109 research outputs found

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales

    Report on the 2018 trials of the multistatic NeXtRAD dual band polarimetric radar

    Get PDF
    NeXtRAD is a polarimetric, L and X Band, multistatic (three nodes), pulse Doppler radar, developed by UCT and UCL, as a follow on to the NetRAD sensor. This paper reports on the trials carried out in 2018, mostly in Simon's Bay, South Africa. The sensors (one active, two passive) are connected by WiFi communications link, with a maximum separation of 40 km. Practically, results are reported with 8 km maximum baselines. The focus is on targets in sea clutter and micro-Doppler. We report on the final integration and test of the system command and control system that allows for scheduling of measurement and recording of bursts of pulses, as well as video of the radar field of view. Some innovations have been made in terms of digital hardware, firmware, and high performance computing technology. The system is synchronised with the UCT GPS Disciplined Oscillators (one per node), but we also report on bistatic measurements with White Rabbit, fibre timing system, as well as the consequences of GPS failure (GPS Denied Environment)

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    Adaptive Active-Passive Radar Control for Low Probability of Intercept Operation

    Get PDF

    Micro-Doppler-Coded Drone Identification

    Full text link
    The forthcoming era of massive drone delivery deployment in urban environments raises a need to develop reliable control and monitoring systems. While active solutions, i.e., wireless sharing of a real-time location between air traffic participants and control units, are of use, developing additional security layers is appealing. Among various surveillance systems, radars offer distinct advantages by operating effectively in harsh weather conditions and providing high-resolution reliable detection over extended ranges. However, contrary to traditional airborne targets, small drones and copters pose a significant problem for radar systems due to their relatively small radar cross-sections. Here, we propose an efficient approach to label drones by attaching passive resonant scatterers to their rotor blades. While blades themselves generate micro-Doppler rotor-specific signatures, those are typically hard to capture at large distances owing to small signal-to-noise ratios in radar echoes. Furthermore, drones from the same vendor are indistinguishable by their micro-Doppler signatures. Here we demonstrate that equipping the blades with multiple resonant scatterers not only extends the drone detection range but also assigns it a unique micro-Doppler encoded identifier. By extrapolating the results of our laboratory and outdoor experiments to real high-grade radar surveillance systems, we estimate that the clear-sky identification range for a small drone is approximately 3-5 kilometers, whereas it would be barely detectable at 1000 meters if not labeled. This performance places the proposed passive system on par with its active counterparts, offering the clear benefits of reliability and resistance to jamming

    Measurements and discrimination of drones and birds with a multi‐frequency multistatic radar system

    Get PDF
    This article presents the results of a series of measurements of multistatic radar signatures of small UAVs at L‐ and X‐bands. The system employed was the multistatic multiband radar system, NeXtRAD, consisting of one monostatic transmitter‐receiver and two bistatic receivers. NeXtRAD is capable of recording simultaneous bistatic and monostatic data with baselines and two‐way bistatic range of the order of a few kilometres. The paper presents an empirical analysis with range‐time plots and micro‐Doppler signatures of UAVs and birds of opportunity recorded at several hundred metres of distance. A quantitative analysis of the overall signal‐to‐noise ratio is presented along with a comparison between the power of the signal scattered from the drone body and blades. A simple study with empirically obtained features and four supervised‐learning classifiers for binary drone versus non‐drone separation is also presented. The results are encouraging with classification accuracy consistently above 90% using very simple features and classification algorithms

    Target Coordinates Estimation by Passive Radar with a Single non-Cooperative Transmitter and a Single Receiver

    Get PDF
    Passive radar is a bistatic radar that detects and tracks targets by processing reflections from non-cooperative transmitters. Due to the bistatic geometry for this radar, a target can be localized in Cartesian coordinates by using one of the following bistatic geometries: multiple non-cooperative transmitters and a single receiver, or a single non-cooperative transmitter and multiple receivers, whereas the diversity of receivers or non-cooperative transmitters leads to extra signal processing and a ghost target phenomenon. To mitigate these two disadvantages, we present a new method to estimate Cartesian coordinates of a target by a passive radar system with a single non-cooperative transmitter and a single receiver. This method depends on the ability of the radar receiver to analyze a signal-to-noise ratio (SNR) and estimate two arrival angles for the target’s echo signal. The proposed passive radar system is simulated with a Digital Video Broadcasting-Terrestrial (DVB-T) transmitter, and the simulation results show the efficiency of this system compared with results of other researches
    corecore