5 research outputs found

    Towards heterotic computing with droplets in a fully automated droplet-maker platform

    Get PDF
    The control and prediction of complex chemical systems is a difficult problem due to the nature of the interactions, transformations and processes occurring. From self-assembly to catalysis and self-organization, complex chemical systems are often heterogeneous mixtures that at the most extreme exhibit system-level functions, such as those that could be observed in a living cell. In this paper, we outline an approach to understand and explore complex chemical systems using an automated droplet maker to control the composition, size and position of the droplets in a predefined chemical environment. By investigating the spatio-temporal dynamics of the droplets, the aim is to understand how to control system-level emergence of complex chemical behaviour and even view the system-level behaviour as a programmable entity capable of information processing. Herein, we explore how our automated droplet-maker platform could be viewed as a prototype chemical heterotic computer with some initial data and example problems that may be viewed as potential chemically embodied computations

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    Grand Challenge 7: Journeys in Non-Classical Computation

    Get PDF
    We review progress in Grand Challenge 7 : Journeys in Non-Classical Computation. We overview GC7-related events, review some background work in certain aspects of GC7 (hypercomputation, bio-inspired computation, and embodied computation) and identify some of the unifying challenges. We review the progress in implementations of one class of non-classical computers: reaction-diffusion systems. We conclude with warnings about “regression to the classical”

    On Unconventional Computing for Sound and Music

    Get PDF
    Advances in technology have had a significant impact on the way in which we produce and consume music. The music industry is most likely to continue progressing in tandem with the evolution of electronics and computing technology. Despite the incredible power of today’s computers, it is commonly acknowledged that computing technology is bound to progress beyond today’s conventional models. Researchers working in the relatively new field of Unconventional Computing (UC) are investigating a number of alternative approaches to develop new types of computers, such as harnessing biological media to implement new kinds of processors. This chapter introduces the field of UC for sound and music, focusing on the work developed at Plymouth University’s Interdisciplinary Centre for Computer Music Research (ICCMR) in the UK. From musical experiments with Cellular Automata modelling and in vitro neural networks, to quantum computing and bioprocessing, this chapter introduces the substantial body of scientific and artistic work developed at ICCMR. Such work has paved the way for ongoing research towards the development of robust general-purpose bioprocessing components, referred to as biomemristors, and interactive musical biocomputers
    corecore