. The application of contrast and affine transform results in an 
overall improvement of 13.43% in the classification accuracy. However, 
the application of noise and blur has resulted in the decrease of classi-
fication accuracy by 1.49%. Similar decrease in classification accuracy 
of 2.98% is also noted for the application of blur and affine transforms 
along with the application of noise, blur and contrast. The detailed 
evaluation of the result indicates the positive outcome of the two data 
augmentation functions namely contrast and affine, which has led to the 
overall improvement of the classification accuracy. Furthermore, the 

Fig. 14. F1-Measure of the proposed network architecture for version 0, version 1 and version 2 trained network.  

Fig. 15. F1 measure for blur, noise and contrast evaluation of data augmentation process.  
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application of the contrast function upon the images are limited to the 
scope of natural light in which the images are expected to be captured. 
This is achieved by the use of multiplication and addition transformation 
function consisting in total of 12 filters with α ranging from 1 to 1.5 and 
β ranging between 0 and 5 was applied on the original image. Similarly, 
the application of the affine geometric transform is carried out using 
three dimensional rotational across x, y and z axis. The rotational 
transform is applied throughout the 360 degrees in both y and z axis. The 
final dataset has been filtered for transpose images as they do not add 
value to valuable learning features. The implementation of the data 
augmentation functions was carried out using OpenCV Library (OpenCV 
Library). 

Following the determination of disproportional influence of data 

augmentation function upon the multi-class pest classification frame-
work, an additional experiment has been carried out that maps the 
classification performance against the quantity of the training data. As 
noted in the previous experiment, the application of contrast and affine 
transform across y- and z-axis has yielded an improvement of 13.43% 
improvement against the baseline evaluation without the use of data 
augmentation framework. Thus, in this experiment, our aim is to eval-
uate the quantity of the training data required to achieve the best per-
formance in the multi-class pest classification. Therefore, to achieve this 
objective, the angle of rotation in y- and z-axis is systematically carried 
out for each of the 310 images from the training dataset. The training 
data was generated progressively by systematic variation in the number 
of rotations applied across two axes with a maximum of 100 different 

Fig. 16. Performance of data augmentation against training data.  

Fig. 17. Mobile (Android) application screen as used by Mango Farmers.  
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combinations applied across 360 degrees. For each of the trans-
formation, the resultant dataset was filtered against transpose images as 
they do not add any additional value. The F1-measure for each training 
dataset is presented in Fig. 16. The classification performance saturates 
at 77%. Following the exhaustive list of 100 different angle variations 
applied on both y- and x-axes, further increase in the training data has 
saturated the performance of the multi-class pest classification frame-
work. The graphical model represents the variations of the pest classifier 
which peaks at 83,046 training samples. The computational time 
required for each dataset is also presented along the z-axis. 

5. Summary discussion and future work 

Following the results presented, Orysomia sp has resulted in 0% 
precision and recall on the original dataset testing (version 0). However, 
the classification performance of the said class improves upon the 
application of the augmentation process, as verified in version 1 and 
version 2 runs of the experiments. Similarly, the overall classification of 
the multi-class pests has shown to have improved by the proposed VGG- 
16 based FCL network model, upon the application of the augmentation 
process. The overall multi-class classification of 16-class classification 
model has yielded in an increase of 13.43% accuracy in comparison to 
the baseline performance of the proposed approach. The increase in the 
performance is intuitively attributed to the use of data augmentation 
process with the combination of contrast and affine transform. Although 
in the literature, there are reports of using data augmentation process for 
improving the classification performance from 0.2% to 4.6% (Kobaya-
shi, Tsuji, & Noto, 2019), to the best of our knowledge, such techniques 
have not been reported for multi-class pest classification. The process of 
the augmentation as proposed with the cascaded approach of geometric 
transformations of the pest infected data has yielded improved the 
robustness of the training model. Following the evaluation of the various 
models, the best performing model has been selected for the integration 
into the mobile platform, which has been used by the Mango farmers in 
Indonesia for the identification of pest categories. The implementation 
of the various user interactive screens has been presented in Fig. 17. In 
order to reduce the operational cost of the overall proposed framework, 
the evaluation of the testing framework has been achieved on the CPU 
system (with the training carried out on the GPU units). The cloud-based 
deployment of the CPU-only Tensorflow with Keras library has resulted 
in the computational time between 2 s to 2.99 s for the classification of 
the input image and provide a response to the mobile application. 

Following the review of the results, an extended approach is also 
being considered for enhancing the quality of the data augmentation 
process. In this approach, the appearance of the pest regions is 
segmented as foreground along with the structural deformity experi-
enced by the leaves. The segmented regions of the pest are subjected to 
data augmentation framework presented in the paper. The training of 
the deep-learning network is carried out with the superimposed 
augmented pest images as foreground against the naturally appearing 
background regions. An initial outcome of such an approach is presented 
in Fig. 18. The training process to be carried out on such dataset will 
facilitate the deep-learning models to distinguish between the fore-
ground pest and the background images, thus leading to the improve-
ment in performance accuracy. In addition, we will also evaluate the 
performance of the network training against the overfitting as presented 
in Figs. 9–11. The approach will be further invested as a part of our 
ongoing research activity. 

6. Conclusion 

In this paper, three contributions have been presented. The study of 
augmentation process for increasing the limited availability of pest 
infected dataset complemented by the proposed architecture for the 
training of multi-class pest classification model. The proposed classifi-
cation framework extends the VGG-16 framework and extracted the 
deep-learning features from the network. The extracted features are 
further trained through a 2-layer fully connected network for achieving 
the classification outcome. The systematic evaluation of the proposed 
approaches was achieved based on three different datasets. The com-
bination of these datasets includes the classification on the original data 
without augmentation process resulting in 67% of the overall accuracy, 
while the evaluation on the augmented data process has resulted in 76% 
overall accuracy with the application of contrast and affine transform. 
The additional experimental results also indicate the impact of different 
data augmentation functions on the classification performance. The final 
contribution provides an outline of the overall data workflow process 
integrated as a mobile application that can be directly used by the 
Mango farmers in Indonesia. The future work will include a detailed 
analysis of the deep-learning features extracted from multiple-pre- 
trained models and evaluate the quality of these features. In addition, 
the network architecture models will be further developed towards 
improving the performance of the classification model. 
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